433 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Broadband 3-D shared aperture high isolation nine-element antenna array for on-demand millimeter-wave 5G applications

    Get PDF
    The paper presents the results of a novel 3-D shared aperture 3 × 3 matrix antenna-array for 26 GHz band 5 G wireless networks. Radiation elements constituting the array are hexagonal-shaped patches that are elevated above the common dielectric substrate by 3.35 mm and excited through a metallic rod of 0.4 mm diameter. The rod protrudes through the substrate of 0.8 mm thickness. It is shown that by isolating each radiating element in the array with a wall suppresses unwanted electromagnetic (EM) wave interactions, resulting in improvement in the antenna’s impedance matching and radiation characteristics. Moreover, the results show that by embedding hexagonalshaped slots in the patches improve the antenna’s gain and radiation efficiency performance. The subwavelength length slots in the patches essentially transform the radiating elements to exhibit metasurface characteristics when the array is illuminated by EM-waves. The proposed array structure has an average gain and radiation efficiency of 20 dBi and 93%, respectively, across 24.0–28.4 GHz. The isolation between its radiation elements is greater than 22 dB. Compared to the unslotted array the improvement in isolation between radiating elements is greater than 11dB, and the gain and efficiency are better than 10.5 dBi, and 25%, respectively. The compact array has a fractional bandwidth of 16% and a form factor of 20 × 20 × 3.35 mm3.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. Also, this work was supported by Project RTI2018-095499-B-C31, funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE)

    IEEE Access Special Section: Antenna and Propagation for 5G and Beyond

    Get PDF
    5G is not just the next evolution of 4G technology; it is a paradigm shift. “5G and beyond” will enable bandwidth in excess of 100s of Mb/s with a latency of less than 1 ms, in addition to providing connectivity to billions of devices. The verticals of 5G and beyond are not limited to smart transportation, industrial IoT, eHealth, smart cities, and entertainment services, transforming the way humanity lives, works, and engages with its environment

    Global ICT Standardisation Forum for India (GISFI) and 5G Standardization

    Get PDF

    Spatial Domain Management and Massive MIMO Coordination in 5G SDN

    Get PDF
    In 5G mobile communication systems, massive multiple-input multiple-output (MIMO) and heterogeneous networks (HetNets) play crucial roles to achieve expected coverage and capacity across venues. This paper correspondingly addresses software-defined network (SDN) as the central controller of radio resource management in massive MIMO HetNets. In particular, we identify the huge spatial domain information management and complicated MIMO coordination as the grand challenges in 5G systems. Our work accordingly distinguishes itself by considering more network MIMO aspects, including flexibility and complexity of spatial coordination. In our proposed scheme, SDN controller first collects the user channel state information in an effective way, and then calculates the null-space of victim users and applies linear precoding to that null-space. Simulation results show that our design is highly beneficial and easy to be deployed, due to its high quality of service performance but low computation complexity

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial
    • …
    corecore