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Abstract: With cities reinforcing greener ways of urban mobility, encouraging urban cycling helps
to reduce the number of motorized vehicles on the streets. However, that also leads to a significant
increase in the number of bicycles in urban areas, making the question of planning the cycling
infrastructure an important topic. In this paper, we introduce a new method for analyzing the
demand for bicycle parking facilities in urban areas based on object detection of social media images.
We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr,
and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked
bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while
generating few false positives and classify them as either moving or stationary. We then conducted
a case study in which we compare areas with a high density of parked bicycles with the number
of currently available parking spots in the same areas and identify potential locations where new
bicycle parking facilities can be introduced. With the results of the case study, we show that our
approach is a useful additional data source for urban bicycle infrastructure planning because it
provides information that is otherwise hard to obtain.

Keywords: object detection; social media; urban planning; bicycle infrastructure; computer vision;
volunteered geographical information; visual analytics

1. Introduction

Today, as cities grow and develop at high-speed rates, many of them actively reinforce
greener ways of urban mobility to fight against pollution, traffic jams, noise, etc. [1]. One
of the encouraged ways of urban commuting is cycling for its beneficial effect on both the
environment and personal health [2]. While this strategy helps to reduce the number of
motorized vehicles on streets, it also leads to a significant increase in the number of bicycles
in urban areas, which raises the importance of bicycle infrastructure planning as a topic.
Cities usually pay attention to providing a larger number of bicycle parking at popular
locations such as train stations, shopping malls and highly frequented squares; however,
numerous bicycles are often randomly parked in the surrounding areas where there are
fewer bicycle racks available [3]. Accordingly, planning the cycling infrastructure is an
important topic for both urban planners and cyclists.

Traditional methods of collecting field data in urban planning are spot observations
and surveys. Spot observations are usually conducted by counting objects (e.g., passengers,
bicycles, etc.) at urban locations of interest. This method is resource-consuming regarding
time and staff, so the collected data usually do not cover longer time intervals. In contrast,
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conducting surveys usually implies recruiting passengers and asking them to answer a
questionnaire, which makes it difficult to collect a high number of answers and introduces
a bias towards citizens who have a positive general attitude towards participation in a
survey. In both cases, spot observations and surveys, there is a clear gap that concerns
the availability of the data available to urban planners, and thus also for planning the
bicycle infrastructure.

To tackle the topic of cycling in cities and improve the quality of information that urban
planners use for making decisions related to spatial investments, researchers largely turned
to newly available sources of data. The majority of this research focuses on analyzing the
data from bicycle-sharing systems (BSS). The related data sources are mainly the pooling
stations, which allow analyses based on the numbers of available bicycles and free parking
spots at BSS stations [4] or check-ins and check-outs on BSS stations [5–7]. While being
valuable for the logistics of the BSSs, these numbers do not necessarily give insights useful
to planning the infrastructure for citizens who commute by using privately owned bicycles.
Planning of parking facilities for bicycles that do not belong to the BSS is therefore not
feasible with these data alone. Another inexpensive method of data collection is GPS
tracking of ridden bicycles (e.g., via smartphone), which is, however, more suitable for
analyzing trail patterns [8]. Some research related to urban planning also analyzed the
mobile-phone data generated by mobile networks [9]. While collecting telecommunications
activity can provide an extensive dataset, it does not differentiate bicycle users from
other passengers.

In this paper, we address the gap in data collection for urban planning by focusing on
social media data. Because of the continuous increase in the numbers of smartphone owners
and social media users, we identify another opportunity to collect the needed bicycle-
related data and develop a novel method for analyzing the demand for bicycle parking
infrastructure in urban areas. We propose to use this method alongside others established
in urban planning in order to enrich the data coverage and provide more comprehensive
information for making decisions related to urban infrastructure investments, e.g., bicycle
parking. We start in Section 2 with the hypothesis that social media posts can be useful
for analyzing locations in cities in relation to bicycle usage. Section 3 introduces our
method and data used to detect bicycles on photos from social media posts, and Section 4
presents the preliminary results of the bicycle detection process. Within our case study in
Section 5, we show that our data processing can provide substantial value for planning
bicycle parking facilities in the city of Dresden and discuss advantages and drawbacks of
our approach in Section 6 before concluding in Section 7.

2. Related Work

For the most effective promotion of cycling in a city, planning bicycle infrastructure
should be demand-driven, and so urban planners need to know the main characteristics
of the bicycle traffic flows in their city [10]. Although there is an increasing interest in
bicycles as part of multi-modal urban infrastructure, bicycle-related research in recent
years focused mainly on aspects such as bicycle safety [11], positive impacts of cycling on
public health [12], travel mode choice [13] and route choice analysis [10,14]. By contrast,
less attention is paid to traffic engineering topics such as traffic counts, travel times, and
capacities [15].

In general, bicycle traffic volume data are hard to obtain. As opposed to motorized
traffic, bicycle traffic volume is strongly affected by the presence and qualities of bicycle
infrastructure, elevation, motorized vehicles, weather conditions, etc. [16]. Historically, re-
search on cycling activity relied on individual-level surveys on household travel—methods
that are resource intensive and can produce statistically unrepresentative samples dis-
torting the findings of the qualitative analysis [17]. Modern methods of bicycle traffic
estimation fall into two categories: long-term counters that run continuously, and short-
term measurements of typically 1 to 28 days. To derive robust demands based on shorter
observation periods, the values can be multiplied by scaling factors and factor groups
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accounting for daily, weekly and seasonal bicycle volume variance gained through the
continuous measurements [18].

In practice, the actual counting and tracing of bicycles can be executed using different
data collection methods, which should follow quality assurance procedures [19]. These
methods include:

• Use of stationary sensors to count passing bicycles,
• Analysis of public surveillance videos through object detection,
• GPS-tracking through devices used by cyclists,
• Tracking of GPS devices directly mounted on bicycles.

Adapting traditional methods for motor vehicle traffic monitoring, numerous technical
solutions and commercial products to count cyclists with stationary sensors are available.
For example, ref. [20] used data from pneumatic tubes on streets and radio beams on cycle
paths for their study, while the data of [18] were obtained from inductive loop counters.
Similar to sensors, the visual detection of bicycles using stationary cameras is adapting
well-established techniques, in this case from computer vision [15,21], and can provide
vehicle detection, classification, counting and speed measurements in real-time [22].

In contrast to stationary sensors or cameras, GPS tracking devices are capable of
collecting data from a complete journey and can be divided into two categories, depending
on the method of obtaining the data. First, the GPS data can be obtained through a device
used by the cyclists, e.g., a smartphone application. These data are normally shared from
volunteers either for scientific research [10,23], or for commercial use through mobile apps
such as Strava [11]. Second, the tracking device can be directly mounted onto the bicycle.
Dockless BSS provides real-time GPS data for every bicycle, which provides detailed
insights into bicycle-sharing users’ temporal and spatial mobility patterns [24,25]. For
example, ref. [16] used GPS data of BSS provided by the company Wavelo.

