3,648 research outputs found

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Convergence of economic growth in Russian megacities

    Get PDF
    Purpose: The article presents the results of an empirical analysis of the economic growth of Russian cities with a population of over 1 million people (megacities). Design/Methodology/Approach: The analyzed indicator is the city product calculated according to the UN methodology for the period from 2010 to 2016. The paper analyses the process of β- and σ-convergence across Russian megacities using methods of spatial econometrics in addition to the traditional β-convergence techniques from the neoclassical theoretical framework. Findings: The dynamics of the coefficient of variation confirmed the presence of σ-convergence in city product. Empirically, positive spatial autocorrelation has been confirmed. Beta-convergence for Russian megacities is found to be significant and the spatial location of megacities significantly affects β-convergence. Control factors such as fixed capital investment per capita in 2010, average retail volume per capita in 2010, average annual number of employees of enterprises and organizations in 2010 and the dummy variable introduced for “federal cities” Moscow and St. Petersburg are all found to have positive and statistically significant impact on economic growth. Practical Implications: Policymakers may take the results into account under the planning of economical strategies for megacities and regions in Russia in order to facilitate the regional economic growth and the speed of convergence. Originality/Value: The main contribution of the study is the consideration of the economical growth for the megacities and not for the regions as it often used to be the case in similar studies. The important finding is that megacities‘ economies do converge and the influence of control factors is pronounced.peer-reviewe

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989

    Get PDF
    Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis

    Word-Entity Duet Representations for Document Ranking

    Full text link
    This paper presents a word-entity duet framework for utilizing knowledge bases in ad-hoc retrieval. In this work, the query and documents are modeled by word-based representations and entity-based representations. Ranking features are generated by the interactions between the two representations, incorporating information from the word space, the entity space, and the cross-space connections through the knowledge graph. To handle the uncertainties from the automatically constructed entity representations, an attention-based ranking model AttR-Duet is developed. With back-propagation from ranking labels, the model learns simultaneously how to demote noisy entities and how to rank documents with the word-entity duet. Evaluation results on TREC Web Track ad-hoc task demonstrate that all of the four-way interactions in the duet are useful, the attention mechanism successfully steers the model away from noisy entities, and together they significantly outperform both word-based and entity-based learning to rank systems

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape
    corecore