1,052 research outputs found

    Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy

    Get PDF
    1. Adult rats and rats with a postnatal age of 3-29 days (PN 3-29) were used for the preparation of in vitro slices of the frontal neocortex. Epileptiform activity was induced by bath application of the gamma-aminobutyric acid-A (GABAA) receptor antagonists bicuculline or picrotoxin. 2. The voltage-sensitive dye RH 414 and a laser scanning microscope were used for multiple-site optical recordings of membrane potential changes associated with epileptiform activity. Optical signals were compared with simultaneously measured extra-cellular field potentials. 3. Optical signals could be reliably recorded for the duration of the experiments (2-4 h). Extracellular recordings of convulsant-induced paroxysmal depolarizing shifts (PDSs) in slices stained with RH 414 were comparable with those obtained in unstained slices. Changes in dye signals in response to reductions in extracellular calcium, addition of tetrodotoxin (TTX), or application of excitatory amino acid receptor antagonists indicate that the fluorescence changes correlate well with established electrophysiological measures of epileptiform activity. 4. In slices from adult animals, dye signals were observed at all recording sites. The response with the shortest latency occurred invariably at the site of stimulation, and activity spread rapidly in both vertical and horizontal directions. Spread was significantly faster in the vertical than in the horizontal direction. 5. Epileptiform activity was absent or only weakly expressed in slices from PN 3-9 animals. Activity was detectable predominantly in upper cortical layers. 6. Dye signals were observed at all measurement points in slices from PN 10-19 animals. In this age group, peak amplitude increased with spread of activity from lower to upper cortical layers. There was no significant difference between the speed of propagation in the vertical and in the horizontal directions. Spontaneous epileptiform activity occurred at a high rate in the PN 10-19 age group, and signals associated with spontaneous epileptiform events were largest in upper layers. 7. In the PN 10-19 age group, optical signals were characterized by the repetitive occurrence of PDS discharges superimposed on a sustained response. The amplitude of the sustained response decreased with increasing distance from the site of stimulation. Analysis of the latencies revealed that the superimposed PDS-like events were generated at multiple sites within the scanning area. Amplitude and rate of rise were largest in slices from PN 10-19 animals. These values declined with ongoing development

    The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    Get PDF
    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN

    Optical mapping and optogenetics in cardiac electrophysiology research and therapy:a state-of-the-art review

    Get PDF
    State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping techniques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies

    Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb

    Get PDF
    Author Posting. © Society for Neuroscience, 2008. This article is posted here by permission of Society for Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Neuroscience 28 (2008): 4057-4068, doi:10.1523/JNEUROSCI.5296-07.2008.The input–output transform performed by mitral cells, the principal projection neurons of the olfactory bulb, is one of the key factors in understanding olfaction. We used combined calcium and voltage imaging from the same neuron and computer modeling to investigate signal processing in the mitral cells, focusing on the glomerular dendritic tuft. The main finding was that the dendritic tuft functions as a single electrical compartment for subthreshold signals within the range of amplitudes detectable by voltage-sensitive dye recording. These evoked EPSPs had uniform characteristics throughout the glomerular tuft. The Ca2+ transients associated with spatially uniform subthreshold synaptic potentials were comparable but not equal in amplitude in all regions. The average range of normalized amplitudes of the EPSP-driven Ca2+ signals from different locations on dendritic branches in the glomerular tuft was relatively narrow and appeared to be independent of the dendritic surface-to-volume ratio. The computer simulations constrained by the imaging data indicated that a synchronized activation of ~100 synapses randomly distributed on tuft branches was sufficient to generate spatially homogenous EPSPs. This number of activated synapses is consistent with the data from anatomical studies. Furthermore, voltage attenuation of the EPSP along the primary dendrite at physiological temperature was weak compared with other cell types. In the model, weak attenuation of the EPSP along the primary dendrite could be accounted for by passive electrical properties of the mitral cell.This work was supported by National Institutes of Health Grant NS4273

    Assessing functional activity of astrocytes by calcium imaging: how do astrocytes respond to the electrophysiological microenvironment

    Get PDF
    Apesar de não serem capazes de produzir potenciais de acção, é sabido que os astrócitos integram as sinapses, sendo capazes de detectar e responder a estímulos externos com dinâmicas de cálcio espaciotemporalmente complexas, podendo modelar a transmissão sináptica. O objectivo deste projecto é avaliar as dinâmincas de cálcio dos astrócitos através da modelação do seu microambiente electrofisiológico. Para tal, culturas de astrócitos foram estimuladas recorrendo a ThinMEAs©, monitorizando a actividade de cálcio. Os resultados obtidos demonstraram que os astrócitos respondem a estímulos de ±600mV ou ±800mV, gerando uma onda de cálcio que se propaga para células vizinhas. A amplitude, tempo de subida e velocidade de propagação da onda de cálcio está dependente do estímulo, sendo que um estímulo de maior amplitude resulta numa resposta de maior amplitude, demorando mais tempo a atingir o seu pico máximo mas atingindo distâncias mais longas. Apesar de preliminares, estes resultados indicam que os astrócitos são capazes de detectar e responder a mudanças eléctricas externas. Desta forma, os astrócitos são células electricamente excitáveis, possivelmente através do seguinte mecanismo: a estimulação leva à abertura dos canais de cálcio voltagem-dependentes de maneira dependente da voltagem, que irá sensibilizar o retículo endoplasmático resultando numa cascata de libertação de cálcio, gerando uma onda de cálcio que se irá propagar através de junções comunicantes ou gliotransmissão vesicular.Although not able to generate action potentials, it is known that astrocytes integrate synapses, being able to sense and respond to external stimuli with complex calcium dynamics, having the ability to shape synaptic transmission. The aim of this project is to assess astrocytic calcium dynamics upon the modulation of their eletrophysiological microenvironment. To accomplish this, astrocyte cultures were electrically stimulated using ThinMEAs© while monitoring their calcium activity. Obtained data showed that astocytes respond to a ±600mV or ±800mV stimulus by generating a calcium wave which propagates to neighboring cells. The amplitude, rise time and propagation velocity of the calcium wave is dependent on the stimulus, with a higher stimulation amplitude leading to a higher response amplitude, wich takes longer to reach its maximum peak but reach a larger distance. Although preliminary, these results indicate that astrocytes are able to sense and respond to changes of the electrical environment. In this way, astrocytes are electrically excitable cells, possibly due to the following mechanism: electrical stimulation causes voltage-gated calcium channels to open in a voltage-dependent manner, which will sensitize the endoplasmic reticulum leading to a cascade of calcium releases, generating a calcium wave, which will propagate through gap junctions or vesicular gliotransmission