Stationary sensors, traffic surveillance cameras and GPS tracking devices differ not
only in the method of obtaining information but also in the characteristics of the data
they provide, namely the gained spatial information, the coverage of target groups and
the surveyed bicycle state. In general, stationary sensors have the advantage of covering
every single passing bicycle, while they are fixed to a defined location and therefore only
provide point-related data of moving bicycles. Visual analysis of traffic videos can identify
moving and parked bicycles within the frame and is able to generate trajectory data within
the covered area when cyclists are tracked over consecutive frames. While both types
of GPS tracking devices provide trajectory data of the whole trip, a major disadvantage
of this data collection method is the creation of biased “voluntary response samples”,
because it only includes data of people who have chosen to volunteer [26]. Furthermore,
as the tracking device is not mounted onto the bicycle, the status and position of the
bicycle while the bicyclist is not using the bicycle is unknown. In contrast, the status and
position of integrated GPS devices can constantly be measured, which allows detecting the
location where the bicycle is parked. However, unlike in Asia, urban mobility planning
policies in Europe focus on private bicycle use [27], and public bicycles from BSS are more
frequently used for first- and last-mile connection and leisure activities and less frequently
for commuting [24,28].

As shown above, obtaining data on parked bicycles is still challenging. Information
retrieval using social media data can be a complementary way of data collection. Social
media usage is widespread geographically as well as temporally and has become a nat-
ural part of people’s daily lives. As a consequence, data are generated implicitly by the
users, providing an “in-the-wild sensing” of the city without restrictions of laboratory
environments [29]. Social media posts usually contain text and time information, with
potentially more visual (images, videos) and spatial data attached, which allows location
extraction [30,31].

While there are several approaches to recognize low-level (e.g., walking, sitting, etc.)
and high-level (e.g., eating, shopping, etc.) activities mainly based on different sources
of social media data [32,33], we want to extract bicycle-related information solely using
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images from social media posts. Regarding the identified data characteristics of bicycle-
related measures stated above, this has two advantages. First, using images from social
media potentially allows us to cover the whole area of the city, depending on the frequency
of posts, and obtain information on a larger variety of bicycle usage. Second, we can
distinguish between moving and parked bicycles using similar object detection methods as
implemented for stationary traffic surveillance videos.

3. Method

Our approach for counting bicycles in images from social media posts consists of two
steps. First, we applied a state-of-the-art object detection algorithm (Section 3.2) in order to
detect and localize bicycles and persons in each image. Using the detected persons, we then
classified each detected bicycle as either moving or stationary (Section 3.2.1). For evaluation
(Section 3.3) and parameter selection (Section 3.4), we furthermore labeled an appropriate
dataset (Section 3.1).

3.1. Dataset

In order to quantitatively evaluate the feasibility of using social media data for bicycle
traffic analysis, we used the YFCC100m [34] dataset because it is one of the largest open-
source datasets of its kind with a collection of 100 million posts from the social media site
Flickr. Each post contains an image or video as well as additional information, such as
location, time of capture and tags. All images were taken in the years between 2004 and
2014 and are scattered across the whole world. As we are mainly interested in data from
urban areas, we selected a subset of images taken in a single city. This subset contains
30,922 images with location metadata indicating that they were recorded in the city of
Dresden, Germany.

3.1.1. Bicycle Annotations

We manually annotated all bicycles in the subset of images. Each bicycle is labeled
with a bounding box and assigned one of two categories: stationary if the bicycle is currently
parked, or moving if it is being ridden, wheeled or otherwise in use. Of the 30,922 images,
2219 (7.2%) contain at least one bicycle, with 1457 (4.7%) images containing stationary
bicycles and 976 (3.2%) images containing moving bicycles. As Figure 1 shows, most
images (1204, 54.3%) contain exactly one bicycle. However, images with significantly larger
numbers of bicycles occur as well, e.g., 100 images (4.5%) depict more than six bicycles. In
total, we labeled 4913 bicycles, of which 3038 (61.8%) are stationary and 1875 (38.2%) are
moving. Figure 2 shows a few examples.

Figure 1. This histogram shows the numbers of images in the Dresden subset of the YFCC100m
dataset containing between one and six, and more than six bicycles.
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Figure 2. Examples from our annotated Dresden subset of the YFCC100m dataset. We manually
labeled both moving (yellow boxes) and stationary (cyan boxes) bicycles.

3.2. Object Detection

In order to automatically and reliably count the number of moving and stationary
bicycles in an image, we utilized a state-of-the-art object detection algorithm. The task
of object detection comprises localization of objects in the image, usually by estimating
the coordinates of bounding boxes framing the objects, as well as classifying each object
using a set of predefined categories. Numerous approaches for object detection have been
presented in recent years [35–39]. They all use convolutional neural networks (CNNs) and
are trained on the large-scale COCO (Common Objects in Context) [40] dataset. COCO
contains more than 200,000 images labeled with object bounding boxes of 80 different
categories such as car, bicycle, person, couch, orange, etc. For all experiments in this
work, we used the recently presented EfficientDet [35] object detection algorithm, which
has been pre-trained on the COCO dataset, as it provides state-of-the-art performance.
Compared to the previous best method [41], EfficientDet achieves a significantly higher
mean average precision (mAP) on the challenging COCO dataset (54.4% vs. 50.7%) while
being computationally more efficient. Computing object detections for one image on an
Nvidia Titan V GPU takes 285 ms with EfficientDet, while [41] requires 489 ms, i.e., almost
twice as long.

Given an image I, the object detection algorithm computes a set P of object proposals
Pi = (bi, ci, si) ∈ P . Each object proposal is defined by a bounding box (rectangle) bi with
image coordinates [xi,1, yi,1, xi,2, yi,2], an object class c (e.g., bicycle), and a confidence score,
s which can be loosely interpreted as an estimate of the likelihood that the object proposal
is correct. In practice, object proposals that have a confidence score below a threshold θs are
discarded. This threshold must be chosen appropriately in order to minimize the number
of false detections while maximizing the number of correct detections.

In the following, we are only interested in bicycle detections Pb ∈ Pb ⊆ P and person
detections Pp ∈ Pp ⊆ P , with Pb ∩ Pp = ∅:

∀Pi ∈ P : (ci = bicycle ⇔ Pi ∈ Pb)

∧ (ci = person ⇔ Pi ∈ Pp) .
(1)

3.2.1. Moving Bicycles

In order to differentiate between moving and stationary bicycles, we leverage the
ability of the object detector to localize people in addition to bicycles. We assume that
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if a bicycle is located right below a person or right next to a person, this bicycle is being
handled by that person and is thus non-stationary or moving. In that case, the center of the
bounding box of a detected person Pp must be located above the bounding box center of
bicycle Pb. We describe this relation via the following indicator function:

χ(Pb, Pp) =

{
1 if yp,1 + yp,2 > yb,1 + yb,2 ,
0 else.

