
c© 2016 Jia-Bin Huang

VISUAL ANALYSIS AND SYNTHESIS WITH PHYSICALLY GROUNDED
CONSTRAINTS

BY

JIA-BIN HUANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Narendra Ahuja, Chair
Professor Thomas S. Huang
Professor Minh N. Do
Professor Mark Hasegawa-Johnson
Associate Professor Derek Hoiem

ABSTRACT

The past decade has witnessed remarkable progress in image-based, data-driven
vision and graphics. However, existing approaches often treat the images as pure
2D signals and not as a 2D projection of the physical 3D world. As a result, a
lot of training examples are required to cover sufficiently diverse appearances and
inevitably suffer from limited generalization capability. In this thesis, I propose
inference-by-composition approaches to overcome these limitations by modeling
and interpreting visual signals in terms of physical surface, object, and scene.
I show how we can incorporate physically grounded constraints such as scene-
specific geometry in a non-parametric optimization framework for (1) revealing
the missing parts of an image due to removal of a foreground or background ele-
ment, (2) recovering high spatial frequency details that are not resolvable in low-
resolution observations. I then extend the framework from 2D images to handle
spatio-temporal visual data (videos). I demonstrate that we can convincingly fill
spatio-temporal holes in a temporally coherent fashion by jointly reconstructing
the appearance and motion. Compared to existing approaches, our technique can
synthesize physically plausible contents even in challenging videos. For visual
analysis, I apply stereo camera constraints for discovering multiple approximately
linear structures in extremely noisy videos with an ecological application to bird
migration monitoring at night. The resulting algorithms are simple and intuitive
while achieving state-of-the-art performance without the need of training on an
exhaustive set of visual examples.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

This thesis would not have been possible without the support and guidance from
many people around me during my PhD.

I want to first thank my thesis advisor, Prof. Narendra Ahuja, for his patience
and wisdom. I have learned a lot from him about how to ask important questions
and conduct high-quality research.

My gratitude goes to four other members of my thesis commitee, Prof. Derek
Hoiem, Prof. Minh Do, Prof. Mark Hasegawa-Johnson, and Prof. Thomas S.
Huang. All of them have provided insightful and valuable comments that guide
me to improve the thesis.

During my PhD study, I have been fortunate to have the opporunity to work
with several excellent researchers, including Dr. Sing Bing Kang, Dr. Johannes
Kopf, Dr. Zhengyou Zhang, Dr. Zicheng Liu, Dr. Qin Cai, Dr. Leonid Sigal, Dr.
Sung Ju Hwang, and Dr. Rich Caruana.

Also, I would like to thank my labmates over the years, including John, Bernard,
Sanketh, Esther, Emre, Xianbiao, Qingxiong, Hsien-Ting, Abhishek, Avinash,
Huiguang, and Shengnan. I enjoyed having you around in the computer vision
and robotics laboratory.

Last but not least, I express my sincere gratitude to my family: my dearest dad,
mom, brother, and wife for their unconditioned love and support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 IMAGE COMPLETION USING PLANAR STRUCTURE
GUIDANCE . 4
2.1 Introduction . 4
2.2 Previous Work . 6
2.3 Overview . 8
2.4 Detecting Planar Surfaces and Regularity 9

2.4.1 Planes . 9
2.4.2 Regularity extraction . 11

2.5 Guided Image Completion . 14
2.5.1 Objective function . 14
2.5.2 Appearance cost . 14
2.5.3 Guidance cost . 16
2.5.4 Structure guided sampling and propagation 17

2.6 Results . 18
2.6.1 Comparison with the state-of-the-art methods 18
2.6.2 Comparisons on Natural Scenes 19
2.6.3 Failure modes . 20

2.7 Concluding Remarks . 20

CHAPTER 3 SINGLE IMAGE SUPER-RESOLUTION WITH TRANS-
FORMED SELF-EXEMPLARS . 25
3.1 Introduction . 25
3.2 Related Work . 27
3.3 Overview . 28
3.4 Nearest Neighbor Field Estimation 30

3.4.1 Objective function . 30
3.4.2 Inference . 33

3.5 Experiments . 33
3.6 Concluding Remarks . 41

v

CHAPTER 4 TEMPORALLY COHERENT COMPLETION OF DY-
NAMIC VIDEO . 43
4.1 Introduction . 43
4.2 Related Work . 45
4.3 Overview . 47
4.4 Completion as Optimization . 49

4.4.1 Problem formulation . 50
4.4.2 Objective function . 50
4.4.3 Optimization . 51
4.4.4 Initialization . 55
4.4.5 Implementation details 55

4.5 Results . 56
4.6 Conclusions . 60

CHAPTER 5 DETECTING MIGRATING BIRDS AT NIGHT 64
5.1 Introduction . 64
5.2 Related Work . 68
5.3 Overview . 69
5.4 Stereo-based Bird Detection . 70

5.4.1 Bird trajectory modeling 70
5.4.2 Stereo image rectification 70
5.4.3 Foreground detection . 72
5.4.4 Geometric verification 73
5.4.5 Trajectory verification 74

5.5 Experimental Results . 75
5.5.1 Implementation details 75
5.5.2 Evaluation on real videos 76
5.5.3 Discussion . 78

5.6 Conclusions . 79

CHAPTER 6 CONCLUSIONS . 80

REFERENCES . 81

vi

LIST OF TABLES

3.1 Quantitative evaluation on Urban 100 and BSD 100 datasets.
Red indicates the best and blue indicates the second best per-
formance. 39

4.1 Comparisons with state-of-the-art video completion algorithms.
The cells highlighted in red indicate limitations of an algo-
rithm. The optimization techniques used in [85] and our ap-
proach that alternate between patch search and patch voting
steps can be viewed as a “Hard EM” algorithm for estimating
maximum-likelihood solution [16]. The visibility assumption
refers to each missing pixel needing to be visible in at least
one frame. 44

5.1 Quantitative performance . 76

vii

LIST OF FIGURES

2.1 Our image completion algorithm automatically extracts mid-
level constraints (perspective and regularity) and uses them to
guide the filling of missing regions in a semantically mean-
ingful way. Our method is capable of completing challenging
scenes such as multiple building facades (left), strong perspec-
tive distortion (middle) and large regular repetitive structures
(right). We significantly outperform three representative state-
of-the-art image completion techniques for these images (see
Figure 2.2). Image credits (left to right): Flickr users micromegas,
Theen Moy, Nicu Buculei. 5

2.2 Limitations of current state-of-the-art methods. Compare these
results with ours in Figure 2.1. 6

2.3 Vanishing point detection from a man-made environment. The
red, green, and blue line segments correspond to three detected
vanishing points, respectively. 10

2.4 Plane localization in the known region using support line seg-
ments from pairs of vanishing points. In the hole region we
assign plane probabilities in a different manner, as shown in
Figure 2.5. 11

2.5 Visualization of plane posterior probability in the known re-
gion, and propagation into the hole region. The posterior prob-
abilities of the three recovered planes are shown in blue, green
and red. (Note that the fronto-parallel plane is not shown
here.) The boundary pixels between the known and unknown
regions are shown in white. In the hole region every pixel is
assigned the plane probabilities of the nearest boundary pixel. . . 12

viii

2.6 Detecting regularity from modes of displacement vectors be-
tween matched features. (a) and (b) show the input image and
matched features. (c) and (e) (on the left) show the detected
modes and a visualization of candidate source patch locations
and shapes for a single target patch (in white) in the affine
rectified space. The repetitive structure is clearly revealed.
(d) and (f) show the corresponding illustrations for the fronto-
parallel space. Here, the displacements are scattered and do
not reveal any structure. 21

