5,984 research outputs found

    Magmatic Cu-Ni-PGE-Au sulfide mineralisation in alkaline igneous systems: An example from the Sron Garbh intrusion, Tyndrum, Scotland

    Get PDF
    Magmatic sulfide deposits typically occur in ultramafic-mafic systems, however, mineralisation can occur in more intermediate and alkaline magmas. Sron Garbh is an appinite-diorite intrusion emplaced into Dalradian metasediments in the Tyndrum area of Scotland that hosts magmatic Cu-Ni-PGE-Au sulfide mineralisation in the appinitic portion. It is thus an example of magmatic sulfide mineralisation hosted by alkaline rocks, and is the most significantly mineralised appinitic intrusion known in the British Isles. The intrusion is irregularly shaped, with an appinite rim, comprising amphibole cumulates classed as vogesites. The central portion of the intrusion is comprised of unmineralised, but pyrite-bearing, diorites. Both appinites and diorites have similar trace element geochemistry that suggests the diorite is a more fractionated differentiate of the appinite from a common source that can be classed with the high Ba-Sr intrusions of the Scottish Caledonides. Mineralisation is present as a disseminated, primary chalcopyrite-pyrite-PGM assemblage and a blebby, pyrite-chalcopyrite assemblage with significant Co-As-rich pyrite. Both assemblages contain minor millerite and Ni-Co-As-sulfides. The mineralisation is Cu-, PPGE-, and Au-rich and IPGE-poor and the platinum group mineral assemblage is overwhelmingly dominated by Pd minerals; however, the bulk rock Pt/Pd ratio is around 0.8. Laser ablation analysis of the sulfides reveals that pyrite and the Ni-Co-sulfides are the primary host for Pt, which is present in solid solution in concentrations of up to 22 ppm in pyrite. Good correlations between all base and precious metals indicate very little hydrothermal remobilisation of metals despite some evidence of secondary pyrite and PGM. Sulfur isotope data indicate some crustal S in the magmatic sulfide assemblages. The source of this is unlikely to have been the local quartzites, but S-rich Dalradian sediments present at depth. The generation of magmatic Cu-Ni-PGE-Au mineralisation at Sron Garbh can be attributed to post-collisional slab drop off that allowed hydrous, low-degree partial melting to take place that produced a Cu-PPGE-Au-enriched melt, which ascended through the crust, assimilating crustal S from the Dalradian sediments. The presence of a number of PGE-enriched sulfide occurrences in appinitic intrusions across the Scottish Caledonides indicates that the region contains certain features that make it more prospective than other alkaline provinces worldwide, which may be linked the post-Caledonian slab drop off event. We propose that the incongruent melting of pre-existing magmatic sulfides or ‘refertilised’ mantle in low-degree partial melts can produce characteristically fractionated, Cu-PPGE-Au-semi metal bearing, hydrous, alkali melts, which, if they undergo sulfide saturation, have the potential to produce alkaline-hosted magmatic sulfide deposits

    Risk-Aware Management of Distributed Energy Resources

    Full text link
    High wind energy penetration critically challenges the economic dispatch of current and future power systems. Supply and demand must be balanced at every bus of the grid, while respecting transmission line ratings and accounting for the stochastic nature of renewable energy sources. Aligned to that goal, a network-constrained economic dispatch is developed in this paper. To account for the uncertainty of renewable energy forecasts, wind farm schedules are determined so that they can be delivered over the transmission network with a prescribed probability. Given that the distribution of wind power forecasts is rarely known, and/or uncertainties may yield non-convex feasible sets for the power schedules, a scenario approximation technique using Monte Carlo sampling is pursued. Upon utilizing the structure of the DC optimal power flow (OPF), a distribution-free convex problem formulation is derived whose complexity scales well with the wind forecast sample size. The efficacy of this novel approach is evaluated over the IEEE 30-bus power grid benchmark after including real operation data from seven wind farms.Comment: To appear in Proc. of 18th Intl. Conf. on DSP, Santorini Island, Greece, July 1-3, 201

    A Program-Level Approach to Revising Logic Programs under the Answer Set Semantics

    Full text link
    An approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that A is in K * A. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate; second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs

    Pure Gravity Mediation and Spontaneous B-L Breaking from Strong Dynamics

    Full text link
    In pure gravity mediation (PGM), the most minimal scheme for the mediation of supersymmetry (SUSY) breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B-L, the Abelian gauge symmetry associated with the difference between baryon number B and lepton number L. The F-term of the SUSY-breaking field then not only breaks SUSY, but also B-L, which relates the respective spontaneous breaking of SUSY and B-L at a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, Lambda_N ~ m_3/2. Assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m_3/2 >~ 1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B-L is identified as a weakly gauged flavor symmetry. We also discuss the effect of the B-L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B-L D-term.Comment: 25 pages, 1 figur
    • …
    corecore