(2)

Since a person must be located in very close proximity to a moving bicycle, we assume
a minimal overlap of their respective bounding boxes. We measured this overlap using the
intersection-over-union (IoU) metric, which computes the ratio of the overlapping area of
the bounding boxes to their unified area:

IoU(Pb, Pp) =
A(bb ∩ bp)

A(bb ∪ bp)
∈ [0, 1] . (3)

For every bicycle detection Pb ∈ Pb and every person detection Pp ∈ Pp, we define
an overlap matrix C with:

Cbp = χ(Pb, Pp) · IoU(Pb, Pp) . (4)

Using the Hungarian method [42], we find a maximum overlap assignmentH based
on C. If a bicycle Pb is assigned to a person Pp with Cbp > θp, we define the bicycle as
moving and as stationary otherwise:

∀Pi ∈ Pb : ((∃Pj ∈ Pp([i, j] ∈ H ∧ Cij > θp)) ⇔ Pi ∈ Pbm)

∧ (Pi /∈ Pbm ⇔ Pi ∈ Pbs) ,
(5)

with Pbm and Pbs denoting the sets of moving and stationary bicycle detections, respec-
tively. Figure 3 shows a few examples of bicycles that have been classified as stationary or
moving using this procedure. We denote the maximum assigned overlap with a person for
a bicycle detection Pb as Cb = maxp Cbp.

Figure 3. Examples of correctly identified stationary (top, cyan boxes) and moving (bottom, yellow
boxes) bicycles, with all detected persons marked in magenta boxes.
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3.3. Evaluating Detections

In order to evaluate the bicycle detection method and to optimize its parameters, we
compared the proposed bicycle detections with the ground truth annotations (cf. Section 3.1.1).
Given ground truth annotations Ti = (b̂i, ĉi, ŝi) ∈ T and proposed detections Pi ∈ P for
the same image, we define an overlap matrix D with:

Dij = IoU(Pi, Tj) ∀Pi ∈ P , Tj ∈ T . (6)

We find a maximum overlap assignment based on D using the Hungarian method [42].
If a prediction Pi is assigned to an annotation Tj with Dij > θIoU and same object class
ci = ĉj, we regard it as a true positive Pi ∈ Ptp. Otherwise, it is a false positive Pi ∈ Pfp.
Likewise, if an annotation Tj is not assigned to a prediction, it counts as a false negative
Tj ∈ Tfn. As localization accuracy is of little relevance for our application—we only
need to know the number of bicycles in an image—we set the IoU threshold relatively
low, i.e., θIoU = 0.1. After assigning predictions and annotations for each image, we can
compute precision and recall over all images in order to asses the quality of the predictions.
Precision is defined as the ratio of the number of correctly detected objects (true positives)
to the number of all detections (true positives and false positives):

precision =
|Ptp|
|P| =

|Ptp|
|Ptp|+ |Pfp|

. (7)

Recall is the ratio of the number of correctly detected objects (true positives) to the
number of all present objects (true positives and false negatives), i.e., all annotated objects:

recall =
|Ptp|
|T | =

|Ptp|
|Ptp|+ |Tfn|

. (8)

We purposely do not use the mean average precision metric (mAP, cf. Section 3.2) com-
monly utilized in object detection literature for evaluation with the COCO dataset [35,41].
The mAP metric computes the mean of the area under the precision-recall curve over a
range of θIoU ∈ [0.5, 0.95]. While this metric is well suited for comparing the performance
of object detection algorithms independent of confidence threshold θs and partially inde-
pendent of IoU threshold θIoU, it does not provide information about the accuracy of an
algorithm in a practical setting, where these thresholds must be set to a specific value.

3.4. Determining Thresholds

We empirically determine a confidence threshold θs and a person assignment threshold
θp in order to strike an optimal balance between precision and recall.

3.4.1. Confidence Threshold

We adjust precision and recall for all bicycle detections—both moving and stationary—
by changing the confidence threshold θs. We compute recall and precision for all values of
θs ∈ [0, 1] and show the results in Figure 4. The first graph in Figure 4 shows corresponding
recall and precision values, and the second and third graphs show recall and precision
values corresponding to different threshold values. We identify a point on the recall-
precision curve which is as close to the top-right corner as possible, i.e., maximizing both
precision and recall. This point corresponds to a threshold of roughly θs = 0.4, resulting in
a precision of 0.96 and recall of 0.81.



ISPRS Int. J. Geo-Inf. 2021, 10, 733 8 of 25

Figure 4. Precision and recall of bicycle detections in relation to the confidence threshold θs: the first
graph shows the recall–precision curve, while the second and third graphs represent the relationships
of recall and precision to the confidence threshold separately.

3.4.2. Person Assignment Threshold

In order to determine an optimal person assignment threshold θp, we considered all
true positive bicycle detections Pb ∈ Ptp and their assigned maximum person overlap Cb.
For all thresholds θp ∈ [0, 1], we computed the fraction of detections that are correctly
classified as either moving or stationary. As Figure 5 shows, this classification accuracy
peaks at roughly 89.5%. We thus set the person assignment threshold to the corresponding
value of θp = 0.15.

Figure 5. Moving vs. stationary: we plot the classification accuracy for a range of person assignment
thresholds θp in order to identify an optimal value.

4. Bicycle Detection Results
4.1. Detection Accuracy

In order to assess the overall accuracy of our approach, we compare our bicycle
detections with the ground truth bicycle annotations from our dataset (cf. Section 3.1). As
the confusion matrix in Table 1 shows, we detected a total of 4157 bicycles in Dresden, from
which 1589 were classified as moving and 2568 as stationary. Of these 4157 detections, only
160 were incorrect, resulting in a false discovery rate of 3.85% and equivalently a precision
of 96.1%. We correctly identified 3997 of the 4913 bicycles in the dataset, thus achieving a
recall of 81.4%. This means that we have adjusted our bicycle detection method to operate
rather cautiously, i.e., the number of false positives is significantly lower than the number
of false negatives. The vast majority of false negatives can be divided into three categories:
small (i.e., low resolution) bicycles, partly occluded bicycles, and unusual perspectives.
Figure 6 shows one example image for each category. In such cases, the bicycles may be
difficult to recognize even for a human annotator.
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Table 1. This confusion matrix shows the number of bicycles of certain ground truth classes (rows)
being classified into estimated classes (columns) by our method. The ∑-entries indicate column- and
row-wise sums. None indicates either no bicycle present or no corresponding bicycle detected and
were omitted from the overall sums.

True
Estimated Moving Stationary None ∑

moving 1368 226 281 1875

stationary 194 2209 635 3038

none 27 133 - (160)

∑ 1589 2568 (916)
4157

4913

Figure 6. Most common cases of false negatives, i.e., unidentified bicycles, from left to right: small size or unfavorable
lighting conditions, partial occlusions, unusual pose of bicycle or camera.

