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Abstract. A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT) devices that
employ sequential scanning is their long acquisition time. In previous work, we demonstrated how
to use compressed sensing techniques to improve upon this: images with good spatial resolution and
contrast can be obtained from suitably subsampled PAT data acquired by novel acoustic scanning
systems if sparsity-constrained image reconstruction techniques such as total variation regularization
are used. Now, we show how a further increase of image quality can be achieved for imaging
dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional temporal
redundancy of the data by coupling the previously used spatial image reconstruction models with
sparsity-constrained motion estimation models. While simulated data from a 2D numerical phantom
will be used to illustrate the main properties of this recently developed joint-image-reconstruction-
and-motion-estimation framework, measured data from a dynamic experimental phantom will also
be used to demonstrate its potential for challenging, large-scale, real-world, 3D scenarios. The
latter only becomes feasible if a carefully designed combination of tailored optimization schemes is
employed, which we describe and examine in more detail.
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1. Introduction.

1.1. Compressed sensing photoacoustic tomography. Optical absorption of biological
tissues is a desirable source of image contrast for a variety of clinical and preclinical applica-
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tions. In particular, its wavelength dependence provides spectroscopic (chemical) information
on the absorbing molecules (chromophores). Photoacoustic tomography (PAT) is an “imaging
from coupled physics” technique [3] that employs laser-generated ultrasound (US) to obtain
optical absorption images with the high spatial resolution of US. For recent reviews on the
physical principles, technical realizations, and (pre)clinical applications of PAT, we refer the
reader to [63, 4, 48, 66].

In [1], we discussed the particular challenges of acquiring high quality three-dimensional
(3D) photoacoustic (PA) images with sequential scanning schemes, such as the Fabry–Pérot-
based PA scanner (FP scanner): To reach a spatial resolution less than one hundred µm,
acoustic waves containing frequencies up to a few tens of MHz have to be sampled over
centimeter-scale apertures. For a scanning pattern to satisfy the spatial Nyquist criterion,
sampling intervals in the order of tens of µm have to be chosen, which leads to several thousand
detection points, and thereby long acquisition times. This imposes a severe limit for dynamic
PAT (4D PAT), i.e., imaging dynamic anatomical and physiological events in high resolution
in real time, an area of research of increasing interest [19]. The key observation to overcome
this limitation is that the Nyquist criterion is often too conservative because it guarantees
perfect recovery of the broad class of images that are band limited but otherwise arbitrary.
However, images of absorbing tissue structures come from a much smaller subclass of images,
as they typically also have a rather low spatial complexity (or a high sparsity). Therefore,
data recorded in a conventional, regularly sampled fashion, satisfying the Nyquist criterion,
is often highly redundant. Compressed sensing (CS) [12, 22, 28] techniques exploit this fact
by combining subsampling schemes that try to maximize the nonredundancy of the data with
image reconstruction approaches that employ sparsity constraints. In [1], we demonstrated the
implementation of CS techniques to accelerate 3D PAT acquisition by using spatial sparsity
constraints. In the context of 4D PAT, such techniques can be employed to reconstruct each
temporal frame separately, i.e., as a frame-by-frame (fbf) image reconstruction method.

1.2. Spatio-temporal image reconstruction. In this work, we show that another signifi-
cant acceleration can be obtained by also accounting for the temporal evolution of the target
within a full spatio-temporal reconstruction scheme. A wide range of such approaches have
been proposed for different applications and dynamics. If the dynamics between separate
frames are sufficiently simple (e.g., affine deformations), low-dimensional parametric models
can often be used to efficiently constrain the image reconstruction in time. An application
to PAT is demonstrated in [15], and theoretical analysis of such approaches can be found in
[35, 34, 33]. In such situations, the aim is often rather to compensate for the motion (see,
e.g., [45] for an overview on compensating for respiratory motion) than to resolve it, which
is our main aim here. Several approaches rely on extending popular spatial constraints into
time. Incorporating `2 regularization of the temporal differences between frames is examined
in [55, 56], and recently extending `1 functionals such as total variation functional and its
higher order variants to spatio-temporal settings have been proposed and shown to work well
for certain dynamics; see, e.g., [37, 54]. In the Bayesian approach to inverse imaging problems,
spatio-temporal methods are commonly referred to as Kalman filtering or smoothing : Filter-
ing refers to reconstructing each image frame based only on measured data up to that point
in time, most often done via updating the previous image frame based on the most recent
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Table 1
List of commonly occurring abbreviations.

Abbreviation Meaning Reference

ACS alternate convex search sect. 4.2
ADMM alternating direction method of multipliers sect. 4.4, Alg. 4.2
fbf frame-by-frame sect. 2.2
FP Fabry–Pérot sect. 1.1
mIP maximum intensity projection Fig. 2
NNLS nonnegative least squares sect. 5.1
(Q)PAT (quantitative) photoacoustic tomography sect. 1
PDHG primal dual hybrid gradient sect. 4.3, Alg. 4.1
TV total variation regularization sect. 3.2
TVTVL2 Joint image reconstruction and motion estimation approach sect. 3.2, (3.5)

data. While this is the only option for real-time or online image reconstruction, it is also
popular in offline image reconstruction due to its lower computational complexity compared
to smoothing, which refers to estimating each image frame based on the whole set of measured
data. See section 4 in [42] for a general introduction and further references to Kalman filtering
and [57] for recent work on this topic. In the context of compressed sensing applications, low-
rank-type models have been examined extensively; see, e.g., [36, 62, 60, 52]. These models rely
on strong spatio-temporal decomposition assumptions which are very effective when fulfilled
but not appropriate for all dynamics.

In this work, we adopt a very general spatio-temporal modeling framework introduced in
[10] that can encode a priori information about a wide range of dynamics: It formulates an
explicit PDE model for the image dynamics and then jointly estimates the image sequence
and the corresponding motion field by minimizing a variational energy. An overview of similar
approaches to joint image reconstruction and motion estimation can be found in the intro-
duction of [10], which also contains theoretical analysis of this approach. While it was used
for 2D dynamic computed tomography reconstruction in [9], we present the first application
to a challenging, large-scale 3D dynamic problem with experimental data, which also requires
the development of tailored numerical optimization schemes.

1.3. Structure. The remainder of the paper is organized as follows: Section 2 introduces
the mathematical modeling of dynamic PAT and illustrates the limitations of reconstruction
approaches that only account for spatial sparsity. Based on this, a variational spatio-temporal
image reconstruction framework based on joint motion estimation is presented in section 3.
Section 4 discusses the numerical solution of the optimization problems that originate from
the variational approach, and in section 5 we present results with a simple 2D scenario with
simulated data and a challenging 3D scenario with experimental data. Finally, we discuss the
results of our work and point to future directions of research in section 6. Table 1 lists all
commonly occurring abbreviations for reference.

2. Background and previous work.

2.1. Sequential acquisition of compressed dynamic PAT. Let us denote the biological
tissue to be imaged by Ω ∈ Rd (d = 2, 3), the space variable by r ∈ Ω, the measurement
interval by [0, T ], and the (continuous) time variable by τ ∈ [0, T ]. A reasonable mathemat-
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ical model of dynamic PAT has to make certain assumptions about the different time scales
involved in signal generation and measurement, in particular if the PA signal is scanned in a
sequential manner. First, as described in more detail in section 1.1 of [2], the PA effect is only
significant if the laser pulse duration, photon transport, photon absorption by chromophores,
and subsequent thermalization take place sufficiently fast, i.e., within a few nanoseconds. The
induced local pressure increase p : Ω → R+ initiates a broadband acoustic pulse that trav-
els through Ω within a few microseconds. Therefore, this part of the signal generation is
commonly modeled as an initial value problem for the wave equation

(2.1) (∂ττ − c2∆)p̆(r, τ) = 0 , p̆(r, τ = 0) = p , ∂τ p̆(r, τ = 0) = 0 .

