1,294 research outputs found

    Temporal shape super-resolution by intra-frame motion encoding using high-fps structured light

    Full text link
    One of the solutions of depth imaging of moving scene is to project a static pattern on the object and use just a single image for reconstruction. However, if the motion of the object is too fast with respect to the exposure time of the image sensor, patterns on the captured image are blurred and reconstruction fails. In this paper, we impose multiple projection patterns into each single captured image to realize temporal super resolution of the depth image sequences. With our method, multiple patterns are projected onto the object with higher fps than possible with a camera. In this case, the observed pattern varies depending on the depth and motion of the object, so we can extract temporal information of the scene from each single image. The decoding process is realized using a learning-based approach where no geometric calibration is needed. Experiments confirm the effectiveness of our method where sequential shapes are reconstructed from a single image. Both quantitative evaluations and comparisons with recent techniques were also conducted.Comment: 9 pages, Published at the International Conference on Computer Vision (ICCV 2017

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing

    Event-based Vision for Early Prediction of Manipulation Actions

    Full text link
    Neuromorphic visual sensors are artificial retinas that output sequences of asynchronous events when brightness changes occur in the scene. These sensors offer many advantages including very high temporal resolution, no motion blur and smart data compression ideal for real-time processing. In this study, we introduce an event-based dataset on fine-grained manipulation actions and perform an experimental study on the use of transformers for action prediction with events. There is enormous interest in the fields of cognitive robotics and human-robot interaction on understanding and predicting human actions as early as possible. Early prediction allows anticipating complex stages for planning, enabling effective and real-time interaction. Our Transformer network uses events to predict manipulation actions as they occur, using online inference. The model succeeds at predicting actions early on, building up confidence over time and achieving state-of-the-art classification. Moreover, the attention-based transformer architecture allows us to study the role of the spatio-temporal patterns selected by the model. Our experiments show that the Transformer network captures action dynamic features outperforming video-based approaches and succeeding with scenarios where the differences between actions lie in very subtle cues. Finally, we release the new event dataset, which is the first in the literature for manipulation action recognition. Code will be available at https://github.com/DaniDeniz/EventVisionTransformer.Comment: 15 pages, 9 figure

    Visual analysis and synthesis with physically grounded constraints

    Get PDF
    The past decade has witnessed remarkable progress in image-based, data-driven vision and graphics. However, existing approaches often treat the images as pure 2D signals and not as a 2D projection of the physical 3D world. As a result, a lot of training examples are required to cover sufficiently diverse appearances and inevitably suffer from limited generalization capability. In this thesis, I propose "inference-by-composition" approaches to overcome these limitations by modeling and interpreting visual signals in terms of physical surface, object, and scene. I show how we can incorporate physically grounded constraints such as scene-specific geometry in a non-parametric optimization framework for (1) revealing the missing parts of an image due to removal of a foreground or background element, (2) recovering high spatial frequency details that are not resolvable in low-resolution observations. I then extend the framework from 2D images to handle spatio-temporal visual data (videos). I demonstrate that we can convincingly fill spatio-temporal holes in a temporally coherent fashion by jointly reconstructing the appearance and motion. Compared to existing approaches, our technique can synthesize physically plausible contents even in challenging videos. For visual analysis, I apply stereo camera constraints for discovering multiple approximately linear structures in extremely noisy videos with an ecological application to bird migration monitoring at night. The resulting algorithms are simple and intuitive while achieving state-of-the-art performance without the need of training on an exhaustive set of visual examples
    • …
    corecore