The smaller number of false positives fall into the following four categories: parts of
complete bicycles (i.e., possibly duplicates), other wheeled objects (such as motorcycles,
wheelchairs or baby strollers), traffic signs with bicycle pictograms, and miscellaneous. We
present one example of each kind in Figure 7.

Figure 7. Most common cases of false positives, i.e., wrongly detected bicycles, from left to right: smaller parts of complete
bicycles; other wheeled objects such as baby strollers, wheelchairs and motorcycles; traffic signs with bicycle pictograms;
miscellaneous objects such as musical instruments, chairs and camera tripods.

Within the set of correctly identified bicycles, we classify most of the moving bicycles
(1368 of 1594, 85.8%) and most of the stationary bicycles (2209 of 2403, 91.9%) correctly.
False classifications as moving most commonly occur when a person is coincidentally
located in close proximity to a stationary bicycle, or when such a person is falsely detected.
False classifications as stationary occur when the overlap between the bicycle and person
detections is too small, when the person was not detected at all, or when the bicycle is
moving without a person (e.g., mounted on a car). We provide one example for each case
in Figure 8.
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Figure 8. Examples of false classifications into the moving (yellow) and stationary (cyan) categories. Person detections are
marked in magenta. From left to right: person coincidentally located next to a stationary bicycle; false person detection;
small overlap between person and bicycle detections; undetected person; bicycle moving without a person.

Bicycles were detected in 2058 different images, with more than half of these images
containing only one bicycle (Figure 9). In general, the number of bicycles per image follows
a similar distribution as shown in Figure 1 but with slightly fewer images with more than
one bicycle. In the following subsection, we describe the spatial distribution of the detected
bicycles in Dresden and compare our results with other bicycle-related data sources.

Figure 9. All locations of images in Dresden containing at least one bicycle detection, and a histogram of the number of
bicycle detections per image.

4.2. Spatial Distribution of Recognized Bicycles

Figure 9 shows the spatial distribution of the images containing at least one bicycle in
the area of Dresden. There are a few major patterns visible within this dataset. The majority
of the images is located in the inner city of Dresden, starting from the central train station
in the southwest and following the main shopping mile towards the old town (Altstadt)
and the Elbe river. Two smaller clusters of bicycles surround this main cluster: one on the
northern side of the river within the new town (Neustadt), and another one at the university



ISPRS Int. J. Geo-Inf. 2021, 10, 733 11 of 25

campus south of the main station. Furthermore, a significant number of images are located
along the Elbe river, on a path that is also a part of the Elbe Cycle Route that follows the
river from the border between Germany and Czechia to the river’s mouth at the North
Sea. Smaller clusters are related also to traffic nodes such as bridges and public transport
hotspots, and to the city’s largest park, Großer Garten.

Of the 2058 images with bicycles detected, 1300 contain at least one stationary bicycle,
and 1044 contain at least one moving bicycle. Therefore, 286 images contain both stationary
and moving bicycles. In the following, we present the distributions of each type over the
area of Dresden and elaborate on their differences.

Moving bicycles: Only one moving bicycle was detected in 923 of the 1044 images
(88.4%). While the overall pattern follows the same distribution as the whole dataset
described above, images with multiple moving bicycles mostly occur in the Altstadt and
along the Elbe river (Figure 10a). All of the six images with more than eight moving bicycles
are located on the two small bridges crossing the Elbe.

Stationary bicycles: Similarly to moving bicycles, the vast majority of the 1300 images
with stationary bicycles contain only one bicycle (79.8%), and the overall pattern is the same
as for the whole dataset (Figure 10b). In contrast to moving bicycles, there are significantly
more stationary bicycles in the northern part of Neustadt (Äußere Neustadt) and on the
university campus. Most of the images with more than eight bicycles are located either at
train stations or on the campus.

Mixed images: The distributions of stationary and moving bicycles show some small
differences in the locations of multiple bicycle detections, so we decide to have a closer
look at the 286 images that contain both moving and stationary bicycles. Figure 10c shows
the locations of these images and the respective majority class. Again, similar patterns as
described above are visible: images with more stationary bicycles are located at the train
stations, and images with more moving bicycles are located at the cycling path along the
Elbe and on the bridges.

Figure 10. Spatial distributions of classified bicycle types. (a) Moving bicycles; (b) stationary bicycles; (c) images with both
moving and stationary bicycles. Scale and orientation are equal for all maps.

4.3. Density of Images with Detected Bicycles

As volunteered geographic data show an enormous spatial heterogeneity, not only
the total number of detected bicycles is of major interest but also the portion of images
containing bicycles in relation to the whole dataset in the same area. We argue that our
analysis for a certain area is more meaningful if more images are available for that area in
our dataset. Furthermore, the more frequently bicycles appear in images within a certain
area of the city, the more important that area is with regards to the focus of our paper.
Therefore, we create grids with various cell sizes—each square cell covering a small area of
the city—and sum up for each cell area:

• The number of images in the YFCC100m Dresden subset,
• The number of bicycles detected on images from the subset,
• The number of stationary bicycles detected,
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• The number of moving bicycles detected,
• The number of images containing at least one bicycle,
• The number of images containing at least one stationary bicycle,
• The number of images containing at least one moving bicycle.

With these data, we can calculate the densities of recognized bicycles for every grid
cell. Figure 11 shows the result of processing with grid cells of 100 × 100 m, as we
combine the total number of images with the percentage of images containing a bicycle in a
bivariate map. We can identify the same pattern as in Figure 9 but now with the additional
information of the total number of images. Based on this, we conclude that our dataset has
more significance for the inner city of Dresden, as well as for a few particular spots along
the Elbe river and on the university campus. With this visualization, we can also identify a
true outlier southeast of the inner city, combining a high number of images with a high
percentage of bicycle-containing images. As we found out, this grid cell contains a bicycle
race track facility (Bike Areal Dresden), which confirms that our method is able to detect
different levels of bicycle activity in the city.

Figure 11. The map shows a combination of the total number of images with the percentage of images containing a bicycle
for each grid cell with a size of 100 × 100 m.

4.4. Comparison with Other Datasets

After introducing our method and the distribution of bicycle-containing images in
Dresden, we now compare our dataset to other relevant sources for bicycle-related traffic
(Figure 12):
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• The positions of the stationary bicycle counting sensors installed by the city adminis-
tration of Dresden.

• The defined bicycle return areas and a sample of positions of parked bicycles from the
bicycle sharing system MOBI, obtained at different points in time throughout a week
in September 2021.

Figure 12. Positions of bicycle counting stations and the different return zones of MOBI bicycles
in Dresden, where returning a bicycle at MOBIpoints and on blue streets is free of charge, while
returning on a pink zone is charged with 1 Euro and outside the other areas with 20 Euro.