    Spatiotemporally Controlled Cardiac Conduction Block Using High-Frequency Electrical Stimulation

    Get PDF
    Background: Methods for the electrical inhibition of cardiac excitation have long been sought to control excitability and conduction, but to date remain largely impractical. High-amplitude alternating current (AC) stimulation has been known to extend cardiac action potentials (APs), and has been recently exploited to terminate reentrant arrhythmias by producing reversible conduction blocks. Yet, low-amplitude currents at similar frequencies have been shown to entrain cardiac tissues by generation of repetitive APs, leading in some cases to ventricular fibrillation and hemodynamic collapse in vivo. Therefore, an inhibition method that does not lead to entrainment – irrespective of the stimulation amplitude (bound to fluctuate in an in vivo setting) – is highly desirable. Methodology/Principal Findings: We investigated the effects of broader amplitude and frequency ranges on the inhibitory effects of extracellular AC stimulation on HL-1 cardiomyocytes cultured on microelectrode arrays, using both sinusoidal and square waveforms. Our results indicate that, at sufficiently high frequencies, cardiac tissue exhibits a binary response to stimulus amplitude with either prolonged APs or no effect, thereby effectively avoiding the risks of entrainment by repetitive firing observed at lower frequencies. We further demonstrate the ability to precisely define reversible local conduction blocks in beating cultures without influencing the propagation activity in non-blocked areas. The conduction blocks were spatiotemporally controlled by electrode geometry and stimuli duration, respectively, and sustainable for long durations (300 s). Conclusion/Significance: Inhibition of cardiac excitation induced by high-frequency AC stimulation exhibits a binary response to amplitude above a threshold frequency, enabling the generation of reversible conduction blocks without the risks of entrainment. This inhibition method could yield novel approaches for arrhythmia modeling in vitro, as well as safer and more efficacious tools for in vivo cardiac mapping and radio-frequency ablation guidance applications

    Spatiotemporal Properties of the Action Potential Propagation in the Mouse Visual Cortical Slice Analyzed by Calcium Imaging

    Get PDF
    The calcium ion (Ca2+) is an important messenger for signal transduction, and the intracellular Ca2+ concentration ([Ca2+]i) changes in response to an excitation of the cell. To reveal the spatiotemporal properties of the propagation of an excitatory signal with action potentials in the primary visual cortical circuit, we conducted a Ca2+ imaging study on slices of the mouse visual cortex. Electrical stimulation of layer 4 evoked [Ca2+]i transients around the stimulus electrode. Subsequently, the high [Ca2+]i region mainly propagated perpendicular to the cortical layer (vertical propagation), with horizontal propagation being restricted. When the excitatory synaptic transmission was blocked, only weak and concentric [Ca2+]i transients were observed. When the action potential was blocked, the [Ca2+]i transients disappeared almost completely. These results suggested that the action potential contributed to the induction of the [Ca2+]i transients, and that excitatory synaptic connections were involved in the propagation of the high [Ca2+]i region in the primary visual cortical circuit. To elucidate the involvement of inhibitory synaptic connections in signal propagation in the primary visual cortex, the GABAA receptor inhibitor bicuculline was applied. In this case, the evoked signal propagated from layer 4 to the entire field of view, and the prolonged [Ca2+]i transients were observed compared with the control condition. Our results suggest that excitatory neurons are widely connected to each other over the entire primary visual cortex with recurrent synapses, and inhibitory neurons play a fundamental role in the organization of functional sub-networks by restricting the propagation of excitation signals

    Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons

    Get PDF
    Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution

    VOLTAGE-SENSITIVE DYE IMAGING OF RAT PIRIFORM CORTEX BEFORE AND AFTER KINDLING

    Get PDF
    To determine the role of inhibitory cells in the propagation of activity in the rat piriform cortex (PC) before and after kindling, we used voltage-sensitive dye imaging technique to follow the membrane potential changes in three layers of the PC after stimulating the lateral olfactory tract (LOT) with beta and gamma frequencies. Stimulation of LOT was followed by propagation of excitatory (in layer II) and inhibitory responses (in layer III) through the PC. Decreasing the inhibition by applying gabazine, a GABAa- receptor antagonist, decreased the inhibitory responses and increased the excitatory responses in the control rats; however, it did not affect the excitatory and inhibitory responses in the kindled rats. Furthermore, cutting the slice below the layer II decreased the both responses. Thus, we concluded that disinhibition of layer III intemeurons is necessary for principle cells firing and kindling can result in seizures by increasing disinhibition in layer III of PC
    corecore