2,716 research outputs found

    CalibrationPhys: Self-supervised Video-based Heart and Respiratory Rate Measurements by Calibrating Between Multiple Cameras

    Full text link
    Video-based heart and respiratory rate measurements using facial videos are more useful and user-friendly than traditional contact-based sensors. However, most of the current deep learning approaches require ground-truth pulse and respiratory waves for model training, which are expensive to collect. In this paper, we propose CalibrationPhys, a self-supervised video-based heart and respiratory rate measurement method that calibrates between multiple cameras. CalibrationPhys trains deep learning models without supervised labels by using facial videos captured simultaneously by multiple cameras. Contrastive learning is performed so that the pulse and respiratory waves predicted from the synchronized videos using multiple cameras are positive and those from different videos are negative. CalibrationPhys also improves the robustness of the models by means of a data augmentation technique and successfully leverages a pre-trained model for a particular camera. Experimental results utilizing two datasets demonstrate that CalibrationPhys outperforms state-of-the-art heart and respiratory rate measurement methods. Since we optimize camera-specific models using only videos from multiple cameras, our approach makes it easy to use arbitrary cameras for heart and respiratory rate measurements.Comment: Accepted to IEEE Journal of Biomedical and Health Informatics (J-BHI

    Temporal Interpolation via Motion Field Prediction

    Full text link
    Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices an be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation via motion field prediction. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. We show that these motion fields can be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time.Comment: Submitted to 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherland

    Automatic Infant Respiration Estimation from Video: A Deep Flow-based Algorithm and a Novel Public Benchmark

    Full text link
    Respiration is a critical vital sign for infants, and continuous respiratory monitoring is particularly important for newborns. However, neonates are sensitive and contact-based sensors present challenges in comfort, hygiene, and skin health, especially for preterm babies. As a step toward fully automatic, continuous, and contactless respiratory monitoring, we develop a deep-learning method for estimating respiratory rate and waveform from plain video footage in natural settings. Our automated infant respiration flow-based network (AIRFlowNet) combines video-extracted optical flow input and spatiotemporal convolutional processing tuned to the infant domain. We support our model with the first public annotated infant respiration dataset with 125 videos (AIR-125), drawn from eight infant subjects, set varied pose, lighting, and camera conditions. We include manual respiration annotations and optimize AIRFlowNet training on them using a novel spectral bandpass loss function. When trained and tested on the AIR-125 infant data, our method significantly outperforms other state-of-the-art methods in respiratory rate estimation, achieving a mean absolute error of ∼\sim2.9 breaths per minute, compared to ∼\sim4.7--6.2 for other public models designed for adult subjects and more uniform environments

    The Role of Edge Robotics As-a-Service in Monitoring COVID-19 Infection

    Full text link
    Deep learning technology has been widely used in edge computing. However, pandemics like covid-19 require deep learning capabilities at mobile devices (detect respiratory rate using mobile robotics or conduct CT scan using a mobile scanner), which are severely constrained by the limited storage and computation resources at the device level. To solve this problem, we propose a three-tier architecture, including robot layers, edge layers, and cloud layers. We adopt this architecture to design a non-contact respiratory monitoring system to break down respiratory rate calculation tasks. Experimental results of respiratory rate monitoring show that the proposed approach in this paper significantly outperforms other approaches. It is supported by computation time costs with 2.26 ms per frame, 27.48 ms per frame, 0.78 seconds for convolution operation, similarity calculation, processing one-minute length respiratory signals, respectively. And the computation time costs of our three-tier architecture are less than that of edge+cloud architecture and cloud architecture. Moreover, we use our three-tire architecture for CT image diagnosis task decomposition. The evaluation of a CT image dataset of COVID-19 proves that our three-tire architecture is useful for resolving tasks on deep learning networks by edge equipment. There are broad application scenarios in smart hospitals in the future

    Preterm Infants' Pose Estimation with Spatio-Temporal Features

    Get PDF
    Objective: Preterm infants' limb monitoring in neonatal intensive care units (NICUs) is of primary importance for assessing infants' health status and motor/cognitive development. Herein, we propose a new approach to preterm infants' limb pose estimation that features spatio-temporal information to detect and track limb joints from depth videos with high reliability. Methods: Limb-pose estimation is performed using a deep-learning framework consisting of a detection and a regression convolutional neural network (CNN) for rough and precise joint localization, respectively. The CNNs are implemented to encode connectivity in the temporal direction through 3D convolution. Assessment of the proposed framework is performed through a comprehensive study with sixteen depth videos acquired in the actual clinical practice from sixteen preterm infants (the babyPose dataset). Results: When applied to pose estimation, the median root mean square distance, computed among all limbs, between the estimated and the ground-truth pose was 9.06 pixels, overcoming approaches based on spatial features only (11.27 pixels). Conclusion: Results showed that the spatio-temporal features had a significant influence on the pose-estimation performance, especially in challenging cases (e.g., homogeneous image intensity). Significance: This article significantly enhances the state of art in automatic assessment of preterm infants' health status by introducing the use of spatio-temporal features for limb detection and tracking, and by being the first study to use depth videos acquired in the actual clinical practice for limb-pose estimation. The babyPose dataset has been released as the first annotated dataset for infants' pose estimation

    Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation

    Get PDF
    A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT) devices that employ sequential scanning is their long acquisition time. In previous work, we demonstrated how to use compressed sensing techniques to improve upon this: images with good spatial resolution and contrast can be obtained from suitably sub-sampled PAT data acquired by novel acoustic scanning systems if sparsity-constrained image reconstruction techniques such as total variation regularization are used. Now, we show how a further increase of image quality can be achieved for imaging dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional temporal redundancy of the data by coupling the previously used spatial image reconstruction models with sparsity-constrained motion estimation models. While simulated data from a two-dimensional numerical phantom will be used to illustrate the main properties of this recently developed joint-image-reconstruction-and-motion-estimation framework, measured data from a dynamic experimental phantom will also be used to demonstrate their potential for challenging, large-scale, real-world, three-dimensional scenarios. The latter only becomes feasible if a carefully designed combination of tailored optimization schemes is employed, which we describe and examine in more detail

    Advances in video motion analysis research for mature and emerging application areas

    Get PDF
    • …
    corecore