This approximates the whole optical part as instantaneous, which is equivalent to assuming
the tissue remains at rest until the thermalization is complete. Sequential scanning systems
can only measure a single spatial projection of p̆(r, τ) over a sensor surface S ⊂ ∂Ω for each
pulse of the excitation laser:

(2.2) fm,l =

∫
[0,T ]

∫
S
p̆(r, τ)φm(r)ψl(τ) dr dτ, m = 1, . . . ,M, l = 1, . . . ,Mτ .

where φm(r) describes the spatial window function used for the measurement associated with
the mth laser pulse, and ψl is the lth temporal window function (we will only consider equi-
distant temporal point sampling in the following).

A single pressure-time series is recorded within a few microseconds and can therefore
be regarded as instantaneous if we are interested in imaging dynamics taking place on the
scale of a few seconds or even minutes. However, as described in more detail in [1], to form
high-resolution 3D images, the spatial Nyquist criterion necessitates that several thousand
such time series be recorded. As the pulse repetition rates of conventional excitation lasers
are typically limited to tens of Hz, this means that the scanning process and the image
dynamics interfere—the image is moving while the scanning is taking place—and neglecting
this by assuming an instantaneous measurement can lead to severe motion blurring in the
reconstructed images. A summary of the relevant time scales is depicted in Figure 1.

A fully continuous modeling encompassing all the different and interfering spatio-temporal
processes described above is of only limited practical value and will not be pursued here.
Instead, we assume that a temporal binning of the sequential acquisitions (2.2) into temporal
frames, t = 1, . . . , T , is chosen in such a way that the initial pressure can be assumed to
be static during one frame. We then model the linear mapping of the discretized initial
pressure pt ∈ RN to fully sampled, discrete data ft ∈ RMMτ via (2.1) and (2.2) by a time-
independent, i.e., instantaneous, operator A. In this context, “fully sampled” refers to an ideal
scanning scheme that samples S as demanded by the spatial Nyquist criterion, although our
measurement setup might practically not allow for doing that within the duration of a single
temporal bin. The real measurement is modeled by applying a time-dependent subsampling
or compression operator Ct ∈ RMcMτ×MMτ to ft:

(2.3) f ct = Ctft = CtApt + εt , t = 1, . . . , T ,
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10-9 10-6 10-3 100 103 

laser	pulse	dura*on	
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Figure 1. Sketch of the relevant time scales in high-resolution 4D PAT with sequential acquisition: PAT
is particularly suited to image dynamic processes in living tissue that are related to blood circulation. For this,
one would ideally like to obtain a temporal resolution close to the heart beat (∼1s for humans, ∼0.1s for mice).
As the processes that contribute to a single PA signal take place within nanoseconds to microseconds, the main
temporal limitation of sequential acquisition systems is given by the excitation laser pulse rate. Lasers with
sufficiently high pulse energies are currently limited to ∼200Hz, which for a complete scan typically leads to
longer acquisition times than desired. For instance, scanning 20 000 locations with a 20Hz laser takes 1000s,
while using a 200Hz laser in combination with a multibeam readout system as described in [41] takes 12.5s. In
the latter case, applying compressed sensing with a sufficiently high subsampling factor would yield the desired
temporal resolution.

where εt accounts for additive measurement noise, which we assume can be modeled as an
independent and identically distributed standard normal distributed after suitable data pre-
processing is carried out.

We will mainly use s-periodic sequences Ct, t = 1, 2, . . . , such that, for any t0 > 1,

(2.4) C̄t0 =


Ct0
Ct0+1

...
Ct0+s


is invertible and can be transformed into C̄1 by row-permutation. This amounts to splitting
a conventional, full scanning pattern C̄ ∈ RMMτ×MMτ consisting of M spatial projections
into smaller temporal bins comprising disjoint subsets of Mc spatial projections and allows
for an intuitive definition of the subsampling factor as Msub = M/Mc. However, the methods
presented here can be used for any sequence {Ct}Tt .

From now on, any reference to time is with respect to the image and measurement dynam-
ics (indexed by t), not to the acoustic wave propagation (indexed by τ). Furthermore, we will
often ease the notation when dealing with spatio-temporal quantities: Dropping the temporal
index t refers to the whole sequence as a vector, e.g., p ∈ RNT . When spatial operators like
the gradient ∇ are applied to such a vectorized dynamic quantity, it is understood as an fbf
application, i.e., ∇p means (IT ⊗∇) p, where IT is the T -dimensional identity matrix.

2.2. Previous work. In [1], we focused on fbf image reconstruction techniques for (2.3);
i.e., we reconstructed each pt separately, without taking into account any temporal relationship
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in the data f ct . In particular, we showed that variational approaches,

(2.5) p̂t = argmin
pt>0

{
1

2
‖CtApt − f ct ‖

2
2 + αJ (pt)

}
, α > 0 ,

that use the regularization functional J (p) to impose sparsity constraints that encode a priori
knowledge that the images mainly consist of structures of low spatial complexity outperform
linear reconstructions such as time-reversal or other back-projection-type approaches [26, 64,
2]. Similar studies by others confirm these results [51, 32, 65, 46, 47, 39, 6, 23]. As (2.5) has
to be solved by iterative optimization schemes, fbf image reconstruction is appealing from a
computational perspective. However, as it can only encode spatial a priori information, its
ability to obtain good quality images from subsampled dynamic data (2.3) is limited. With
data from an experimental phantom that will be described in more detail in section 5.2,
we were able to show in [1] that while fbf reconstructions with Msub = 8 still give acceptable
results, usingMsub = 16 leads to reconstructions too heavily impaired by missing-data artifacts
and noise. However, an inspection of consecutive frames as shown in Figure 2 reveals that
the temporal correlation between both noise and artifacts differs strongly from the smooth
spatio-temporal evolution of the target. Consequently, noise and artifacts should be effectively
removed when using an appropriate smooth spatio-temporal image model. This is the key
observation we will utilize to enhance dynamic compressed sensing PAT, either to improve
the image quality compared to fbf reconstructions or to allow for higher subsampling factors
Msub.

3. Joint image reconstruction and motion estimation.

3.1. Simultaneous motion estimation. A full nonparametric, spatio-temporal variational
scheme reads

(3.1) p̂ = argmin
p>0

{
T∑
t

1

2
‖CtApt − f ct ‖

2
2 +R(p)

}
,

where the regularization R(p) is now a function of the whole image sequence p ∈ RNT that
cannot be decomposed over frames, i.e., R(p) 6=

∑
t Jt(pt). Here, we choose a particular

construction of such a scheme introduced in [10]. For our time-discrete dynamic PAT problem,
it is given as

(3.2) (p̂, v̂) = argmin
(p>0,v)

{
T∑
t

1

2
‖CtApt − f ct ‖

2
2 + αJ (pt) + βH(vt) + γM(p, v)

}
.