4.4.1. Bicycle Counting Stations

Until 2021, the city administration of Dresden built nine stationary sensors at eight
different places in the city using pneumatic tubes, as mentioned in Section 2. Figure 12
shows the locations of the counters, which were distributed over the city based on the
different criteria such as centrality, route characteristics (cycle route, mixed traffic, road
crossings) and the assumed type of destination or purpose of the route (work, shopping,
leisure) [43]. Compared to the characteristics of our dataset, these counters cover different
areas, as they are all located in areas where our dataset only provides a few images and
detected bicycles. Five of the stations are placed in a 100 × 100 m grid cell where we do
not find a single image with a bicycle. If we use larger grid cells of 400× 400 m, all of the
stations are located in grid cells containing at least three detected bicycles. We argue that
these differences originate from the differing purposes of data collection: the municipal
bicycle counters are planned to measure the flows of cyclists, particularly between the
suburbs and the city center, whereas our method provides the positions of bicycles as an
in-the-wild sensing, mainly in the city center.

4.4.2. Bicycle Sharing Systems

A joint venture of the Dresden public transport services (DVB) and the company
Nextbike offers a dockless bicycle sharing system named MOBI in the city of Dresden.
There are different bicycle return zones for their bicycles defined in the city: blue streets,
which cover the main roads in the inner city of Dresden as well as in the inner suburbs;
pink zones, which cover the areas in the inner city outside the blue streets; and the area
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outside the zones, which covers all other areas in Dresden (Figure 12). The return fee users
have to pay after using a bicycle depends on the type of zone they return it in. Returning a
bicycle on a blue street is free of charge, while returning a bicycle in a pink zone or outside
yields service fees of 1 and 20 Euros, respectively. In addition, parking stations—so-called
MOBIpoints—are defined at certain locations (also in the outside of the zones), where it is
possible to return a bicycle free of charge and earn 10 free minutes for the next rent. The
real-time positions of all parked bicycles can be requested via an API (nextbike API for
real-time locations. https://api.nextbike.net/api/documentation#maps_api_-_locations,
accessed on 8 September 2021), which makes it possible to obtain a dataset of all parked
MOBI bicycles within the city. We retrieved positions for five different days in September
2021, and collected a total number of 3160 locations of parked MOBI bicycles in Dresden:
79.8% of the bicycles were parked on blue streets and at MOBIpoints, 10.4% in the pink
zones, and 9.7% outside of the zones. In general, the distribution of MOBI bicycles covers
the same area as our dataset, but due to the pricing system, the majority of bicycles are
returned on the blue streets. Thereafter, the dataset can be described as a biased in-the-wild
sensing where the flows represent the bicycle sharing demand, but the actual positions of
parked bicycles result from the pricing incentives.

5. Case Study

With the Flickr dataset, we focus on analyzing the general situation in Dresden related
to parked bicycles. We consider the bicycles classified as stationary as parked bicycles and
use index PB to refer to them. To take into account the credibility of the data in urban areas,
we perform several steps of analysis based on a visual comparison of data. We start by
comparing the number of bicycle detections that were classified as stationary (NPB) with
the percentage of photos that contain detections of stationary bicycles in relation to all
photos posted in that area (PPB). Next, we compare the number of detected parked bicycles
NPB with the number of currently available parking spots (NPS). In the analysis, we use
100 × 100 m grid cells that represent units of the urban area, above which we visually
overlap layers of NPB, PPB, and NPS. Finally, we detect the most critical areas in the city of
Dresden in regards to the planning of bicycle parking facilities.

5.1. Number of Parked Bicycles NPB vs. Percentage of Photos Containing Parked Bicycles PPB

We visually analyze each combination of layers’ classes (as shown in Figure 13). The
classes were created by slightly adapting the natural breaks (Jenks [44]) classification. For
NPB, we distinguish five classes of the occurring number of detections: 1 to 3—low number
of bicycle detections, does not require immediate attention; 4 to 8—medium number of
bicycle detections, requires monitoring; 9 to 18—high number of bicycle detections, requires
analysis; 19 to 35—high number of bicycle detections, urgently requires analysis; and 36
to 65—very high number of bicycle detections, requires immediate analysis. For PPB
we classify the occurring detection percentages into four classes: 0.1 to 3.0%—very low,
insignificant; 3.1 to 8.0%—low, moderately significant; 8.1 to 18.0%—medium, significant;
and 18.1 to 35.0%—medium-high, highly significant.

The existence of grid overlaps of NPB and PPB shows us the occurrence of different class
combinations. To better understand the importance of those combinations for analysis,
we assign each combination an expected relevance in planning the bicycle parking (low,
medium, or high relevance) depending on previously defined class importance (Table 2). For
example, we expect the grid cells where a higher percentage of photos contains a higher
number of bicycle detections to be significantly more relevant for planning the bicycle
parking than grid cells with a low percentage of photos and a low number of bicycle
detections. The designation of relevance will help us in later steps to prioritize cells of
urban space to the need for further analysis using additional datasets.

https://api.nextbike.net/api/documentation#maps_api_-_locations
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Table 2. Relevance assigned to different combinations of the percentages of photos in the dataset
containing stationary bicycles PPB and the number of stationary bicycle detections on photos NPB:
low (grey 20%), medium (grey 55%), and high (grey 85%) relevance.

NPB

PPB (%) 0.1–3.0 3.1–8.0 8.1–18.0 18.1–35.0

1–3 Low Low Low Low
4–8 Low Medium Medium Medium
9–18 Low Medium High High

19–35 Medium High High High
36–65 Medium High High High

Next, for each NPB and PPB class combination, we counted the number of cells where
the two layers overlap, i.e., when a cell falls into a certain combination of NPB and PPB
categories. The results (Table 3) show that some combinations have no overlaps, while
some have an overly high number of overlaps. For example, highly relevant cells with PPB
of 18.01 to 35.0% and 9 to 18 detections have zero occurrences, while cells of low relevance
with PPB of 0.01 to 3.0% and 1 to 3 detections provide a number of overlaps so high that it
is not meaningful to precisely count and analyze them visually.

Lastly, for existing overlaps, we analyze in which urban areas they mainly occur
(Table 3). Most of the highly relevant combinations occur in the city center of Altstadt,
while cells of medium and low relevance are distributed all over the city, including Altstadt.
In the following step, we analyze grid cells and detect critical locations in the city that
require further attention. We achieve this by introducing the number of currently available
parking spots NPS.

Table 3. Number and common urban location of 100 × 100 m grid cells in Dresden for each combination of the photos in the
dataset containing stationary bicycles PPB and the number of stationary bicycle detections on photos NPB. Shades of gray
refer to relevances assigned in Table 2.