2.7 Visualization of the directional cost given a target patch (shown
in white). The dark regions indicate lower costs. The direc-
tional cost encourages finding matches along the two domi-
nant, orthogonal directions, leading to semantically more plau-
sible completion results. 22

2.8 Comparisons with representative state-of-the art algorithms.
Image credits: Flickr users Daniel Foster, Moyan Brenn, Savannah
Roberts, Remon Rijper, Chris Ford, and marie-ll. 23

2.9 Image completion on images of natural scenes. 24
2.10 Failure examples. First two rows: our algorithm has difficulty

in finding the good demarcation lines when the missing re-
gions are too large. The last row: our method may overcon-
strain the patch synthesis with falsely detected planes, which
leads to artifacts near the bushes. Image credits: Flickr users
Reto Fetz, David Barrie, and brokenthoughts. 24

3.1 Examples of self-similar patterns deformed due to local shape
variation, orientation change, or perspective distortion. 26

3.2 Comparison with external dictionary and internal dictionary
(self-similarity) approaches. Middle row: Given LR image I.
Our method allows for geometrically transforming the target
patch from the input image, while searching for its nearest
neighbor in the downsampled image. The HR version of the
best match found is then pasted on to the HR image. This is
repeated for all patches in the input image I. 29

ix

3.3 Examples demonstrating the need for using transformed self-
exemplars in our self-similarity based SR. Red boxes indicate
a selected target patch (to be matched) in the input LR image
I. We take the selected target patch, remove its mean, and
find its nearest neighbor in the downsampled image ID. We
show the error found while matching patches in ID in the sec-
ond column. Blue boxes indicate the nearest neighbor (best
matched) patch found among only translational patches, and
green boxes indicate the nearest neighbor found under the pro-
posed (a) affine transformation and (b) planar perspective trans-
formation. In the third and fourth columns we show the matched
patches Q in the downsampled images ID and their HR version
QH in the input image I. 35

3.4 (a) Vanishing point detection and (b) Visualization of posterior
plane probability. 36

3.5 Visual comparison for 4x SR. Our method is able to explicitly
identify perspective geometry to better super-resolve details of
regular structures occurring in various urban scenes. 36

3.6 Visual comparison for 4x SR. Our algorithm is able to super-
resolve images containing multiple planar structures. Image
credit: Flickr user thelearningcurvedotca. 37

3.7 Visual comparison for 4x SR. Our algorithm is able to better
exploit the regularity present in urban scenes than other meth-
ods. Image credit: Flickr user jimnix. 37

3.8 Visual comparison for 3x SR. Our result produces sharper
edges than other methods. Shapes of fine structures (such as
the horse’s ears) are reproduced more faithfully in our result. . . . 37

3.9 Visual comparison for 3x SR. Our result shows slightly sharper
reconstruction of the beaks. 38

3.10 Effect of iterations. First row: HR and the SR results on 1, 2,
and 5 iterations. Second row: the visualization of the nearest
neighbor field. Third row: the patch matching cost. 41

3.11 Quantitative performance as a function of patch size. 41
3.12 A failure case with SR factor 4x. 42

x

4.1 Algorithm pipeline. Given the input video and user-selected
mask, we start with computing the flow fields. After initial-
ization (Sec 4.4.4) at the coarsest level, in each scale our al-
gorithm iterates through three steps (Sec 4.4.3): (a) nearest
neighbor field estimation: minimize the color spatial cost by
finding dense approximate nearest neighbor source patches for
all target patches; (b) color update: minimize the color spatial
and color temporal cost so that the synthesized colors are both
spatially and temporally coherent; and (c) flow update: refine
the forward and backward flow fields. We then upsample the
solution of the nearest neighbor field and flow fields to the next
finer level. The color at the finer level is estimated by spatial
patch voting (using the upsampled nearest neighbor field). 45

4.2 Limitation of using spatio-temporal patches/segments. We use
a frame from sequence DANCE-TWIRL and synthetically gen-
erate translational motion along the x-axis. (a) A spatio-temporal
x-t slice of the sequence with mask overlay. (b) Using spa-
tiotemporal patches (2D patches here) is not able to properly
fill the missing region because the motion between the source
(yellow) and target (green) regions are not consistent. (c) Us-
ing spatial patches (1D slices here), on the other hand, offers
greater flexibility by adapting to the local flow. 49

4.3 Flow-guided temporal propagation. (a) The direct extension
of the PatchMatch algorithm [17] to 3D [85]. Similar to the
spatial propagation case in PatchMatch, candidate patches are
propagated along the temporal axis. (b) The proposed flow-
guided temporal propagation relaxes the constraints of axis-
aligned propagation and uses local forward and backward flow
vectors for accurate prediction of the candidate source patch
position and transformation. 52

4.4 Flow-guided color synthesis. For all target pixels, we find their
temporal neighbors in the source regions by traversing the es-
timated flow vectors. We then use these temporal neighbors to
enforce temporal coherence. 54

4.5 Object removal from video sequences CAMEL, BREAKDANCE,
KITE-SURF, HORSEJUMP-LOW, and FLAMINGO. For each in-
put sequence (odd row), we show representative frames with
mask overlay. We show the completed results in even rows. . . . 58

4.6 Comparison to [85] on sequences BMX-BUMPS, SWING, and
TENNIS. These sequences are challenging due to the motion
blur from the fast camera motion. Our algorithm seamlessly
removes the dynamic object under shaky motion. Newson et
al. [85], on the other hand, produces visible artifacts spatially
and fails to generate temporally coherent results. 59

xi

4.7 Comparison to segmentation-based methods for background [86]
and foreground [87] inpainting on sequences from their paper.
Our approach achieves similar visual quality without the need
of manually segmenting out the dynamic foreground objects
in the scene or manually specifying search regions. 61

4.8 Temporally coherent completion. We take the sequence CAMEL

and visualize the completion results using spatiotemporal x-t
slice of the video along the profile (yellow line) in (a). (b)
The x-t slice of the video with mask marked as red. (c) Re-
sults from [85]. (d) Our results. We can clearly see that the
completion results in (c), while seeming locally plausible, fail
to maintain long-term temporal consistency. The combination
of patch-based optimization and dense flow field allows us to
preserve the temporal continuity with high spatial frequency. . . . 62

4.9 Contribution of different components of the proposed algo-
rithm to the final results. (b) Our result. (c) Without patch-
based synthesis, the algorithm cannot hallucinate regions that
are not visible in the image sequence (see the blue box). (d)
Disabling the flow update introduces visible artifacts. 62

4.10 The effect of using Poisson blending for compensating the
photometric inconsistency. (a) Input + hole. (b) Our result
w/o blending. (c) Our result with Poisson blending. 63

4.11 The advantage of video completion over image completion al-
gorithms. Our video completion algorithm faithfully recover
the missing region by taking all the frames into consideration. . . 63

4.12 Our algorithm may fail to hallucinate large missing areas. Here
the artifacts are visible with a closer examination. 63

