1,993 research outputs found

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(logn)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8klog(k+1)1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer k1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~()\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ω~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(logn)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    Message Reduction in the LOCAL Model Is a Free Lunch

    Get PDF
    A new spanner construction algorithm is presented, working under the LOCAL model with unique edge IDs. Given an n-node communication graph, a spanner with a constant stretch and O(n^{1 + epsilon}) edges (for an arbitrarily small constant epsilon > 0) is constructed in a constant number of rounds sending O(n^{1 + epsilon}) messages whp. Consequently, we conclude that every t-round LOCAL algorithm can be transformed into an O(t)-round LOCAL algorithm that sends O(t * n^{1 + epsilon}) messages whp. This improves upon all previous message-reduction schemes for LOCAL algorithms that incur a log^{Omega (1)} n blow-up of the round complexity
    corecore