NPB

PPB [%] 0.1–3.0 3.1–8.0 8.1–18.0 18.1–35.0

1–3

No. of cells: >100
Location: All over the
city (both city center
and outside)

0 0 0

4–8

61
Mainly in the city
centers of Altstadt
and Neustadt, uni-
versity campus and
Großergarten

31
Mainly in the city cen-
ters of Altstadt and
Neustadt

0 0

9–18
8
Outside of the city cen-
ter of Altstadt

29
Mainly in the city center
of Altstadt

7
Mainly in the city center
of Altstadt

0

19–35 0 0

17
Mainly in the city cen-
ter of Altstadt and main
train station

1
City center of Altstadt

36–65 0 1
Main train station

5
Mainly at big train sta-
tions and university li-
brary

3
City center of Altstadt



ISPRS Int. J. Geo-Inf. 2021, 10, 733 16 of 25

5.2. Number of Parked Bicycles NPB vs. Percentage of Photos Containing Parked Bicycles PPB vs.
Number of Available Parking Spots NPS

After identifying for which combinations of NPB and PPB overlaps exist and where,
we further analyze the overlaps in relation to the number of bicycle parking spots NPS (data
downloaded from Open Street Map via the Overpass API. https://overpass-turbo.eu/,
accessed on 5 June 2021) in order to detect locations of a potential parking space deficit. For this
purpose, we first classify grid cells into three categories: (I) Cells contain sufficient parking
capacity; (II) Cells partially contain parking capacity; (III) Cells contain no parking capacity; and
one subcategory: (a) Cells have close access to the neighboring cell’s parking capacity.

We classify each cell into one of the three categories of parking capacity based on the
relation of NPB and NPS for that cell (Table 4). As NPB and NPS are quantized into sets
of value ranges, we consider the upper bounds for each parking facility. For example, if
NPS is in the range of 12 to 37, we assume NPS = 37. If the upper bound of NPS equals or
exceeds the upper bound of NPB in the analyzed cell, then we assume that the cell contains
sufficient parking capacity (I). If the upper bound of NPS is lower than the upper bound of
NPB for a cell, we consider that the cell partially includes parking capacity (II). Otherwise,
we assume that the cell contains no parking capacity (III). For example, there are three
cells with PPB of 18.01 to 35.0% containing 36 to 65 parked bicycles NPB. Two out of three
cells do not contain any parking (NPS = 0), and one contains two parking facilities: one of
capacity up to 12 bicycles and the other of capacity 12 to 37 bicycles (Figure 13). Since the
upper bound of NPS is 49, it does not reach the upper bound of NPB of 65; in this manner,
we consider the cell is partially provided with parking capacity.

Figure 13. Example of visual analysis of bicycle parking capacity in Dresden by overlapping 100 ×
100 m grid cells of the NPB (gray) and PPB (hashed) layers in QGIS (version 3.16).

Considering that we implemented the above categorization to identify how critical
the condition within the cell regarding the lack of parking spots generally is, we also
introduced the subcategory a for the cells that have close access to the neighboring cell
parking capacity. The motivation for this is the fact that we were able to identify cases
where the cell belonged to a category II or III but parking of the neighboring cell was
located at the exact border between its native cell and the analyzed cell. Therefore, the
subcategory serves us to decide whether the cell we analyze is less critical because the
parking can be easily reached outside the cell. For example, there are five cells with a
PPB of 8.1 to 18.0% containing 36 to 65 detections of parked bicycles NPB. Two out of five
cells contain a sufficient number of parking spots and three are partially covered with

https://overpass-turbo.eu/
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parking capacity. However, two out of the three cells that are partially covered with parking
capacity allow easy access to the neighboring cell’s parking. We conclude that, even though
the whole category is of high relevance, it is fairly well covered with parking facilities
and, consequently, does not require immediate attention. The results of the analysis are
presented in Tables 4 and 5.

Table 4. Number of 100 × 100 m grid cells that: contain sufficient parking capacity (I); are partially covered with parking
capacity (II); are partially covered with parking capacity but some cells have close access to the neighboring cell’s parking
capacity (IIa); contain no parking capacity (III); or contain no parking capacity but some cells have close access to the
neighboring cell’s parking capacity (IIIa). Shades of gray additionally show relevances assigned in Table 2.

NPB

PPB [%] 0.1–3.0 3.1–8.0 8.1–18.0 18.1–35.0

1–3 / / / /

4–8
I: 30/61
II: 0/61
III: 31/61; IIIa: 6/31

I: 14/31
II: 0/31
III: 17/31; IIIa: 1/17

/ /

9–18
I: 3/8
II: 1/8
III: 4/8; IIIa: 2/4

I: 15/29
II: 2/29
III: 12/29; IIIa: 1/12

I: 1/7
II: 2/7
III: 4/7; IIIa: 2/4

/

19–35 / /
I: 6/17
II: 4/17; IIa: 1/4
III: 7/17; IIIa: 3/7

I: 0/1
II: 0/1
III: 1/1; IIIa: 1/1

36–65 /
I: 0/1
II: 0/1
III: 1/1; IIIa: 1/1

I: 2/5
II: 3/5; IIa: 2/3
III: 0/5

I: 0/3
II: 1/3
III: 2/3

Table 5. Final designation of importance to 100 × 100 m grid cells in Dresden (marked in shades of red): low (red 10%),
moderate (red 35%), and high importance (red 55%). The designation of importance is based on detected sufficiency of
parking spots (this table) and assigned relevance (Table 2).

NPB

PPB [%] 0.1–3.0 3.1–8.0 8.1–18.0 18.1–35.0

1–3 / / / /

4–8
Moderately insufficient
to insufficient number
of parking spots

Insufficient number of
parking spots / /

9–18
Moderately insufficient
number of parking
spots

Insufficient number of
parking spots

Moderately insufficient
to insufficient number
of parking spots

/

19–35 / /
Moderately insufficient
to insufficient number
of parking spots

Moderately insufficient to
insufficient number of
parking spots

36–65 /
Moderately insufficient
to insufficient number
of parking spots

Moderately insufficient
number of parking
spots

Insufficient number of
parking spots

5.3. Summary of Results

Based on the information gained from the previous steps, we were able to classify
urban areas according to the parking sufficiency into areas with moderately insufficient,
moderately insufficient to insufficient or insufficient number of parking spots. With this
approach, we are able to identify the most critical areas in Dresden relating to bicycle
parking. In Table 5 we present the results for each combination of NPB and PPB: for each
cell, we report the sufficiency of parking spots and mark in shades of red whether the area
finally has a low, moderate, or high importance. By comparing Tables 3 and 4, we assess that
the areas around the central train station and the center of Altstadt are the most critical
in Dresden. Foremost, within these locations, there is less than 50% of Category I cells
of the overall cell number, while the number of Category III cells exceeds 50% for five
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out of six categories. Therefore, we identify that these cells possess an insufficient or
moderately insufficient to insufficient number of parking spots. Second, we consider the
Flickr data related to these locations relevant because a significant percentage of posted
photos contains detections of parked bicycles (up to 35%). Third, there is a high number of
parked bicycle detections in these photos (up to 65). Finally, we previously classified those
cells as cells with high relevance, which adds to the importance of results. We conclude that
these locations qualify as a priority to be further inspected by urban planners in Dresden
using other available data sources. Following the same approach, it is equally possible to
classify each grid cell for a more detailed overview, which we skip for this paper.