5.1 An example of automatic bird detection in stereo sequences.
Our system takes stereo videos of the night sky as inputs,
detects migrating birds in flight, and infers their orientation,
speed, and altitude in very low SNR. 65

xii

5.2 Detecting migrating birds from noisy image sequences. Each
row shows a set of frames from a video sequence. From top
to bottom, the sequences shown here have increasing levels
of difficulty. Most of the bright spots in the images are stars.
Color boxes indicate the birds in the first and the last frame
of each sequence. Because of the low SNR and small size
of high-flying birds (1-2 pixels), detection is very difficult,
and often impossible, when looking at individual frames. It
is only by detecting motion in the video stream that the human
perceptual system can identify and track most birds. Simi-
larly, the detection algorithm can only detect the more dif-
ficult high-flying birds by looking at the full video sequence
and by simultaneously using stereo constraints from both cam-
eras. Results are best viewed on a high-resolution display with
adequate zoom level. 66

5.3 The difficulty of detection based on local image patches. (a)
16 cropped local image patch along a manually labeled bird
trajectory. (b) 16 cropped random background patches. These
patches are virtually indistinguishable by the naked eye. 67

5.4 Overview of the bird detection algorithm. Our algorithm con-
sists of three main modules: (a) Foreground detection: us-
ing statistical background modeling for moving object detec-
tion. (b) Geometric verification: RANSAC-based line fitting
with stereo vision constraints. The three red boxes indicate
the selected hypothetical inliers. This strategy naturally han-
dles disparity estimation and offers computational efficiency
by rejecting a large number of physically implausible config-
urations. (c) Trajectory verification: with the coarse 3D line
fitting, we integrate weak signals along the predicted trajec-
tory for both videos to verify if there is a bird. To account
for birds flying at time-varying speed and directions, we in-
terpret the motion compensated local image patch as a “part”
of an object and use the generalized distance transform [117]
for handling such spatial uncertainty. We detect the birds by
thresholding the final response map. 68

5.5 Stereo image rectification using star registration. (a) Corre-
spondence, (b) Stereo image rectification. 71

5.6 Foreground detection. (a) Sample foreground detection plots.
Flying birds in a video appear like curved lines in the spatio-
temporal volume. In this scattered plot, there are three curved
lines. (b) Projection of foreground detection onto X-Y, X-T,
and Y-T planes. 72

xiii

5.7 Trajectory verification. Given a 3D line model, we gather the
spatial patches along the coarse trajectory from T = 1 (when
the bird enters the frame) to T = N (when the bird leaves the
frame). These local responses are noisy and misaligned due
to time-varying speed and directions. We transform the re-
sponses to account for spatial uncertainty. 74

5.8 Precision and recall of four variants of the proposed trajectory
verification approach on real videos. 77

5.9 Detection results on real videos. Our system can handle di-
verse scenarios, e.g., single, multiple birds, birds flying paral-
lel with each other, or birds flying at very different altitudes. . . . 78

5.10 Interesting cases: (a) A false positive detection due to a mov-
ing cloud. (b) A false positive detection due to noise. (c) A
true negative — the moving blob is an insect. Our system uses
the estimated altitude to avoid confusion with high-flying ob-
jects (e.g., above 3000 meters) such as satellites or planes and
low-flying objects (e.g., under 50 meters) such as insects. 79

xiv

CHAPTER 1

INTRODUCTION

Inverse problems in image and video processing such as image denoising, super-
resolution, inpainting, and motion deblurring have been fundamental and long-
standing problems in computer vision and image processing. Developing an ef-
fective approach for these inverse problems will have great impact in both en-
gineering and scientific fields as these problems naturally emerge from various
imaging scenarios.

Learning and leveraging good natural image priors arguably is the most crit-
ical step for addressing these ill-conditioned or under-determined linear inverse
problems. During the past several decades, a variety of natural image priors
have been proposed, including smoothness, total variation, sparse modeling, and
self-similarity. In particular, data-driven priors learned from large external im-
age datasets using advanced machine learning algorithms have demonstrated great
success in many challenging tasks.

On the other hand, the internal fractal structures of natural images have been
exploited as a strong image-specific prior. A classical example of such prior is the
non-local means approach to image denoising. The key idea behind a non-local
image processing algorithm is that natural image patches tend to re-occur many
times within the same image. Therefore, grouping similar patches together al-
lows one to accurately reconstruct the underlying clean signal by simply averaging
them. A more sophisticated collaborating filtering algorithm based on non-local
means has achieved state-of-the-art performance in a wide range of problems.

However, all these priors treat the observed image as a pure 2D signal. They
are agnostic to the fact that an image is a perspective projection of the physical
3D world. This substantially limits the ability to use internal natural priors for
solving challenging cases.

In this thesis, we investigate the use of mid-level representation of the scene
for tackling these ill-posed problems induced from the imaging process. The core
idea is to model and interpret image and visual signals in terms of a physical

1

surface, scene, and motion. In particular, we extract mid-level representation of
the scene, such as plane localization, translational symmetry detection, and per-
pixel dense motion representation. We then make use of the inferred information
to guide the low-level patch-based optimization algorithm in a unified optimiza-
tion framework. We have shown that such mid-level representation greatly helps
improve the performance of several important problems, including image comple-
tion, image super-resolution, and video completion.

This thesis addresses the following four major topics.

Image Completion [1] We propose a method for automatically guiding patch-
based image completion using mid-level structural cues. Our method first esti-
mates planar projection parameters, softly segments the known region into planes,
and discovers translational regularity within these planes. This information is then
converted into soft constraints for the low-level completion algorithm by defining
prior probabilities for patch offsets and transformations. Our method simultane-
ously handles multiple planes, and in the absence of any detected planes falls back
to a baseline fronto-parallel image completion algorithm. We validate our tech-
nique through extensive comparisons with state-of-the-art algorithms on a variety
of scenes.

Single Image Super-Resolution [2] Self-similarity based super-resolution (SR)
algorithms are able to produce visually pleasing results without extensive training
on external databases. Such algorithms exploit the statistical prior that patches in
a natural image tend to recur within and across scales of the same image. How-
ever, the internal dictionary obtained from the given image may not always be
sufficiently expressive to cover the textural appearance variations in the scene.
We extend self-similarity based SR to overcome this drawback. We expand the
internal patch search space by allowing geometric variations. We do so by explic-
itly localizing planes in the scene and using the detected perspective geometry to
guide the patch search process. We also incorporate additional affine transforma-
tions to accommodate local shape variations. We propose a compositional model
to simultaneously handle both types of transformations. We extensively evaluate
the performance in both urban and natural scenes. Even without using any exter-
nal training databases, we achieve significantly superior results on urban scenes,
while maintaining comparable performance on natural scenes as other state-of-
the-art SR algorithms.

2

Temporally Coherence Video Completion We present an automatic video com-
pletion algorithm that synthesizes missing regions in videos in a temporally coher-
ent fashion. Our algorithm can handle dynamic scenes captured using a moving
camera. State-of-the-art approaches have difficulties handling such videos be-
cause viewpoint changes cause image-space motion vectors in the missing and
known regions to be inconsistent. We address this problem by jointly estimating
optical flow and color in the missing regions. Using pixel-wise forward/backward
flow fields enables us to synthesize temporally coherent colors. We formulate the
problem as that of non-parametric patch-based optimization. We demonstrate our
technique on numerous challenging videos.