Here, each vt ∈ RdN describes a d-dimensional vector field describing the motion between pt
and pt+1; J (pt) and H(vt) are spatial regularization terms on image and motion field, respec-
tively; and α, β, γ are nonnegative regularization parameters. The key term isM(p, v), which
enforces a relation between image sequence p and related motion field sequence v by measuring
how well they fulfill a (discretized) motion PDE chosen to model a priori information about
the underlying image dynamics. Note that (3.1) can be obtained from (3.2) by dropping v̂
from the left-hand side and replacing the argmin over v with a minimization over v.
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(a) t = 22, X mIP (b) t = 23, X mIP

(c) t = 22, Y mIP (d) t = 23, Y mIP

(e) t = 22, Z mIP (f) t = 23, Z mIP

(g) t = 22, X slice (h) t = 23, X slice

Figure 2. Limitations of applying fbf image reconstruction (2.5) to a dynamic PAT data set (details given
in section 5.2) when using a high subsampling factor Msub = 16. Figures in the left and right columns show
maximum intensity projections (mIP) along different directions ( (a)–(f)) and slice view visualizations ( (g)–
(h)) of the results p22 and p23, respectively. One can easily see that image artifacts are not correlated between
the two subsequent time frames (same colored circles in left and right images highlight examples), while the
target’s motion is.
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3.2. Optical flow constraints. The purpose of this work is a proof-of-concept study to
show that a more sophisticated spatio-temporal approach like (3.2) can generally improve
upon simpler fbf reconstruction. Therefore, we stick to rather generic choices of J , H, andM
and leave the examination of problem-specific regularizers encoding more detailed information
about image and dynamics for future work. For J and H we choose the popular (isotropic)
total variation (TV) functional also used in [1]. The motion term M(p, v) should enforce a
simple continuity equation, known as the optical flow equation [38] in the field of computer
vision:

(3.3) ∂τp(r, τ) + (∇rp(r, τ)) · v(r, τ) = 0 .

One way to achieve this is to let M measure the least-squares error of a forward difference
discretization of (3.3) in time:

(3.4) M(p, v) =
T−1∑
t

1

2
‖pt+1 − pt + (∇pt) · vt‖22 .

In total, this leads to the variational scheme

(p̂, v̂) = argmin
p>0,v

{
E(p, v)

}
:= argmin

p>0,v

{
T∑
t

1

2
‖CtApt − f ct ‖

2
2

+ α‖∇+pt‖1 + β
d∑
i

‖∇+vxi,t‖1 +
γ

2

∥∥pt+1 − pt + (∇±pt) · vt
∥∥2
2

}
,

(3.5)

where we define pT+1 := pT , vT := 0 to simplify the formula. The spatial gradients in the TV
terms are implemented with forward differences (denoted by ∇+) as described in Appendix A
in [1]. We chose to implement the TV of the motion field as a sum over the TV of the single
components here and leave other possible choices for future work. The spatial gradient ∇pt in
the optical flow term is discretized using central differences, denoted by ∇±. As the scheme
is solved implicitly for p given v, this gives a stable discretization of (3.3). More details on
the discretization can be found in [20]. We will refer to (3.5) as the TVTVL2 model.

4. Optimization. The TVTVL2 model (3.5) leads to a large-scale, nonsmooth, biconvex
optimization problem in p and v involving the computationally intensive acoustic propagation
operator A applied to T image frames. We will therefore decompose it into several subproblems
to disentangle its most complicated components. All subproblems will be solved with iterative
first order techniques. For general introductions to numerical optimization suited for imaging
applications, we refer the reader to [11, 14].

4.1. Forward-backward splitting. Computing each matrix-vector product Apt or A∗ft
involves the numerical solution of a potentially inhomogeneous 3D wave equation (2.1) with
high spatial and temporal resolution. For this, we will use the k-space pseudospectral time
domain method [44, 18, 59] implemented in the k-Wave MATLAB Toolbox [58]. With this
implementation, each matrix-vector product with A or A∗ has the complexity O(MτN log(N))
[2] and typically Mτ > N . In contrast, all linear operators in the regularization terms in (3.5)
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have complexity O(N). For this reason, we build the outermost iteration (index i) of our
scheme by decoupling the smooth, convex data term containing A from all other terms and
the nonnegativity constraints on p by a proximal forward-backward splitting/proximal gradient
descent scheme (see [30] for an extensive overview). For this, we need to define the proximal
operator of a functional J (x) as

(4.1) proxαJ (y) := argmin
x

{
αJ (x) +

1

2
‖x− y‖22

}
.

Furthermore, as v is not part of the data term, it appears only in the second step of the
iterative scheme:

p̃t = pit − ηA∗C∗t
(
CtAp

i
t − f ct

)
∀ t = 1, . . . , T (forward step) ,(4.2a) (

pi+1, vi+1
)

= proxηR (p̃) (backward step) ,(4.2b)

where R(p, v) combines all regularization terms on p and v from (3.5):

(4.3) R(p, v) :=
T∑
t

α‖∇+pt‖1 + β
d∑
i

‖∇+vxi,t‖1 +
γ

2

∥∥pt+1 − pt + (∇±pt) · vt
∥∥2
2
.

In (4.2a)–(4.2b), we initialize p0 = 0 and set the step size η to 1.5/maxt Lt. Lt is an approxi-
mation of the Lipschitz constant of A∗C∗t CtA which can be precomputed for a given setting
and subsampling scheme with a simple power iteration. The basic scheme (4.2a)–(4.2b) is
extended by a gradient extrapolation step (accelerated or fast gradient methods) which will
lead to an asymptotic convergence rate of O(1/i2). For this, we use the FISTA extrapolation
[5] with restart whenever an increase in the total energy E occurs.

4.2. Biconvex optimization. Combining (4.3) and (4.1), we see that solving the proximal
operator in (4.2b) amounts to solving the following TVTVL2-regularized denoising problem:

(
pi+1, vi+1

)
= proxηR (p̃) = argmin

p>0,v

{
Ẽ(p, v)

}
:= argmin

p>0,v

{
T∑
t

1

2
‖pt − p̃t‖22

+ ηα‖∇+pt‖1 + ηβ
d∑
i

‖∇+vxi,t‖1 +
ηγ

2

∥∥pt+1 − pt + (∇±pt) · vt
∥∥2
2

}
.

(4.4)

The main difficulty here is the motion term. The product (∇±pt) · vt renders it biconvex ; i.e.,
Ẽ(p, v) is convex in each of the single variables p or v once the other is fixed, but nonconvex as a
function of both variables. As such, biconvex problems are global optimization problems that
can have a large number of local minima. An overview of biconvex optimization can be found
in [31]. Compared to general global optimization problems, the convex substructures can be
utilized to design efficient optimization schemes with certain global convergence properties.
A popular approach is given by the alternate convex search (ACS) method, which alternates
between minimizing Ẽ(p, v) for one variable while keeping the other fixed. Applied to (4.4),
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the ACS iteration (index j) reads

pj+1 = argmin
p>0

{
T∑
t

1

2
‖pt − p̃t‖22 + α̃‖∇+pt‖1 +

γ̃

2

∥∥∥pt+1 − pt + (∇±pt) · vjt
∥∥∥2
2

}
,(4.5a)

vj+1 = argmin
v

{
T∑
t

β̃
d∑
i

‖∇+vxi,t‖1 +
γ̃

2

∥∥∥pj+1
t+1 − p

j+1
t + (∇±pj+1

t ) · vt
∥∥∥2
2

}
,(4.5b)

where we defined α̃ = ηα, β̃ = ηβ, γ̃ = ηγ. The first problem (4.5a) is a denoising problem for
p with a regularization consisting of a TV and a transport term. Problem (4.5b) for v is an
optical flow estimation problem with TV regularization. Note that it is separable in t; i.e., it
can be solved fbf. Both subproblems are convex, and therefore approximate solutions can be
found reasonably fast by iterative first order schemes (iteration index k). The next two sections
will present two different approaches for each subproblem. First, we will repeat how to apply
the primal dual hybrid gradient (PDHG) [50, 13] algorithm as already proposed in [10]. While
this will be sufficient for treating small-scale 2D problems such as examined in section 5.1,
we will then introduce tailored alternating direction method of multipliers (ADMM) (see, e.g.,
[7]) schemes that will be shown to be sufficiently efficient to also treat large-scale 3D problems
as encountered in the real-data scenarios examined in section 5.2.

