33 research outputs found

    Impact Estimation of Emergency Events Using Social Media Streams

    Get PDF
    In recent years, Social Media platforms have attracted millions of users, becoming a primary communication channel. They offer the possibility to massively ingest and instantly share big volumes of user-generated content before, during, and after emergency events. Being able to accurately quantify the impact of such hazardous events could greatly help all organizations involved in the emergency management cycle to adequately plan the required recovery operations. In this work, we propose a novel Natural Language Processing approach built on rule-based algorithms able to estimate, from tweets posted during natural hazards, the impact of emergency events in terms of affected population and infrastructures. We implement our approach in an operational environment and present its validation on a publicly released dataset of more than 1.4K manually annotated tweets, showing an overall weighted F1 score of 0.77

    Labeled Interactive Topic Models

    Full text link
    Topic models are valuable for understanding extensive document collections, but they don't always identify the most relevant topics. Classical probabilistic and anchor-based topic models offer interactive versions that allow users to guide the models towards more pertinent topics. However, such interactive features have been lacking in neural topic models. To correct this lacuna, we introduce a user-friendly interaction for neural topic models. This interaction permits users to assign a word label to a topic, leading to an update in the topic model where the words in the topic become closely aligned with the given label. Our approach encompasses two distinct kinds of neural topic models. The first includes models where topic embeddings are trainable and evolve during the training process. The second kind involves models where topic embeddings are integrated post-training, offering a different approach to topic refinement. To facilitate user interaction with these neural topic models, we have developed an interactive interface. This interface enables users to engage with and re-label topics as desired. We evaluate our method through a human study, where users can relabel topics to find relevant documents. Using our method, user labeling improves document rank scores, helping to find more relevant documents to a given query when compared to no user labeling

    Fundamentals of Volunteered Geographic Information in Disaster Management Related to Floods

    Get PDF
    The main purpose of this chapter is to introduce fundamental knowledge regarding the notion of volunteered geographic information (VGI) and its applications in disaster management (DM) of events related to floods. Initially, the meaning of the term is defined along with certain properties and general trends that characterize VGI. A brief literature review unfolds the range of activities that compose that certain term, along with its applications to flood event management. Those applications cover significant aspects of both VGI and DM cycle: from participatory activities of volunteers up to pure data analysis, extracted from social media and other VGI sources, while, in terms of DM cycle, from mitigation up to response and recovery. Finally, a set of four main clusters of open challenges is addressed. Those clusters accumulate the vast majority of open topics on this research field

    Social Media Behaviour Analysis in Disaster-Response Messages of Floods and Heat Waves via Artificial Intelligence

    Get PDF
    This paper analyses social media data in multiple disaster-related collections of floods and heat waves in the UK. The proposed method uses machine learning classifiers based on deep bidirectional neural networks trained on benchmark datasets of disaster responses and extreme events. The resulting models are applied to perform a qualitative analysis via topic inference in text data. We further analyse a set of behavioural indicators and match them with climate variables via decoding synoptical records to analyse thermal comfort. We highlight the advantages of aligning behavioural indicators along with climate variables to provide with 7 additional valuable information to be considered especially in different phases of a disaster and applicable to extreme weather periods. The positiveness of messages is around 8% for disaster, 1% for disaster and medical response, 7% for disaster and humanitarian related messages. This shows the reliability of such data for our case studies. We show the transferability of this approach to be applied to any social media data collection

    Identifying Crisis Response Communities in Online Social Networks for Compound Disasters: The Case of Hurricane Laura and Covid-19

    Full text link
    Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during hurricane Laura compounded by the COVID-19 pandemic. Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana. Using the Application Programming Interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Laura. Online social networks were based on user influence feature ( mentions or tags) that allows notifying other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into twenty-one components of various sizes, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those who involved heavily and interacted closely with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters

    Exploring the law of text geographic information

    Full text link
    Textual geographic information is indispensable and heavily relied upon in practical applications. The absence of clear distribution poses challenges in effectively harnessing geographic information, thereby driving our quest for exploration. We contend that geographic information is influenced by human behavior, cognition, expression, and thought processes, and given our intuitive understanding of natural systems, we hypothesize its conformity to the Gamma distribution. Through rigorous experiments on a diverse range of 24 datasets encompassing different languages and types, we have substantiated this hypothesis, unearthing the underlying regularities governing the dimensions of quantity, length, and distance in geographic information. Furthermore, theoretical analyses and comparisons with Gaussian distributions and Zipf's law have refuted the contingency of these laws. Significantly, we have estimated the upper bounds of human utilization of geographic information, pointing towards the existence of uncharted territories. Also, we provide guidance in geographic information extraction. Hope we peer its true countenance uncovering the veil of geographic information.Comment: IP

    Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden

    Get PDF
    With cities reinforcing greener ways of urban mobility, encouraging urban cycling helps to reduce the number of motorized vehicles on the streets. However, that also leads to a significant increase in the number of bicycles in urban areas, making the question of planning the cycling infrastructure an important topic. In this paper, we introduce a new method for analyzing the demand for bicycle parking facilities in urban areas based on object detection of social media images. We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr, and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while generating few false positives and classify them as either moving or stationary. We then conducted a case study in which we compare areas with a high density of parked bicycles with the number of currently available parking spots in the same areas and identify potential locations where new bicycle parking facilities can be introduced. With the results of the case study, we show that our approach is a useful additional data source for urban bicycle infrastructure planning because it provides information that is otherwise hard to obtain

    Natural Disaster Application on Big Data and Machine Learning: A Review

    Get PDF
    Natural disasters are events that are difficult to avoid. There are several ways of reducing the risks of natural disasters. One of them is implementing disaster reduction programs. There are already several developed countries that apply the concept of disaster reduction. In addition to disaster reduction programs, there are several ways to predict or reducing the risks using artificial intelligence technology. One of them is big data, machine learning, and deep learning. By utilizing this method at the moment, it facilitates tasks in visualizing, analyzing, and predicting natural disaster. This research will focus on conducting a review process and understanding the purpose of machine learning and big data in the area of disaster management and natural disaster. The result of this paper is providing insight and the use of big data, machine learning, and deep learning in 6 disaster management area. This 6-disaster management area includes early warning damage, damage assessment, monitoring and detection, forecasting and predicting, and post-disaster coordination, and response, and long-term risk assessment and reduction
    corecore