Video-based Bird Detection [3] Bird migration is a critical indicator of envi-
ronmental health, biodiversity, and climate change. Existing techniques for moni-
toring bird migration are either expensive (e.g., satellite tracking), labor-intensive
(e.g., moon watching), indirect and thus less accurate (e.g., weather radar), or in-
trusive (e.g., attaching geolocators on captured birds). We present a vision-based
system for detecting migrating birds in flight at night. Our system takes stereo
videos of the night sky as inputs, detects multiple flying birds and estimates their
orientations, speeds, and altitudes. The main challenge lies in detecting flying
birds of unknown trajectories under high noise level due to the low-light environ-
ment. We address this problem by incorporating stereo constraints for rejecting
physically implausible configurations and gathering evidence from two (or more)
views. Specifically, we develop a robust stereo-based 3D line fitting algorithm for
geometric verification and a deformable part response accumulation strategy for
trajectory verification. We demonstrate the effectiveness of the proposed approach
through quantitative evaluation of real videos of birds migrating at night collected
with near-infrared cameras.

Other Work not in the Thesis During my doctorial study, I also visited prob-
lems other than exploiting physically grounded constraints [4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. Interested readers can refer to these publications for more details.

3

CHAPTER 2

IMAGE COMPLETION USING PLANAR
STRUCTURE GUIDANCE

2.1 Introduction

Replacing or filling regions in images with plausibly synthesized content is a com-
mon image editing operation. This task, known as image completion, is used in
applications ranging from the removal of unwanted objects in personal photos to
movie post-production. It is also an important step in many graphics algorithms,
e.g., for generating a clean background plate or reshuffling image contents.

While much progress has been made, image completion remains a challenging
problem. This is because some higher level understanding of the scene is often
required. The state-of-the-art automatic algorithms typically rely on low-level
cues; they synthesize the missing region as a field of overlapping patches copied
from the known region [16]. Here, they attempt to synthesize an image that locally

appears like the known input everywhere, and such that overlapping patches agree
as much as possible. Barnes et al. [17] showed how this algorithm can be sped up
using a random search and propagation scheme.

Most of these algorithms have two important limitations. First, since they only
directly copy translated patches from the input, the performance degrades with
scenes that are not fronto-parallel. They would not be able to effectively handle
the perspective foreshortening as shown in Figure 2.1.1 The other limitation is in
the tendency of converging to local minima, due to the strong non-convexity of the
objective. This second problem is somewhat alleviated by applying the algorithm
in a coarse-to-fine manner.

Recent approaches handle the fronto-parallel limitation by considering patch
transformations such as rotation, scale, and gain/bias color adjustments [18, 14].
While this improves the algorithm’s ability to complete general scenes, it results in
an exponential increase of the search space from 2 degrees of freedom per output

1All the images in the thesis are used under Creative Commons license.

4

Figure 2.1: Our image completion algorithm automatically extracts mid-level
constraints (perspective and regularity) and uses them to guide the filling of
missing regions in a semantically meaningful way. Our method is capable of
completing challenging scenes such as multiple building facades (left), strong
perspective distortion (middle) and large regular repetitive structures (right). We
significantly outperform three representative state-of-the-art image completion
techniques for these images (see Figure 2.2). Image credits (left to right): Flickr
users micromegas, Theen Moy, Nicu Buculei.

pixel up to 8 (or more). This adds many local minima to the solution space and
hence worsens the tendency of giving rise to bad configurations. This effect can
be observed in Figures 2.2, 2.8, 2.9, and 2.10.

In this chapter, we show how image completion can be substantially improved
by automatically guiding the low-level synthesis algorithm using mid-level struc-

tural analysis of the known region. Specifically, we estimate planar projection
parameters (i.e., the local perspective slope of the scene) as well as translational
regularity in the affine rectified domain (explained later in Section 2.4.1); this
information is used to constrain the search space in the missing region. These
constraints are cast as a prior probability of the patch transformation parameters.
As a result, we can use an even richer patch transformation model than previous
work (i.e., full homographies) since our constraints effectively reduce this high
dimensional model to a lower degree subspace.

We handle multiple detected planes (that may be perspectively distorted) by
using a soft proximity-based weighting scheme and relying on the power of the
low-level algorithm for finding good transitions. Note that while we model the
world as piecewise planar, we are not just restricted to such scenes: just as the

5

Photoshop Content Aware Fill

Image Melding Results [14]

Statistics of Patch Offset Results [15]

Figure 2.2: Limitations of current state-of-the-art methods. Compare these
results with ours in Figure 2.1.

original completion algorithm was not limited to fronto-parallel scenes, ours al-
lows significant deviation from the piecewise planar model, as evidenced by our
results.

Our algorithm significantly improves performance for challenging man-made
scenes such as those of architecture and indoors. In the absence of any detected
structural cues, e.g., for most natural landscape images (Figure 2.9), our algo-
rithm falls back to standard unconstrained completion, i.e., our implementation of
Wexler et al.’s algorithm [16]. We validate our method by comparing against state-
of-the-art algorithms. We show numerous representative results in Section 2.6.

2.2 Previous Work

In this section, we review representative techniques for image completion. Image
completion techniques can be roughly categorized as diffision-based or example-
based.

6

Diffusion-based techniques fill in small or narrow holes by propagating ad-
jacent image structures. This class of techniques is pioneered by Bertalmio et
al. [19] and later extended by Ballester et al. [20] and Bertalmio et al. [21]. These
techniques are less effective in handling large missing regions due to their inability
to synthesize textures.

By comparison, example-based methods exploit redundancy in natural images
for filling missing pixels. They are based on example-based texture synthesis
methods [22, 23]. Variants of these methods include using structure-based priority
[24], deterministic EM-like schemes [25, 16, 17], or MRF models with patches as
labels, which can be solved efficiently using belief propagation [26] or graph cut
[27]. These techniques still fundamentally rely on low-level cues, which are less
effective for images with larger structures.

In many real scenes, the appearance can change significantly due to local scene
shape variation such as perspective distortion. As a result, it may be difficult to
synthesize plausible regions if only translated patches are considered. Recent ap-
proaches address this problem by increasing the motion parameter search space
to similarity transform with reflection and accommodate slight photometric vari-
ations [18, 14]. While the additional motion parameters do help when needed, the
increased dimensionality and complexity render the nearest neighbor searching al-
gorithm even harder to find a good solution. We handle this issue by constraining
the transformation based on mid-level structural analysis of the image.

Missing regions in images could also be completed with the help of external
image datasets. Hays and Efros [28] retrieve semantically similar images from a
large dataset and copy a single large region to fill the missing pixels. A similar
scene matching strategy was adopted by Zhang et al. [29]; the main difference
is that they transfer the self-similarity field to guide the completion instead of
the actual contents of the matched image. Another example of using external
database is through instance-level matching methods to fill in missing regions via
appropriate geometric and photometric transformation of the retrieved image [30].
In this work, we consider only the known region in the input image.