Alongside, we identify that some areas also appear critical according to the number of
bicycle parking spots, but due to the low percentage of photos containing parked bicycle
detection, we classify them into low relevance cells. Subsequently, we consider them much
less critical, and, finally, assign them low importance. Needless to say, this does not mean
that those cells cannot be inspected further after the more critical locations have been
resolved.

Our results also show that some cells contain significantly more than enough parking
capacity that it appears to be in demand (Figure 14). We detect six cells of that type and
suggest them as locations that could be further inspected to gain insights that could prove
useful for improving future decisions related to the planning of the bicycle parking.

Figure 14. Example of a visually identified 100 × 100 m grid cell (left) that contains significantly more
than enough bicycle parking capacity that it appears to be in demand. There are seven parking areas
of capacity up to 12 bicycles, while there are only 4 to 8 bicycles detected inside the cell (NPB).

We also observed that social media data provide more data for some areas and barely
any for some others. That indicates that more popular locations offer more relevant bicycle-
related data, while unpopular areas remain poorly covered. This popularity relates to the
popularity within the used Flickr dataset. For example, the part of the Regierungsviertel
district that is surrounded by the streets Albertstraße, Wigardstraße, and Glacisstraße
demonstrates a significant number of available bicycle parking spots; however, we did not
detect any parked bicycles there. Considering the number of parking spots, we conclude
that the area is regularly frequented by cyclists but not interesting enough for posting it
on Flickr. The bicycle parking racks there are installed around a car parking area, several
residential buildings, schools, and institutions, such as the Saxon State Ministry of Justice.
The same effect is also visible, e.g., along the Holbeinstraße and Tatzberg streets in the
Johannstadt district where the racks are installed in front of residential buildings, an
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athletic facility, research institutes, and a city’s communal service company. According
to a significant number of installed racks, it is apparent that these locations are also well
frequented by cyclists but rarely posted on social media, such as Flickr.

In this chapter, we presented an analysis of the urban space of Dresden. We demon-
strated the way social media data can be used to gain information related to the bicycle
parking situation in an urban area. Additionally, we detected urban areas that, in our
opinion, need prioritized attention from urban planning experts in the sense of further
analysis regarding potentially missing bicycle parking. In the following chapter, we discuss
the results of our research and introduce them in the context of their usefulness for the
described task in urban planning.

6. Discussion
6.1. Object Detection on Social Media Data as an Additional Data Source for Obtaining
Bicycle-Related Information in Urban Areas

We introduced a new method of obtaining bicycle-related data in urban areas and
demonstrated it in the city of Dresden. In the case study, we showed that our method
provides valuable information for planning urban infrastructure as we were able to identify
areas with a lack of parking facilities for bicycles. Since our approach is focused on images
from social media instead of commercial data sources or surveys, we are able to cover both
individually owned and publicly shared bicycles within a geographical spread over the city
that is typical for social media data [45]. In Section 4.4, we briefly compare the distribution
of detected bicycles to other data sources and describe the dockless bicycle-sharing system
(BSS) data as a biased in-the-wild sensing of the same area as our method. Regarding
the location, some of the areas that we identified as having a moderately insufficient to
insufficient number of parking facilities are also visible as dense bicycle clusters in the data
of MOBI, such as the central train station. Up to this point, our method can be seen as a
substitute for collecting data from bicycle sharing systems. This can already be interesting
for cities without a BSS or companies planning to expand their BSS to a new city as a source
for modeling a bicycle network and station location finding [46].

Compared to a BSS, we can provide additional value for urban planners for areas that
have a higher frequency of bicycle detections but are not sufficiently covered by the BSS
service. This often relates to the most scenic areas where shared bicycles are not allowed to
be dropped off. In Dresden, for example, we identified central areas in the district Altstadt
to have a moderately insufficient to insufficient number of bicycle parking facilities, but
returning BSS bicycles was not allowed there. In some areas in Dresden that are also not
covered by the return zones of the local BSS company, we did not identify lacking parking
facilities: these are, e.g., the city park Großer Garten and the cycling route along the Elbe
river. There were areas that we identified in our case study as not interesting enough for
posting them on Flickr (i.e., social media). We consider this to be a rather minor drawback
compared to BSS data because only some areas were frequently visible in the MOBI dataset
(e.g., Johannstadt district), while there were no BSS bicycles present in other areas (e.g., in
the Regierungsviertel district).

Additionally, we used a Flickr dataset that contains data from 2004 to 2014, but the
popularity of social media has kept growing ever since, considering the fact that the number
of mobile subscriptions increased from 2.33 billion in 2014 to 6.4 billion in 2021 [47]. We
thus argue that our method can definitely provide additional value to urban planners,
especially by using the most recent data and from more popular social media platforms that
also rely on posting images, such as Instagram [48,49]. In that case, it would be necessary
to additionally preprocess the data to comply with the privacy regulations by anonymizing
them [50], e.g., as recently proposed by [51,52].

Regarding the efficiency of the bicycle detection, our approach achieves a recall of
81.4% (cf. Section 4.1) and thus does not find every bicycle, but it is significantly more
efficient than manual identification by humans. We found that, on average, careful manual
annotation (cf. Section 3.1) takes roughly 30s per image. While such manual detections
may provide a significantly higher recall than our fully automatic approach, it would be
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very costly to apply at a large-scale (e.g., thousands of images) setting. Our method, on
the other hand, only requires a moderately powerful computer with comparatively small
running costs.

In general, data availability is the only limiting factor for transferability in our ap-
proach, emphasizing the opportunities social media data can bring to urban analysis [53].
Requirements regarding computing capacity are rather low for applying the method to
other cities, as the pre-trained object detection algorithm is utilized for identifying and
classifying bicycles, and conventional GIS operations enable spatial exploration, analysis
and visualization [54]. In comparison to the other methods for obtaining bicycle traffic
data mentioned in Section 2, our approach is completely feasible without any structural
installation, e.g., stationary counting stations or bicycle-mounted GPS sensors.

6.2. Relevance of Time in Our Approach

As we used the YFCC100m dataset, which covers a time span of 10 years, we only
worked with temporally compressed location data. Compared to other bicycle-related
data sources, this is at first a major drawback of our approach. Nevertheless, different
spatio-temporal analyses would still be feasible: First, it is possible to analyze cumulated
frequencies of bicycle detections in the dataset with respect to temporal categories such as
weekdays, months or years [55]. These spatial-temporal patterns can provide insights into
daily and seasonal routines of urban cyclists, and complement and verify the continuous
data streams of stationary counters and BSS data [25,56]. Second, our method could be
used as an indicator for the success of existing infrastructure, such as parking facilities or
bicycle highways. It would be possible to compare the spatial pattern of detected bicycles
before and after the date of construction and, therefore, detect changes in bicycle-related
traffic flows or the density of detected bicycles for each grid cell we used in our case study.
The capability of social media to acquire information about interventions in different events
has already been shown in numerous studies, even though most of them examined more
significant interventions such as in cases of traffic incidents or natural disasters [57,58].