However, as (4.5a) and (4.5b) are nonsmooth, both PDHG and ADMM rely on dual or
primal dual formulations and can therefore not guarantee a monotonous decay of the iterates
energy Ẽ(p, v). This leads to a potential problem: While ACS will still converge in objective
value Ẽ(p, v) if we do not solve the subproblems exactly but only find fast approximate solu-
tions, we need to guarantee that Ẽ(p, v) decreases in every step. Therefore, we will need to
track the energies of all iterates and allow subroutines to run long enough to ensure a sufficient
decay. In addition, we will warm-start the subroutines with all the variables from their last
call, even though this will lead to an increased memory consumption.

4.3. Solution of convex subproblems by PDHG. The PDHG algorithm has become the
de facto standard template for solving convex, nonsmooth optimization problems in a vector
space X involving complicated linear operators K : X → Y for which matrix-vector products
with K and K∗ can be computed. The idea is to formulate the problem in the primal form
as

(4.6) min
x∈X

E(x) = min
x∈X

G(x) + F(Kx) ,

with proper, convex functionals G and F , and to then switch to the equivalent primal dual
formulation,

(4.7) min
x∈X

max
y∈Y
〈Kx, y〉+ G(x)−F∗(y) ,

which involves the convex conjugate F∗ of F . The advantage of this formulation over (4.6)
is that the operator K does not show up in the nonlinear terms anymore. The PDHG algo-
rithm then solves the saddle-point problem (4.7) by basically alternating a gradient descent
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Algorithm 4.1. Primal dual hybrid gradient scheme (PDHG).

Given µ > 0, ν > 0, θ ∈ [0, 1], x̂0, y0, iterate for k = 1, 2, . . . :

yk+1 = proxνF ∗
(
yk + νKx̂k

)
(prox-grad step in y) ,(4.8a)

xk+1 = proxµG

(
xk − µK∗yk+1

)
(prox-grad step in x) ,(4.8b)

x̂k+1 = xk+1 + θ
(
xk+1 − xk

)
(overrelaxation) .(4.8c)

in the primal variable and a gradient ascent in the dual variable. In addition, it performs an
overrelaxation step in one of the variables (here, the primal one); see Algorithm 4.1.

To apply this to (4.5a), i.e., x = p, we choose

Kp =

[
∇+

∂+t +
∑d

i v
j
xi∂
±
xi

]
p :=

[
∇+

Dvj

]
p , K∗y = −∇+ · y1 +D∗vj y2 ,(4.9a)

G(p) = χ+(p) +
T∑
t

1

2
‖pt − p̃t‖22 , χ+(p) :=

{
0 if pi > 0 ∀ i ,
∞ else ,

(4.9b)

F(y) = F
([
y1
y2

])
= α̃‖y1‖1 +

γ̃

2
‖y2‖22 ,(4.9c)

where y1 ∈ RNTd represents a d-dimensional spatio-temporal vector field resulting from ap-
plying ∇+ to every frame of a d-dimensional dynamic image p (d = 2, 3 here). The explicit
form of the proximal operators needed to implement Algorithm 4.1 with these choices are
listed in Appendix A. We can use the PDHG scheme to solve (4.5b), i.e., x = v, by choosing

Kv =
(
Id ⊗∇+

)vx1...
vxd

 , K∗y =

−∇
+ · y1
...

−∇+ · yd

 ,(4.10a)

G(v) =
γ̃

2

T∑
t

∥∥∥pj+1
t+1 − p

j+1
t + (∇±pj+1

t ) · vt
∥∥∥2
2
,(4.10b)

F(y) = F


y1...
yd


 =

T∑
t

β̃
d∑
i

‖yi,t‖1 .(4.10c)

Here, y ∈ RNTd2 represents a (d×d)-dimensional spatio-temporal tensor field with components
yi ∈ RNTd representing the spatial Jacobian of every frame of a d-dimensional dynamic vector
field v. Again, the solution of the involved proximal operators is shifted to Appendix A. Note
that as (4.5b) can be solved fbf, i.e., for each vt separately, the PDHG algorithm sketched
above can be parallelized over t. While this is an appealing option, for its use within ACS one
has to implement it such that the overall energy Ẽ(p, v) (which is summed over t) deceases
sufficiently; cf. section 4.2.
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The overrelaxation parameter θ in both PDHG schemes is chosen as 1. Furthermore,
we need to choose the step sizes µ, ν in dependence on K to ensure convergence (cf. [13,
14]). Due to the complicated structure of (4.9a), we use the extension of PDHG by diagonal
preconditioning proposed as in [49] (the α parameter in [49] is set to 1), which is easy to
compute for our problem and was found to work well compared to standard choices based on
estimates of ‖K‖2,2. The operator K in (4.10a) has a simple structure, and it can be shown

that ‖K‖2,2 6 4d [13]. As such, the choice µ = 1/2d, ν = 1/2 fulfills µν ‖K‖22,2 6 1 and leads
to convergence (this balancing between µ and ν was found empirically).

4.4. Solution of convex subproblems by ADMM. In the ADMM approach, the uncon-
strained but coupled convex problem (4.6) is first converted into an equality-constrained but
uncoupled convex problem by introducing an auxiliary variable y = Kx,

(4.11) (4.6)⇐⇒ min
x∈X ,y∈Y

G(x) + F(y) such that y = Kx ,

which is then solved by a combination of dual ascent, augmented Lagrangian techniques and
the method of multipliers. The final ADMM scheme is described in Algorithm 4.2.

Algorithm 4.2. Alternating direction method of multipliers (ADMM).

Given ρ > 0, y0, w0, iterate for k = 1, 2, . . . :

xk+1 = argmin
x∈X

{
G(x) +

ρ

2

∥∥∥Kx− yk + wk
∥∥∥2
2

}
,(4.12)

yk+1 = argmin
y∈Y

{
F(y) +

ρ

2

∥∥∥Kxk+1 − y + wk
∥∥∥2
2

}
,(4.13)

wk+1 = wk +Kxk+1 − yk+1 .(4.14)

The crucial difference to the PDHG schemes is that the update of x, (4.12), is now implicit,
and we will choose the split y = Kx such that it will be given as the solution of a least-
squares problem involving all linear operators.1 This can be advantageous in cases where
K suffers from bad conditioning, but only leads to a computationally efficient scheme if the
corresponding normal equations can be solved quickly. Fortunately, ADMM still converges if
the subproblems (4.12) and (4.13) are solved approximately but with accuracy increasing with
k (see [25] and references therein for a precise statement). Therefore, warm-started iterative
linear solvers with carefully chosen stop conditions can be used. For problem (4.5a), i.e.,

1The ADMM and PDHG schemes are actually very closely related, although most introductions of the
two methods do not immediately imply this, and our short overview here cannot cover it. See [11, 14] for an
extensive discussion.
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x = p, we realize the ADMM iteration by

Kp =

[
∇+

IN

]
p ⇒ K∗

[
y1
y2

]
= −∇+ · y1 + y2 ,(4.15a)