The notion of automatic guidance maps for image completion has been used
in a number of approaches. For example, Jia et al. [31] inferred the line and
contour continuation in the missing regions and used them for completion. A
similar type of salient line matching was used in problems of tele-registration
[32]. Kopf et al. [33] used tile-based search space constraints to constrain the
source of texture examples in synthesis. He and Sun [15] identify a number of

7

representative translation offsets from the known region of the input image and
use these offsets to complete the image. However, their method detects regularity
only in the image plane and is thus not very effective on larger structures with
significant perspective effects.

While it is desirable to have a fully automatic approach, the image comple-
tion technique may still fail on occasion because computer vision techniques are
typically far from perfect. Interactive methods allow users to explicitly provide
high-level expertise to guide the completion. User-specified constraints include
label map [34], line structure continuation [35], perspective [36], lattice [37], and
symmetry [9].

2.3 Overview

We implement as baseline algorithm the non-parametric optimization algorithm
of Wexler et al. [16], and use random search and propagation as in PatchMatch
[17]. We use two types of mid-level constraints of the scene to guide the low-level
completion process: planar perspective and translational regularity. Given an im-
age and a user-specified mask that specifies the region (or hole) to fill, we first
detect multiple planes, estimate their perspective parameters, and determine their
spatial supports within the scene (Section 2.4). To determine translational regu-
larity within each plane, we perform feature matching using SIFT features [38].
The positions of all matched feature pairs are then affine rectified2 using the cor-
responding plane parameters. This allows the dominant translational shifts to be
easily detected through clusters of displacement vectors in the rectified domain.

We use the detected perspective planes and the translational regularity within
each plane as soft constraints to guide the low-level image completion (Section 2.5).
We achieve this by integrating these derived constraints as prior probabilities of
the search space. The regularity detection step provides “positional” guidance,
i.e., where the source patch should be copied from. In contrast, the plane orien-
tation constraints provide “non-positional” guidance of source patches, i.e., how
the source patch should be deformed. By incorporating both positional and non-
positional constraints on searching source patches from the known region, we
show that these two types of mid-level image analysis can significantly improve

2Affine rectification means mapping vanishing points to infinity so that parallel lines in 3D
space project to parallel 2D lines in the rectified image.

8

the quality of the completed region in a semantically meaningful way.

2.4 Detecting Planar Surfaces and Regularity

In this section, we describe our analysis of the known image region to detect pla-
nar surfaces (Section 2.4.1) and translational regularity within these planes (Sec-
tion 2.4.2). The results of this analysis will be used to constrain the low-level
completion algorithm, as described in Section 2.5.

2.4.1 Planes

Many techniques have been proposed for identifying and rectifying planes [39,
40, 41], i.e., converting a perspectively distorted plane to a fronto-parallel ver-
sion. We use a technique that involves line segment extraction, vanishing point
estimation [42], and grouping based on vanishing points. Since this part of our
algorithm is relatively standard, we provide only a brief description here. We first
detect edges and fit line segments in the known region of the image. We then de-
tect up to three vanishing points (VPs) using a RANSAC-based voting approach.
This means we assume there are only up to three different plane orientations in
the scene. This is reasonable for typical man-made structures. We show a sample
result in Figure 2.3.

Given the three VPs, we can recover up to three plane orientations, one from
each pair of the detected VPs. We compactly represent the parameters of plane
m using the vanishing line lm∞ (the image of the line at infinity on the world plane
connecting the two distinct VPs):

lm∞ = [lm
1 , l

m
2 , l

m
3]
>. (2.1)

Note that lm∞ is homogeneous and has two degrees of freedom. The perspective
image of a plane can then be affine rectified (so that parallel lines in 3D appear
parallel in the image) using a pure perspective transformation matrix

Hm =

 1 0 0
0 1 0
lm
1 lm

2 lm
3

 . (2.2)

9

Figure 2.3: Vanishing point detection from a man-made environment. The red,
green, and blue line segments correspond to three detected vanishing points,
respectively.

However, the plane parameters provide no information on the spatial support
of the plane in the image domain. While there are many computer vision al-
gorithms available for automatic single-view reconstruction of man-made envi-
ronment, they are usually quite sophisticated, e.g., see Barinova et al.’s work [43].
Instead, we address this problem via a rather simple and straightforward approach.

Our key insight is that a plane typically consists of two sets of parallel 3D
lines. In other words, there are usually two sets of the line segments with two
distinct VPs that should reside within the same image region. We identify the
support of each plane by locating positions where the two sets of line segments
corresponding to the two VPs overlap with each other.

We first estimate the spatial support of each VP by diffusing its corresponding
line segments using a wide Gaussian kernel. Then, we estimate the spatial support
for the planes by performing element-wise multiplication of its VP’s support line
density maps. These product maps have a high response where the two sets of the
line segments overlapped with each other. Note that we always add the fronto-
parallel plane with parameters l0

∞ = [0,0,1]> and assign a fixed density value

10

Figure 2.4: Plane localization in the known region using support line segments
from pairs of vanishing points. In the hole region we assign plane probabilities in
a different manner, as shown in Figure 2.5.

10−5 uniformly across the image. We then perform per-pixel normalization of this
density product map so that the sum over the plane membership probability is 1;
we call this the “posterior probability” Pr[m|xxx] for assigning plane membership m

at pixel xxx. This process is illustrated in Figure 2.4. Here, the posterior probability
distributions are shown as color-coded density maps on the right column (note
that the density map for the fronto-parallel plane is not shown).

As lines can only be detected in the known region of the image, the posterior
probabilities within the unknown region are highly unreliable. To address this
problem, we assign to every missing pixel the probabilities of the closest boundary
pixel. The posterior probability map of an example image is shown in Figure 2.5.

2.4.2 Regularity extraction

Regular and near-regular structures are ubiquitous in man-made environments as
well as in many natural objects. Detection of such regularity has been shown to
be a compact means for understanding scene structure. Liu et al. [44] provide a
good survey of work in this area.

Similar to He and Sun [15], we also detect translational regularity using offsets
of matched image features. However, we detect regularity in a localized manner

11

Figure 2.5: Visualization of plane posterior probability in the known region, and
propagation into the hole region. The posterior probabilities of the three
recovered planes are shown in blue, green and red. (Note that the fronto-parallel
plane is not shown here.) The boundary pixels between the known and unknown
regions are shown in white. In the hole region every pixel is assigned the plane
probabilities of the nearest boundary pixel.

and in affine rectified space in order to account for possibly multiple foreshortened
planes. We begin with detecting standard difference of Gaussians feature points in
the known image region and compute the SIFT descriptors for each feature point
[38]. We choose to extract features in the original image rather than rectified
space because the rectification would severely distort the image for slanted planes
(e.g., rectifying the ground plane in the middle image in Figure 2.1 would lead to
extreme distortions near the horizon). We compute the two nearest neighbors for
each feature using a kd-tree. We only retain matches whose `2 feature distances
are below a threshold of 0.1.

Next, for each plane m, we extract all feature matches, where both feature posi-
tions have a high posterior probability Pr[m|xxx] (defined in Section 2.4.1). Specif-
ically, we check if the product of two posterior probabilities (from two detected
feature positions) exceeds 0.5.

Repetitive structures in man-made environments are usually equidistant in 3D.