6.3. Influence of Bicycle Detection Errors and Potential Improvements

In Section 4.1, we present the results of our object detection methodology for iden-
tifying moving and stationary bicycles. In addition to a quantitative evaluation, we also
provide examples of failure cases and identify the most frequent categories of false neg-
atives and false positives. Although we conclude—based on our case study—that the
information extracted from social media data is suitable for identifying a lack of parking
facilities for bicycles, we are aware of the flaws of our object detection pipeline. Further on,
we discuss their impact on the findings of the case study as well as potential improvements
within our approach.

With regards to content, the detection errors can be subdivided into strictly bicycle-
related errors (i.e., missed bicycles or duplicate detections) and those of confusion with
other objects such as traffic signs or chairs. For the former, we argue that the impact of
the false detections on the findings of the case study is relatively small, as we tuned the
algorithm to operate using more conservative thresholds and, therefore, we rather tend to
underestimate the number of bicycles. For images with multiple bicycles detected, this will
decrease the total number of bicycles, but the number of images with bicycle detections
will not be affected. With Tables 2 and 3 in mind, changing a class in the vertical direction
of the table will most likely not change the assigned relevance of the grid cell. On the other
hand, a false negative (i.e., missed detection) of a lone bicycle in an image can change the
relevance according to Table 2, but according to the distribution of the classes in Table 3, a
relevance change will most likely occur only between classes of low and medium relevance.
If we overestimate the number of bicycles in certain images, or occasionally detect false
positives of other wheeled objects such as motorcycles, we argue that assigning a higher
relevance to these cells is an acceptable drawback for the focus of our case study, where we
qualify locations as a priority to be further inspected by urban planners.
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In contrast to bicycle-related detections, to improve our approach, we consider mini-
mizing the false positive detections of miscellaneous objects such as traffic signs. As we
mention in Section 3.2, we use an object detector that has been trained on the very diverse
COCO [40] dataset, which contains a large number of object classes in images taken across
all continents. Our target application, however, is narrower: we are only interested in the
detection of bicycles and persons, and in our case study, the environment is limited to
the city of Dresden. In such a case, fine-tuning the object detection neural network on the
narrower target domain has been shown to improve performance [59]. In addition, it can
be feasible to combine our method with other detection algorithms from computer vision.
For example, one can employ an algorithm that detects bicycle traffic signs [60,61] in order
to filter out this category of false positive detections. Similarly, one could employ object
detection or image classification [62] algorithms trained on other classes than bicycle and
person in order to estimate the likelihood of a bicycle detection being a false positive due
to confusion. Bicycle detections, both correct and false, may also occur in images taken
indoors. As these are of no interest for our application, it would be reasonable to discard
such images automatically using an algorithm that can distinguish indoor from outdoor
scenes [63]. For improving the moving vs. stationary classification accuracy, it would be
feasible to train an object detection algorithm to directly provide this classification instead
of relying on person detections as we describe in Section 3.2.1. Whether this would actually
work better, however, depends on a variety of factors, such as the size and diversity of
the training dataset, the architecture of the convolutional neural network, and appropriate
data augmentation during training [64].

Improving bicycle detection from social media posts might also include processing
tags, textual descriptions, and emoticons used in a post to extract user reactions [65].
Sentiment analysis and categorization of emotions associated with a post can be applied
to identify if postings related to bicycles are more positive or negative connoted and in
that way obtain detailed contextual information related to a post and specific areas [66,67].
Learning about the context of an image could allow to, e.g., eliminate false detections, such
as musical instruments and tripods on concert stages.

If an image contains bicycles that are located at a far distance, using only the GPS
location associated with the image may result in poor localization of the bicycles. It would
be feasible, however, to use visual localization [68] and geometric cues [69] in order to
estimate the pose of the camera and, subsequently, extract 3D information about the scene
from the image [70–72]. This would provide a more precise localization of the detected
bicycles.

7. Conclusions

In this paper, we introduced a new method of obtaining bicycle-related data from
social media posts. In the first step, we used a pre-trained state-of-the-art object detection
algorithm to detect bicycles on a regional subset of the YFCC100m dataset. In the second
step, we differentiated between moving and stationary bicycles as we leveraged the ability
of the detection algorithm to detect people and assume that if a bicycle is located right
next to or below a person, it is non-stationary or moving. With our method, we detected
4157 bicycles in the city of Dresden with an overall precision of 96.1% and a recall of 81.4%,
and classified 85.8% of the moving bicycles and 91.9% of the stationary bicycles correctly.
We then conducted a case study, where we analyzed the general situation in Dresden
related to parking facilities for bicycles using the results of the object detection. As a result,
we were able to classify urban areas according to the sufficiency of parking facilities and
thereby identify areas that need prioritized attention from urban planners. Using the same
approach, it would be possible to detect further micro-locations within these urban areas.

Our method proved as relevant because we were able to gain meaningful insights into
the urban area of Dresden using social media data. We conclude that it provides significant
value in planning the bicycle infrastructure in a city, particularly considering that data for
that purpose is otherwise difficult and expensive to collect. We were able to shorten the
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data acquisition multiple times in comparison to traditional methods of data collection in
urban planning. Additionally, we can also provide a much larger temporal coverage.

Clear limitations of using social media data lie in the fact that the data availability
and coverage largely depend on the usage of social media. The spatial coverage is worse
for unpopular than for popular urban areas, and temporal coverage (i.e., days, months,
years, etc.) is worse for years when social media was less popular. However, both data
availability and coverage depend on usage trends of the social media platform whose data
were used. Having that in mind, usage of the newest social media data should enable even
more precise spatio-temporal analyses. This precision may additionally be increased by
implementing further object detection algorithms in data processing.

By choosing Dresden as our case study, we benefited from a manageable amount of
data, as well as from our own local expertise. In the future, we intend to potentially enlarge
the amount of bicycle detections to deal with by focusing on a larger city. Another way to
enlarge our dataset would be to integrate data from more social media platforms such as
Instagram or Twitter, depending on the availability of the data. We also consider imple-
menting other databases of interest, especially those providing street-level images such
as Mapillary. Furthermore, dealing with a higher number of detections and larger urban
areas of interest requires more sophisticated approaches of localization and visualization,
so we intend to work on methods to orientate the images by matching detected objects and
city furniture (e.g., benches, lightning objects, etc.) and improve the techniques for visual
analysis and exploration.
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