G(p) =
T∑
t

1

2
‖pt − p̃t‖22 +

γ̃

2

∥∥∥pt+1 − pt + vjt · (∇pt)
∥∥∥2
2

(4.15b)

=
1

2

∥∥∥∥[ IN√
γ̃Dvj

]
p−

[
p̃
0

]∥∥∥∥2
2

,

F(y) = F
([
y1
y2

])
= α̃‖y1‖1 + χ+(y2) ,(4.15c)

where y1 ∈ RNTd represents a d-dimensional spatio-temporal vector field resulting from ap-
plying ∇+ to a d-dimensional dynamic image p, and y2 ∈ RNT accounts for the nonnegativity
constraints. We will denote the corresponding parts of w by w1 and w2 as well. For these
choices, the update (4.12) is given by

(4.16) pk+1 = argmin
p


1

2

∥∥∥∥∥∥∥∥


IN√
γ̃ Dvj√
ρ ∇+

√
ρ IN

 p−


p̃
0√

ρ
(
yk1 − wk1

)
√
ρ
(
yk2 − wk2

)

∥∥∥∥∥∥∥∥
2

2


=
(
(1 + ρ)IN + γ̃D∗vjDvj + ρ∆+

)−1 (
p̃+ ρ∇+ ·

(
yk1 − wk1

)
+ ρ

(
yk2 − wk2

))
.

All the linear operators can easily be implemented in a matrix-free way, and so (4.16) can be
solved with a standard conjugate gradient (CG) implementation. As in the PDHG schemes,
update (4.13) can be solved explicitly using proximal operators (Appendix A).

For solving (4.5b), i.e., x = v, choose exactly the same split as in the corresponding PDHG
scheme, i.e., (4.10a)–(4.10c), and make use of the fact that the optimization can be solved for
each t separately: For each t, the update (4.12) is given by

(4.17) vk+1
t =

(
γ̃E∗E + ρId ⊗∆+

)−1 (
γ̃E∗

(
−pj+1

t+1 + pj+1
t

)
+ ρK∗

(
yk − wk

))
,

where E = E(pj+1
t ) is an N × dN matrix implementing the pointwise multiplication and

summation of the components of a vector field with the spatial gradients of pj+1
t , i.e., Ev =∑d

i vxi∂
±
xip

j+1
t as

(4.18) E =
[
diag

(
∂±x1p

j+1
t

)
. . . diag

(
∂±xdpt

)]
.

For d = 2, we take a closer look at the structure of the matrix to invert in (4.17):

(4.19)
(
γ̃E∗E + ρId ⊗∆+

)
= γ̃

[
T11 T12
T11 T22

]
+ ρ

[
∆+ 0
0 ∆+

]
,
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where Tkl := diag
(
∂±xkp

j+1
t · ∂±xlp

j+1
t

)
. While one can easily implement matrix-free iterative

solvers for this system, we chose to explicitly build this very sparse matrix to be able to
use efficient preconditioning techniques. Within the ADMM iteration, this comes with little
overhead as only the right-hand side in system (4.17) changes during the iteration. We will
examine different combinations of preconditioners and iterative solvers in the numerical studies
[53]. As preconditioners, we consider the following:

• IC(0): incomplete Cholesky preconditioner with zero-fill as implemented in MATLAB
(R2016a).
• ICT: incomplete Cholesky preconditioner with threshold dropping (threshold: 1e-3)

as implemented in MATLAB (R2016a).
• AMG: algebraic multigrid W-cycle preconditioner based on the implementation in

[43], which uses a modification of Ruge–Stuben coarsening, two-point interpolation
(using at most two connected coarse nodes), and a direct solver on the coarsest level.

As iterative solvers, we examine the standard CG method and the minimum residual method
(MINRES). Further details will be discussed in the next section. The iterative solvers are
warm-started with the previous solution pk or vkt ; we perform at least 3 iterations and stop
when the relative residual norm is below tol(k) = 10−3/k3/2, i.e., we progressively increase
the precision to which we solve subproblem (4.12). Update (4.13) can be solved as for the
corresponding PDHG scheme (Appendix A).

While ADMM converges for all ρ > 0, its choice has a crucial impact on the speed of
convergence and other properties of the iterates, e.g., the monotonicity of the energy E

(
xk
)
,

which is important for using ADMM inside of an ASC (cf. section 4.2). For using ADMM on
the p update (4.5a), we use the adaptation strategy described in section 3.4.1 of [7] during
the steps k = 1, . . . , 25 and fix it thereafter. For the first p update (4.5a) within ASC we
initialize ρ = 1 and then always warm-start the following p update with the adapted ρ. In
the ADMM scheme for the v update (4.5b), we fix ρ = 10−1 for d = 2 and 102 for d = 3,
first to avoid a recomputation of the matrices and their preconditioners (see above), and
second to enforce a fast transition to the regime of monotonous energy decay. As with any
alternating optimization, the ADMM scheme can benefit from overrelaxation. We use the
technique discussed in section 3.4.3 of [7], which consists of replacing the quantity Kxk+1 in
Algorithm 4.2 by sKxk+1 + (1− s)yk. Throughout the experiments, we use s = 1.8.

Although we limited our presentation here to the most important features, it already
became apparent that, compared to PDHG, ADMM schemes are more difficult to design
and parametrize. Also note that ADMM with the specific type of split that we used here is
equivalent to the split Bregman method [29, 25], which derives Algorithm 4.2 from a different
perspective.

5. Results. In this section, we first demonstrate the main features of the proposed meth-
ods on a simple numerical phantom in 2D before we discuss their realization for experimental
data in 3D. As we can only show snapshots for a few time frames of the reconstructions here,
movies of all reconstructions can be found in the supplementary material (M117006 01.pdf
[local/web 153KB]). For computing the results presented, we used ADMM in both the p
update (4.5a) and the v update (4.5b) as described in the previous section. In the v update,
AMG-CG was used as a least-squares solver. In section 5.3, we compare this choice to possible
alternatives in more detail.D
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(a) (b)

Figure 3. The 2D numerical phantom. (a) A snapshot at t = 13 and the corresponding color bar. The
sensor locations are shown as pink pixels (left and top edge). (b) A visualization of all T = 25 frames as a
color-coded RGB overlay. The color bar displays which colors are assigned to which time frame; the sensor
pixels are shown as black pixels.

All routines have been implemented as part of a MATLAB toolbox for PAT image recon-
struction which will be made available in the near future. The toolbox relies on the k-Wave
toolbox (see [58], http://www.k-wave.org/) to implement A and A∗, which allows us to use
highly optimized C++ and CUDA code to compute the 3D wave propagation on parallel CPU
or GPU architectures.

5.1. Numerical 2D phantom. The computational domain is a square of length 20mm
which is divided into N = 100× 100 pixels. Its acoustic properties are assumed homogeneous
with c = 1500m s−1. The conventionally scanned (fully sampled) measurement data (referred
to as “cnv”) is acquired at M = 100 sensors sampled at Mτ = 472 time steps with δτ =
40ns. The sensors are arranged in two orthogonal lines, which corresponds to a 2D version
of a scanning system using two orthogonal Fabry–Pérot (FP) sensors [24, 27]. This way,
reconstructions from the fully sampled sensor array will not suffer from severe limited view
artifacts, and we can concentrate on the effects of subsampling.