12

However, the equal spacing is not preserved in image space (and, hence, in our
feature matches), due to perspective distortion. We undo this distortion by affinely
rectifying the positions of the matched feature points. The displacement of two
rectified feature points is now spatially invariant, and consequently, we can detect
translational repetition: if certain regular structures exist, these displacement vec-
tors form a dense cluster in the 2D affine rectified space. We use the mean-shift
algorithm [45] to detect these modes (setting the bandwidth parameter to 10 pix-
els, and rejecting spurious modes with fewer than 10 members). We denote the
set of the modes as Dm = {di}, where di ∈ R2 is the displacement vector in the
rectified space.

Figure 2.6 (c-d) shows detected modes in both rectified (left) and axis-aligned
space (right). In (e-f) we also show their positions relative to a target patch in the
image (white square). This figure highlights the importance of having perspective
correction in computing the displacement vectors. In addition to the accurate po-
sition suggestion, the plane parameters explicitly provide how the source patches
should deform spatially. The recovered candidates, outlined in blue, have to be
significantly deformed to match with the image axis aligned target patch, in white.
It is difficult to recover such geometric transformations using low-level algorithms
alone.

He and Sun [15] have shown that regularity using statistics of matched patch
offsets can be helpful in the context of image completion. However, they assume
global translational regularity in the image plane, i.e., they assume a single fronto-
parallel surface. Detection and optimization are both done in image space. For our
technique, while the detection is in rectified affine space, the objective function is
optimized in image space using constrained homographies (as described in the
next section).

Our regularity detection handles more general scenes because we deal with
each plane independently (but with soft membership). As a result, we are able
to detect different repetitive structures on multiple building facades with different
orientations. Given the major differences, He and Sun’s technique will have to be
substantially modified to work on such scenes.

13

2.5 Guided Image Completion

In this section, we describe how the detected planes and extracted regularity from
the previous section are used to guide the low-level image completion algorithm.
We build on Wexler et al.’s algorithm [16] using random search and propagation as
in PatchMatch [17]. Please refer to these papers for details on the base algorithm.

We incorporate sampling from planes by modifying the patch distance func-
tion (Sections 3.4.1-2.5.3), and the regularity by modifying the random sample
generation (Section 2.5.4).

2.5.1 Objective function

We augment the image completion objective function in two ways: First, we aug-
ment the patch distance (called “coherence measure” in the original paper [16])
by including a guidance term. Second, we augment the search space by the plane
index, which determines the patch transformation.

The objective function takes the form

min
{ti,si,mi}

∑
i∈Ω

Ecolor(si, ti,mi)+Eguide(si, ti,mi), (2.3)

where Ω and Ω are the sets of known and unknown pixel indices, ti = (tx
i , t

y
i)
> is

the center position of a target patch in Ω, si = (sx
i ,s

y
i)
> is the center position of

the corresponding source patch in Ω, and mi the plane index of an unknown target
patch ti. The two terms Ecolor and Eguide are the appearance and guidance terms,
respectively, which together make up the patch distance.

Note that the target patches are image-aligned with no geometric transformation
such as scaling or rotation, while the source patches have a geometric transform
that is implicitly derived from geometry of the plane they are sampled from. The
geometric transform is described in the next section.

2.5.2 Appearance cost

Our appearance cost is the sum of the absolute values of two sampled patches in
the RGB space:

Ecolor(si, ti,mi) =
∥∥q(si, ti,mi)− p(ti)

∥∥
1, (2.4)

14

where p(ti) denotes the 7× 7 patch sampled around the center position ti and
q(si, ti,mi) denotes the sampled patch centered at si with geometric transformation
subject to the plane orientation defined by target patch position ti and the plane
parameter of plane mi.

Most prior approaches use pure translational patches [16, 26] or explicitly search
geometric transformations, e.g., rotation, scale, and flip [18, 14]. Instead, we sam-
ple patches using homographies. Rather than searching for all parameters of the
homography, we derive it implicitly from the combination of the coordinates si, ti

with their corresponding plane index mi.
We first compute the transformation that maps a 7×7 patch at ti to transformed

patch sampled at si. Let t̃i = [tx
i , t

y
i ,1]

> and s̃i = [sx
i ,s

y
i ,1]

> as homogenous repre-
sentations of ti and si, respectively. Let hhh1,hhh2,hhh3 be the row vectors of HHHmi . The
source and target patch positions in the affine rectified space are computed as:

t̃i
′
=
[
hhh1t̃i, hhh2t̃i, hhh3t̃i

]>
, (2.5)

s̃i
′ = [hhh1s̃i, hhh2s̃i, hhh3s̃i]

> . (2.6)

We define (dx,dy) as the displacement vector from target to source patch positions
in the rectified space. The term s̃i is represented as

s̃i
′ =

hhh1 +hhh3dx

hhh2 +hhh3dy

hhh3

 t̃i. (2.7)

By applying the inverse of the rectifying matrix H−1
mi

, we have

s̃i = H−1
mi

s̃i
′ = H−1

mi

hhh1 +hhh3dx

hhh2 +hhh3dy

hhh3

 t̃i. (2.8)

To get the motion parameters of the patch around si (i.e., factoring out the depen-
dency of ti), we apply a translation matrix with offset ti:

s̃i = HHH−1
mi

hhh1 +hhh3dx

hhh2 +hhh3dy

hhh3

1 0 tx

i

0 1 ty
i

0 0 1

0

0
1

= TTT si

0
0
1

 , (2.9)

15

where TTT si compactly represents the domain transformation of the sampled source
patch. Note that in the special case of fronto-parallel plane (HHH0 = III3), TTT si reduces
to a translation matrix with offset (sx

i ,s
y
i).

2.5.3 Guidance cost

Our guidance cost includes three constraints derived from the analysis stage:

Eguide(si, ti,mi) = λ1Eplane(si, ti,mi)+λ2Edirection(si, ti,mi)+

λ3Eproximity(si, ti),
(2.10)

where λ1 = 10, λ2 = 103, and λ3 = 1 are the weighting parameters for plane
compatibility, orthogonal direction, and proximity cost, respectively. Next, we
describe each of these constraints in detail.

Plane compatibility. In the analysis stage, we computed the posterior probabil-
ity map Pr[mi|xxx] for assigning plane membership mi for position located at xxx. We
directly convert this into a penalty term using the negative log-likelihood. Specif-
ically,

Eplane(si, ti,mi) =− logPr[mi|si]− logPr[mi|ti], (2.11)

i.e., the term encourages sampling from a plane that has a high probability both in
the source and target location.

Orthogonal direction cost. Urban scenes often consist of repetitive structures
along horizontal and vertical directions, e.g., windows on a building facade. This
term encourages using source patches located on either one of the orthogonal di-
rections. Note that affine rectification makes the support lines for each VP parallel;
however, the lines from the two VPs are not necessarily orthogonal to each other.
We estimate the rotation angle that maps the set of line segments for each VP to
align with the horizontal axis. This mapping is denoted as H1

mi
and H2

mi
for the

two VPs defining the plane mi:

H j
mi

=

cos(θ j) −sin(θ j) 0
sin(θ j) cos(θ j) 0

lmi
1 lmi

2 lmi
3

 . (2.12)

16

We define the orthogonal direction cost as a truncated L1-norm:

Edirection(si, ti,mi) = ψ
(

min(|HHH1
mi
(s̃i)

y−HHH1
mi
(t̃i)

y|,

|HHH2
mi
(s̃i)

y−HHH2
mi
(t̃i)

y|)
)
,

(2.13)

where ψ(z) = min(|z|,c) is the function that caps the cost to a constant c = 0.02.
To ensure that the cost is invariant to the scale of the image, we divide the distances
in y-axis in the rectified space by the largest image dimension. For cases of target
patches with no available source samples on the both directions, this constraint
has no effect on searching of the source patch because it is constant. We visualize
the directional cost given a target patch in Figure 2.7.