The dynamical phantom consists of three tubes that change center position, orientation,
and size smoothly over T = 25 frames and should loosely resemble the dynamics of the X-
slices of the experimental phantom in Figure 2. Figure 3 shows different visualizations of
the phantom. White Gaussian noise with a standard deviation of σ = 5 · 10−3 was added
to the simulated pressure time series, leading to an average signal-to-noise ratio of 20.65 dB.
To subsample the data, we now assume that in each frame, we can acquire data at a subset
of 4 out of the 100 original sensor locations that have been chosen randomly but disjointly,
such that after T = 25 frames, each location has been scanned once. This means that the
subsampling factor Msub = M/Mc (cf. section 2.1) equals T ; i.e., we acquire all 25 frames
with the same scanning time as a single frame in the full data setup. The operators Ct can
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(a) phantom p (ground truth) (b) NNLS, cnv (c) TV-fbf, α = 2 · 10−3 cvn

(d) (e) NNLS, rSP-25 (f) TV-fbf, α = 3.2 · 10−4 rSP-25

Figure 4. Snapshots at t = 13 of the results of fbf image reconstruction methods (2.5) for full (cvn) and
subsampled (rSP-25) data.

thus be written as Ct = IMτ ⊗ C̃t, with C̃t being a binary 4× 100 matrix with 4 ones on the
main diagonal and all zeros otherwise, and

(5.1) C̄ =

C1
...
CT


is a row-permutation of IM . We will denote this subsampling strategy by rSP-25.

First, we compute fbf reconstructions (2.5) without any regularizer J (p), i.e., nonnegative
least squares (NNLS), and then using a TV functional (denoted as TV-fbf ). For this, we
use 100 iterations of the accelerated proximal gradient descent introduced in section 4.1.
The proximal step (4.2b) is simply a projection onto the positive orthant for NNLS, while it
amounts to solving a TV-regularized denoising problem in the case of TV (for details, see [1]).
The results are shown in Figure 4 and again demonstrate that while we can obtain a good
reconstruction with fbf methods for full data, they fail for severely subsampled data, similarly
to the motivating example shown in Figure 2.
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(a) phantom p (ground truth) (b) TVTVL2, γ = 1, cnv (c) TVTVL2, γ = 0.1, cnv

(d) (e) TVTVL2, γ = 1, rSP25 (f) TVTVL2, γ = 0.1, rSP-25

Figure 5. Snapshots at t = 13 of the results of the TVTVL2 image reconstruction (3.5) for full (cvn) and
subsampled (rSP-25) data. The parameters α and β were set to the corresponding value of the α used for the
TV-fbf reconstructions in Figure 4, and γ was set to 1 or 0.1.

Next we compute reconstructions with the TVTVL2 model (3.5). An apparent challenge
of this more sophisticated spatio-temporal model that we did not discuss up to now is that it
relies on three regularization parameters: α, β, and γ. For TV-fbf, it is easy to fix the single
parameter α manually: We computed reconstructions for different α for a single frame, and
then used the smallest α that visually removed most noise for all frames, which we will denote
as α̂. For the TVTVL2 model, we start by simply setting α = β = α̂ and γ = 1. Figures 5(b)
and 5(e) show the results of this naive parameter choice. Although the reconstructions for the
subsampled data still suffer from some blurring and artifacts, one can clearly see a significant
improvement compared to the fbf reconstructions in Figure 4. We then varied (α, β, γ) around
this first guess. Figures 5(c) and 5(f) show the effect of decreasing γ to 0.1, which has by far the
biggest positive impact. Figure 6 illustrates the effects of also varying α and β, which leads to
trade-offs between oversmoothing and artifact reduction. We leave a more detailed parameter
study for future work and instead investigate the estimated motion fields. Figure 7 shows
that main features of the motion fields can be reconstructed even from subsampled data. In
particular, the motion fields facilitate the distinction and tracking of different moving objects.
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(a) (α̂, α̂, 1) (b) (α̂, α̂/4, 1) (c) (α̂/4, α̂/4, 1) (d) (α̂/4, α̂/16, 1)

(e) (α̂, α̂, 0.1) (f) (α̂, α̂/4, 0.1) (g) (α̂/4, α̂/4, 0.1) (h) (α̂/4, α̂/16, 0.1)

Figure 6. Snapshots at t = 13 of the results of the TVTVL2 image reconstruction (3.5) for subsampled
(rSP-25) data for different combinations of (α, β, γ). Here, α̂ corresponds to the value of the regularization
parameter used for the TV-fbf reconstructions in Figure 4.

5.2. Experimental 3D phantom. Now, we examine the performance of the methods on
high-resolution 3D reconstructions from dynamic experimental phantom data. As outlined
in the motivation in section 2.2, we use the same data as in [1] to investigate whether the
methods described here can improve upon the fbf reconstructions for Msub = 16 (cf. Figure 2).
However, for this article to be self-contained, we first briefly recap the setup and preprocessing
used.

5.2.1. Setup and preprocessing. The phantom consists of two polythene tubes filled with
100% and 10% ink immersed in a 1% intralipid solution with de-ionized water. The tubes
were interleaved to form a knot with 4 open ends. As shown in Figure 8, while three of the
ends are fixed, one is tied to a motor shaft. We then acquired PA data using an FP scanner
in a stop-motion style: With the whole arrangement at rest, a full, conventional scan was
performed. Then the motor shaft was turned by a fixed angle, which caused the knot to both
move towards the motor and tighten, and the new arrangement was scanned again. In total,
T = 45 frames were acquired. The excitation laser pulses were delivered at a rate of 20Hz,
and had a wavelength of 1064nm and an energy of around 20mJ. For a full, conventional
scan, pressure time courses at 134× 133 locations on a spatial grid with grid size 150µm were
measured for Mt = 625 time points with a temporal resolution of 12ns. For preprocessing, the
data was first clipped to 132 × 132 locations. Then we preformed baseline-correction, band-
pass filtering (0.5–20MHz), and noisy-channel exclusion and clipped the time courses to the
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(a) phantom p (reference) (b) TVTVL2, γ = 1, cnv (c) TVTVL2, γ = 0.1, cnv

(d) color scheme for 2D vectors (e) TVTVL2, γ = 1, rSP25 (f) TVTVL2, γ = 0.1, rSP25

Figure 7. Illustration of the reconstructed motion fields v for the results shown in Figure 5. First, each
vector field is rescaled such that maxi ‖vi‖2 = 1. Then each pixel i is colored by mapping direction and norm
of vi to the color scheme displayed in (d). To further ease the visualization, a colored frame was added to each
motion image to depict the colors corresponding to a vector pointing from the middle of the image to the pixels
of the frame. The motion field for the phantom (a) was computed by solving (4.5b) with the true p as input
and γ = 1, β = 10−6.

time points 10–400. More details can be found in [1]. Note that the signal recorded by the FP
sensor is only proportional to the acoustic pressure. To obtain absolute pressure values, one
would need to calibrate it with an ultrasound transducer prior to the measurement. While
this is necessary to perform quantitative, spectroscopic inference in a second analysis step
[17, 27], we did not do it here and all images shown can be considered in arbitrary units.

For the inversion, we assume a homogeneous sound speed of 1540m s−1 and use a 3D spatial
grid of dimensions 44×264×264 with grid size 75µm (the reason for this upsampling in space
is the oversampling in time, explained in [1]). Reconstructions from the full, conventional
data will again be denoted by “cnv” and will be used to provide a ground truth. The sub-
sampled data is generated using the same scheme (5.1) as for the simulated data, except that
Msub = 16. The subsampling operators are repeated periodically, i.e., CMsub+i = Ci.
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Figure 8. Experimental setup for dynamic, stop-motion phantom: The two polythene tubes are immersed in
a bath of intralipid solution placed on the FP sensor plane (green arrow). Three of the tube ends are fixed (blue
arrows), while one is tied to a motor shaft (red arrows). The excitation laser (yellow arrow) is illuminating
from the top.