Proximity cost. It has been shown by Kopf et al. [33] that constraining the
search space to nearby regions can improve the synthesis result. In addition to the
above mid-level constraints, we also introduce a low-level search space constraint
which favors nearby source patches for completion. This constraint implicitly
avoids copying patches from extremely different scales. We define the proximity
cost as

Eproximity(si, ti) =
||si− ti||22

σd(ti)2 +σ2
c
, (2.14)

where σd(ti)
2 is the squared distance of target position to the nearest border to the

known region and σ2
c = (W/8)2 is the parameter for adjusting the strength of the

proximity constraint (W is the largest image dimension).

2.5.4 Structure guided sampling and propagation

We extend the random location sampling in the PatchMatch algorithm [17] to
incorporate our computed plane probabilities and translational regularity. In addi-
tion to the regular random location sampling, we also sample from the clustered
regularity modes computed in Section 2.4.2. We did not include the regularity as
a prior term in the previous sections because the detection is sometimes not reli-
able. Using regularity instead for random location sample generation provides a
more robust way of incorporating this constraint. In our implementation of Patch-
Match, we use 5 iterations of plane probability guided sampling and regularity

guided sampling (as described below) in the search and propagation stage.

17

Plane probability guided sampling. For a given target patch ti, we first sam-
ple the plane index mi according to the posterior probability Pr[mi|ti]. Then, we
sample si by drawing random samples from Pr[si|mi] using rejection sampling.
This effectively biases the search space toward finding the correct patches from
the same plane.

Regularity guided sampling. While the plane probability guided random sam-
pling scheme samples from the right plane, it does not impose constraints on
where in the plane it should sample from. This usually leads to visible artifacts
when regular structures are present. Sampling from our detected regularity modes
alleviates this problem.

For each target patch ti, we first draw a plane index mi as above, then we ran-
domly draw one displacement in rectified space from Dm. Using the target patch
position ti, the plane index mi, and the displacement in the rectified space, we
can then directly compute the candidate positions and their geometric transfor-
mations. Examples of candidate source patches are shown in Figure 2.6. This
regularity guided sampling scheme greatly improves the completion quality when
repetitive structures exist.

2.6 Results

We compare our results against several state-of-the-art image completion algo-
rithms. Specifically, we choose Photoshop Content Aware Fill [17, 16], He and
Sun’s method [15], and Image Melding [14]. All of these methods use fronto-
parallel translational patches, except Image Melding, which allows similarity trans-
formation and flip of patches.

2.6.1 Comparison with the state-of-the-art methods

In Figure 2.8, we show a series of comparisons on challenging scenes. In the
first row, the building consists of near regular structures. We can see that the
competing algorithms fail to synthesize such large structure because they only
minimize localized texture energy without considering a global consistency. Our
method, on the other hand, fills in the hole with repetitive pattern similar to the

18

known region. In addition, with the recovered plane orientation, our synthesized
result is physically plausible.

In the second row, we show a single planar building facade with regular pat-
terns. Even with only mild perspective distortion, translational patches are in-
sufficient to synthesize the foreshortening effect and thus result in broken line
structures. Image Melding, while theoretically equipped with the ability to apply
appropriate scaling of the patches, fails to find such solution in high-dimensional
space. Our algorithm effectively uses the plane constraint to extend the facade
with minimally visible artifacts. The results on the 3rd to 6th rows show that our
algorithm is not limited to ideal piecewise plane scenes with homogeneous tex-
tures. With the plane support detection and the weighting scheme, we leverage
the low-level algorithm to find a good transition boundary between one structure
and another. Examples illustrating good transition boundaries are the stairs re-
gions and the pure texture region around the tree in the fourth row, and multiple
unknown surface discontinuities in the fifth row. In the last row, we demonstrate
the effectiveness of combining plane constraints and regularity-guided sampling.

From these examples of realistic scenes, we can see that our image comple-
tion algorithm is robust to deviations from perfectly textured planar surfaces. In
other words, our completion algorithm does not require perfect plane orientation
recovery, support estimation, segmentation, and symmetry detection. In fact, the
analysis in many regions contains errors because vision algorithms are far from
perfect. However, as exemplified here, by combining a powerful low-level al-
gorithm with mid-level constraints, we are able to extend the state-of-the-art in
image completion.

2.6.2 Comparisons on Natural Scenes

For images of natural scenes our analysis usually does not detect any planes because

there are no reliable features to detect planes and translational regularity. In such cases

our algorithm automatically reverts to the baseline image completion algorithm, i.e., our

implementation of Wexler et al.’s algorithm [16]. Four such examples are shown in Fig-

ure 2.9. We compare to the unguided version of our completion algorithm (fourth column)

to validate that our result looks visually similar to the baseline.

19

2.6.3 Failure modes

We used relatively simple algorithms in our image analysis stages, which can fail to de-

tect vanishing points or plane regularities, or more severely, return false positives. In

the former case our algorithm just reverts to fronto-parallel completion, while the latter

case might lead to some artifacts. The performance of the analysis stage could likely be

improved using more sophisticated computer vision methods, which we leave to future

work.

The first two rows in Figure 2.10 demonstrate the difficulty of finding demarcation lines

between different perspective planes when the unknown region is large. The results in the

third row shows that the falsely detected plane may over-constrain the patch synthesis and

lead to poor results near the bushes. Notice, though, that the competing techniques also

fail to generate satisfactory results.

2.7 Concluding Remarks

We have presented an automatic image completion algorithm that exploits extracted mid-

level scene structures for guiding the low-level completion. Our algorithm detects mul-

tiple planes and their corresponding translational regularity. These constraints are incor-

porated into the augmented patch distance and the sampling scheme. In the absence of

reliable plane detection, our algorithm automatically reverts to a baseline completion algo-

rithm. We demonstrated that our method consistently outperforms state-of-the-art image

completion algorithms for a wide range of challenging scenes.

Historically, conventional statistical texture synthesis methods formulate texture syn-

thesis as an “analysis then synthesis” framework. However, this type of framework has

been mostly set aside due to the simplicity and the effectiveness of example-based meth-

ods. Our method demonstrates the benefit of and the need for image analysis. We show

that the quality of image completion can be significantly improved by striking a balance

between analysis and synthesis.

20

(a) Input image

(c) Rectified space modes

(e) Rectified displacements

(b) Matched features

(d) Fronto-parallel modes

(f) Fronto-parallel displacements

Figure 2.6: Detecting regularity from modes of displacement vectors between
matched features. (a) and (b) show the input image and matched features. (c) and
(e) (on the left) show the detected modes and a visualization of candidate source
patch locations and shapes for a single target patch (in white) in the affine
rectified space. The repetitive structure is clearly revealed. (d) and (f) show the
corresponding illustrations for the fronto-parallel space. Here, the displacements
are scattered and do not reveal any structure.

21

Figure 2.7: Visualization of the directional cost given a target patch (shown in
white). The dark regions indicate lower costs. The directional cost encourages
finding matches along the two dominant, orthogonal directions, leading to
semantically more plausible completion results.