5.2.2. Experimental results. We used the same strategy to choose the regularization pa-
rameters as before. For the TVTVL2 model, we choose α = β = α̂, γ = 0.1, where α̂ is the
regularization parameter for TV-fbf that yields a good compromise between removing noise,
subsampling, and image features (cf. Figure 2). Figure 9 shows the results after 20 iterations
(index i) of the accelerated proximal gradient descent. Again, we can see a significant im-
provement when using the simultaneous motion estimation introduced by TVTVL2 compared
to TV-fbf. The motion of our phantom has two dominant components: a translation compo-
nent resulting from pulling the whole knot towards the motor shaft by one tube end, and a
component describing the contraction resulting from the three other tube ends being fixed.
To examine the later component, we suppress the translation by subtracting the mean motion
vector in every frame v̄t = N−1

∑
i (vt)i. Figure 10 shows the remaining parts of the motion.

Both of the fields reconstructed from full and from subsampled data accurately describe the
contraction. The coloring indicates that the tubes move towards each other, i.e., the knot
contracts.

5.3. Optimization. As noted earlier, the results we showed up to now were computed
using ADMM in both the p update (4.5a) and the v update (4.5b) in the TVTVL2-regularized
denoising problem (4.4). In the v update, AMG-CG was used as a least-squares solver. In this
section, we justify this choice retrospectively. Due to the large number of different parameters
ACS, PDHG, and ADMM have, this is not an exhaustive comparison. We tuned all parameters
we do not explicitly mention to best performance and made sure that all methods make best
use of the computational platform we used (Intel Xeon CPU with 12 cores at 2.70GHz, 256GB
RAM). Another problem is caused by the nonconvexity of (4.4), which adds an arbitrary
element to such a comparison: In principle, one would need to test all methods on a large
number of inputs and initializations and compare average performances. Again, we restrict
ourselves here to the two concrete examples we presented in the previous two sections, and in
each of those, we only examine the computation of the TVTVL2-regularized denoising problem
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(a) TV cnv, X mIP (b) TVTVL2 cnv, X mIP

(c) TV cnv, Y mIP (d) TVTVL2 cnv, Y mIP

(e) TV cnv, Z mIP (f) TVTVL2 cnv, Z mIP

(g) TV rSP16, X mIP (h) TVTVL2 rSP16, X mIP

(i) TV rSP16, Y mIP (j) TVTVL2 rSP16, Y mIP

(k) TV rSP16, Z mIP (l) TVTVL2 rSP16, Z mIP

Figure 9. Snapshots at t = 23 of the reconstructed pressure p for full (cvn) and subsampled (rSP-16)
experimental data.
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(a) cnv, slice x = 19 (b) rSP-16, slice x = 19

(c) cnv, slice z = 132 (d) rSP-16, slice z = 132

Figure 10. Snapshots of the nontranslational part of the motion field vNT = v −N−1 ∑
i vi reconstructed

by the TVTVL2 method for full (cvn) and subsampled (rSP-16) experimental data between frames t = 22 and
t = 23. For each image, a single slice along a particular dimension was extracted, and only the components of
the vector field in the remaining two dimensions is depicted here. The resulting 2D vector field is color-coded
in the same way as in Figure 7.

(4.4) arising from the first iteration, i = 1, of the forward-backward splitting (4.2a)–(4.2b).
As p0 = 0, this means we examine p̃t = νATCT f ct as an input in (4.4). All other variables are
initialized to 0. Figure 11 compares the decay of the denoising energy Ẽ(p, v) over computation
time for the four different combinations of using PDHG and ADMM for each of the substeps.
In 2D (Figure 11(a)), the convergence speed of the different combinations is quite similar, and
the different energy levels they reach correspond to the different local minima they end up in.
In 3D, the situation is quite different: Figure 11(b) shows that using PDHG for the v update
(4.5b) leads to prohibitively long computations times. While PDHG performs well for the p
update (4.5a) in this study, we also encountered scenarios where this is not the case. This
observation was the main reason we considered using the more complicated ADMM methods
in the first place: We started off by using PDHG for both subproblems like in [10] based on the
corresponding code available on github.2 While this worked for 2D scenarios, we encountered
severe difficulties for 3D scenarios, which we were only able to overcome by implementing the

2https://github.com/HendrikMuenster/JointMotionEstimationAndImageReconstruction
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0 20 40 60 80 100

-1.2

-1.19

-1.18

-1.17

PDHG+ADMM
ADMM+ADMM

PDHG+PDHG
ADMM+PDHG

solid line    : p update
dashed line: v update

(a) 2D scenario

10 2 10 3 10 4

-0.19844

-0.19842

-0.1984

PDHG+PDHG

ADMM+ADMM
PDHG+ADMM
ADMM+PDHG

solid line    : p update
dashed line: v update

(b) 3D scenario

Figure 11. Comparison of different methods to solve the biconvex optimization problem (4.4) via ACS for
(a) the 2D example described in section 5.1 and (b) T = 10 frames of the 3D scenario described in section 5.2.
The plots display the decay in energy Ẽ(p, v) relative to the initialization with p = 0, v = 0 vs. computational
time in seconds (in logarithmic scale in (b)). Solid parts of the line plots correspond to the p update (4.5a),
and dashed parts to the v update (4.5b). A total of 4 ACS alternations is displayed. “ADMM-PDHG” refers
to using ADMM for the p update and PDHG for the v update.

tailored ADMM implementations presented here.
The main difficulty in both ADMM methods is in solving the least-squares problems (4.16)

and (4.17) by a fast iterative method. As explained in section 4.4, the v update (4.17) can
be solved frame by frame, which allows one to explicitly set up the system matrix and use
efficient preconditioning techniques. To compare them, we set pj+1

t+1 and pj+1
t in (4.17) to the

TV-fbf solutions shown in Figure 2 (note that E = E(pj+1
t )). Figure 12 shows the results,

which demonstrate that for linear systems arising from regularized 3D optical flow estimation,
AMG-CG is a powerful solver. Note, however, that this comes with increased memory costs:
the system matrix is 1.24GB large and the corresponding AMG preconditioner we chose here
is 6.75GB large (there is also a little computational overhead in computing them, but as they
do not change over the whole ADMM scheme, this is typically negligible).

6. Discussion, outlook, and conclusion.

6.1. Discussion and outlook. The results for both simulated and experimental data
clearly demonstrate that a significant improvement of image quality over fbf reconstructions
(2.5) that only use spatial sparsity constraints can be obtained when using a generic spatio-
temporal approach based on simultaneous, sparsity-constrained motion estimation (3.2). Fur-
thermore, the reconstructed motion fields provide additional information on the dynamics
that can be useful for subsequent analysis. While these dynamic parameters look qualita-
tively correct, even from subsampled data, further investigations have to examine whether
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0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

CG
IC(0)-CG
ICT-CG
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IC(0)-MINRES
ICT-MINRES
AMG-CG

(a)

0 20 40 60 80 100 120 140 160 180 200
-14

-12

-10

-8

-6

-4

-2

0

ICT-CG
ICT-MINRES
AMG-CG

(b)

Figure 12. (a) Comparison between different iterative methods and preconditioners to solve (4.17) (see
section 5.3 for the details of the setup). The vertical axis shows the relative residual, while the horizontal axis
shows the computation time on a single CPU core averaged over 10 repetitions. (b) The same plot with only a
subset of the solvers and expanded axis.

they are also quantitatively correct. For this first proof-of-concept study, we used very generic
regularization functionals in space (TV) and a generic motion model based on a simple con-
tinuity equation (3.3). As we already obtained promising results with this rather unspecific
model, we want to investigate the use of tailored motion models that better reflect the real
physics of the underlying motion for a concrete application. In addition, we chose to measure
the distance to the discretized motion PDE in the squared L2-norm; cf. (3.4). While this is
computationally advantageous, studies generalizing this to Lp-norms, e.g., for p = 1, have
shown promising results and directions for future research [20, 10, 9].

The main drawback of the concrete TVTVL2 model we used here (3.5) is that it leads
to a challenging, large-scale biconvex optimization problem. Even with the tailored ADMM
schemes we developed (cf. section 4.4), computing the 3D reconstructions presented in sec-
tion 5.2 took 4 days and 6 hours on a powerful workstation (Intel Xeon CPU with 12 cores at
2.70GHz, 256GB RAM, Tesla K40 GPU) compared to 6 hours and 34 minutes for the TV-fbf
reconstruction. There are several possibilities to close this gap:

• As a simple block alternation, the ACS scheme can be modified by introducing tech-
niques like overrelaxation, inertia methods, or line search.
• For solving substep (4.5b), developing an ADMM scheme that uses an algebraic multi-

grid preconditioner was crucial. However, the high memory demand of this approach
limits the number of frames which can be computed in parallel. Using geometric
multigrid preconditioning instead could keep the fast convergence (cf. Figure 12) while
requiring much less memory [8].
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• If the nonsmooth sparsity constraints are approximated by smooth functionals such
as the Huber functional, fast, monotone solvers can be used to solve (4.5a) and (4.5b);
see, e.g., [61].

Another potential problem is that the ACS scheme presented in section 4.2 will only converge
to a local minimum of the biconvex variational energy (3.5). Figure 11 showed that already
the choice of the convex optimization scheme to solve (4.5a) and (4.5b) can influence which
local minimum is found. Other parameters like the accuracy with which these problems are
solved, how the schemes are initialized, whether the scenario is 2D or 3D, etc., have an often
nontrivial influence as well. In future work, we plan to examine these issues in a systematic
way.

From a modeling perspective, the simple optical flow discretization (3.4) we chose here
can only resolve small motions: If the support of pt+1−pt and ∇±pt do not overlap, vt cannot
minimize ‖pt+1 − pt + (∇pt) · vt‖22. An extension of the framework to estimate large-scale
motions is described in [21].

This article focused on the mathematical and computational aspects of 4D PAT. We
therefore assumed here that there is a generic binning of the sequence of acoustic measurements
(2.2) into temporal bins during which the target can be considered static (and used phantoms
for which this holds true) and only compared image quality for a fixed subsampling factor.
However, in reality, sequential scanners measure a single time pressure course for every pulse
of the excitation laser. The temporal binning of this stream of acquisitions leads to a more
complicated interplay between artifacts arising from subsampling, motion blur, and the spatio-
temporal continuity imposed by the variational model. We will examine this issue more closely
in forthcoming work that will focus on the technical and practical aspects of 4D PAT with
novel acoustic scanners [41, 40]. For the application to in-vivo imaging, additional challenges
need to be addressed, such as heterogeneous tissue properties.

6.2. Conclusion. In this work, we extended our earlier results on using compressed sensing
techniques to accelerate high-resolution 3D PAT acquisition with sequential scanners [1]. We
demonstrated that in the context of dynamic PAT, another substantial increase of image qual-
ity can be obtained by using a generic variational framework that couples sparsity-constrained
image reconstruction and simultaneous, sparsity-constrained motion estimation. In particu-
lar, we considered a motion model based on the popular optical flow equation and used the
total variation functional as sparsity constraints. For this, promising results for simulated and
experimental data were obtained in a proof-of-concept study that justifies further research in
this field. A major challenge for using these variational approaches for large-scale 4D inverse
problems with complicated forward operators are the computational demands of the corre-
sponding optimization routines. We described and examined a set of related methods that
can be used as a starting point to implement similar strategies for other applications.

Appendix A. Proximal operators. An extensive overview on how to use and compute
proximal operators (4.1) is given in [16]. The splits we use in this work have been introduced
such that the functionals for which we have to compute the proximal operators decouple over
space and time into the sum of 1- or d-dimensional functionals φ(x) or φ(x1, . . . , xd). As such,
all proximal operators can be computed explicitly and pointwise in space and time; i.e., for
an image/vector field sequence x ∈ RNT /x ∈ RdNT , the proximal operators can be computed
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by solving NT subproblems of dimension 1/d using explicit formulae.
For G(x) in (4.9b) this leads to

(A.1) φ(x) = χ+(x) + (x− z)2 , proxαφ(x̃) = max

(
0, αz +

x̃

α+ 1

)
.

The proximal operator for the functional G(x) in (4.10b) is a d-dimensional quadratic problem:

φ(x) =
1

2
(z + c1x1 + · · ·+ cdxd)

2 ,(A.2)

proxαφ(x̃) = argmax
x∈Rd

α2
(
z +

d∑
i

cixi

)2

+
1

2

d∑
i

(xi − x̃i)2
 .(A.3)

Its optimality condition leads to a d-dim linear system, which we show here for d = 3:

(A.4)

(1 + αc21) αc1c2 αc1c3
αc2c1 (1 + αc22) αc2c3
αc3c1 αc3c2 (1 + αc23)

x1x2
x3

 =

x̃1 − αc1zx̃2 − αc2z
x̃3 − αc3z

 .
It can be solved explicitly for d = 2, 3, and for its use within the PDHG scheme, most relevant
terms can be precomputed.

The `1-norms involved in the isotropic TV terms are actually global `1-norms of the local
`2-norms of the gradient vectors. For a gradient field of image z represented as y ∈ RdN

indexed as yxi,j for derivative direction and location index, respectively, we have

∥∥∇+z
∥∥
1

=
N∑
j

√√√√ d∑
i

y2xi,j =⇒ φ(x) =
√
x1 + · · ·+ xd ,(A.5)

proxαφ(x̃) =

{
max(φ(x̃)− α, 0) x̃/φ(x̃) if φ(x̃) > 0 ,

0 else .
(A.6)

With this, one can easily build the proximal operator for (4.10c) and (4.15c).
Next we need the convex conjugates F∗(y) and their proximal mappings in some places.

For the isotropic TV term, we have

(A.7) F(y) = α ‖y‖1 = α
N∑
j

√√√√ d∑
i

y2xi,j , F∗(y) =
N∑
j

αχ[0,1]

 1

α

√√√√ d∑
i

y2xi,j

 ,

which means that F∗(y) is 0 if all gradient vectors have an amplitude that is smaller than α,
and ∞ otherwise; see, e.g., [13]. As such, the proximal operator is just a projection:

(A.8) φ(y) = χ[0,1]

 1

α

√√√√ d∑
i

y2xi

 =⇒ proxβφ(ỹ) =
ỹ

max

(
1, 1α

√∑d
i ỹ

2
xi

) .
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The second part of F(y) in (4.10b) is γ̃
2 ‖y2‖

2
2. Its convex conjugate is given by 1

2γ̃ ‖y2‖
2
2 and

the proximal mapping can be computed using

(A.9) φ(y) =
y2

2γ̃
=⇒ proxαφ(ỹ) =

γ̃

γ̃ + α
ỹ .
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