22

Input & hole Photoshop Image Melding
[14]

[15] Our result

Figure 2.8: Comparisons with representative state-of-the art algorithms. Image
credits: Flickr users Daniel Foster, Moyan Brenn, Savannah Roberts, Remon Rijper,
Chris Ford, and marie-ll.

23

Input & hole Photoshop Image Melding
[14]

Our result
(unguided)

Our result
(guided)

Figure 2.9: Image completion on images of natural scenes.

Input & hole Photoshop Image Melding
[14]

[15] Our result

Figure 2.10: Failure examples. First two rows: our algorithm has difficulty in
finding the good demarcation lines when the missing regions are too large. The
last row: our method may overconstrain the patch synthesis with falsely detected
planes, which leads to artifacts near the bushes. Image credits: Flickr users Reto
Fetz, David Barrie, and brokenthoughts.

24

CHAPTER 3

SINGLE IMAGE SUPER-RESOLUTION
WITH TRANSFORMED

SELF-EXEMPLARS

3.1 Introduction

The single image super-resolution (SR) problem is fundamentally under-constrained be-

cause a large number of high-resolution (HR) pixels need to be estimated from many

fewer ones available in a given low-resolution (LR) image. Many SR algorithms address

this problem by exploiting various image priors for regularization, including the simple

smoothness assumption or sophisticated statistical priors learned from large collections of

natural images.

Most modern single image super-resolution (SR) methods rely on machine learning

techniques. These methods focus on learning the relationship between low-resolution

(LR) and high-resolution (HR) image patches. A popular class of such algorithms uses an

external database of natural images as a source of LR-HR training patch pairs. Existing

methods have employed various learning algorithms for learning this LR to HR mapping,

including nearest neighbor approaches [46], manifold learning [47], dictionary learning

[48], locally linear regression [49, 50, 51], and convolutional networks [52].

However, methods that learn LR-HR mapping from external databases have certain

shortcomings. The number and type of training images required for satisfactory levels

of performance are not clear. Large-scale training sets are often required to learn a suffi-

ciently expressive LR-HR dictionary. For every new scale factor by which the resolution

has to be increased, or SR factor, these methods need to re-train the model using sophis-

ticated learning algorithms on large external datasets.

To avoid using external databases and their associated problems, several approaches

exploit internal patch redundancy for SR [53, 54, 55, 56]. These methods are based on the

fractal nature of images [57], which suggests that patches of a natural image recur within

and across scales of the same image. Internal LR-HR patch database can be built using

the scale-space pyramid of the given image itself. Internal dictionaries have been shown

to contain more relevant training patches, as compared to external dictionaries [58].

While internal statistics have been successfully exploited for SR, in most algorithms

the LR-HR patch pairs are found by searching only for “translated” versions of patches in

25

Figure 3.1: Examples of self-similar patterns deformed due to local shape
variation, orientation change, or perspective distortion.

the scaled down images. This effectively assumes that an HR version of a patch appears

in the same image at the desired scale, orientation and illumination. This amounts to

assuming that the patch is planar and the images of the different assumed occurrences of

the patch are taken by a camera translating parallel to the plane of the patch. This fronto-

parallel imaging assumption is often violated due to the non-planar shape of the patch

surface, common in both natural and man-made scenes, as well as perspective distortion.

Figure 3.1 shows three examples of such violations, where self-similarity across scales

will hold better if suitable geometric transformation of patches is allowed

In this chapter, we propose a self-similarity driven SR algorithm that expands the in-

ternal patch search space. First, we explicitly incorporate the 3D scene geometry by

localizing planes, and use the plane parameters to estimate the perspective deformation

of recurring patches. Second, we expand the patch search space to include affine trans-

formation to accommodate potential patch deformation due to local shape variations. We

propose a compositional transformation model to simultaneously handle these two types

of transformations. We modify the PatchMatch algorithm [17] to efficiently solve the

nearest neighbor field estimation problem. We validate our algorithm through a large

number of qualitative and quantitative comparisons against state-of-the-art SR algorithms

on a variety of scenes. We achieve significantly better results for man-made scenes con-

taining regular structures. For natural scenes, our results are comparable with current

state-of-the-art algorithms.

Our Contributions:

1. Our method effectively increases the size of the limited internal dictionary by al-

lowing geometric transformation of patches. We achieve state-of-the-art results

without using any external training images.

2. We propose a decomposition of the geometric patch transformation model into

(i) perspective distortion for handling structured scenes and (ii) additional affine

transformation for modeling local shape deformation. This allows us to adaptively

26

and efficiently take advantage of scene geometry when it is present.

3. We use and make available a new dataset of urban images containing structured

scenes as a benchmark for SR evaluation.

3.2 Related Work

The core of image SR algorithms has shifted from interpolation and reconstruction [59]

to learning and searching for best matching existing image(s) as the HR map of the given

LR image. We limit our discussion here to these more current learning-based approaches

and classify the corresponding algorithms into two main categories: external and internal,

depending on the source of training patches.

External database driven SR: These methods use a variety of learning algorithms to

learn the LR-HR mapping from a large database of LR-HR image pairs. These include

nearest neighbor [46], kernel ridge regression [60], sparse coding [48, 61, 62, 7], manifold

learning [47] and convolutional neural networks [52]. The main challenges lie in how to

effectively model the patch space. As opposed to learning a global mapping over the entire

dataset, several methods alleviate the complexity of data modeling by partitioning or pre-

clustering the external training database, so that relatively simpler prediction functions

could be used for performing the LR-HR mapping in each training cluster [49, 50, 51].

Instead of learning in the 2D patch domain, some methods learn how 1D edge profiles

transform across resolutions [63, 64]. Higher-level features have also been used in [65,

66, 67] for learning the LR-HR mapping. In contrast, our algorithm has the advantage of

neither requiring external training databases, nor using sophisticated learning algorithms.

Internal database driven SR: Among internal database driven SR methods, Ebrahimi

and Vrscay [53] combined ideas from fractal coding [57] with example-based algorithms

such as non-local means filtering [68], to propose a self-similarity based SR algorithm.

Glasner et al. [54] unified the classical and example-based SR by exploiting the patch

recurrence within and across image scales. Freedman and Fattal [55] showed that self-

similar patches can often be found in limited spatial neighborhoods, thereby gaining com-

putational speed-up. Yang et al. [69] refined this notion further to seek self-similar patches

in extremely localized neighborhoods (in-place examples), and performed first-order re-

gression on them. Michaeli and Irani [70] used self-similarity to jointly recover the blur

kernel and the HR image. Singh et al. [71] used the self-similarity principle for super-

resolving noisy images.

Expanding patch search space: Since internal dictionaries are constructed using only

the given LR image, they tend to contain a much smaller number of LR-HR patch pairs

compared to external dictionaries which can be as large as desired. Singh and Ahuja used

27

orientation selective sub-band energies for better matching textural patterns [72] and later

reduced the self-similarity based SR into a set of problems of matching simpler sub-bands

of the image, amounting to an exponential increase in the effective size of the internal dic-

tionary [56]. Zhu et al. [73] proposed to enhance the expressiveness of the dictionary by

optical flow based patch deformation during searching, to match the deformed patch with

images in external databases. We use projective transformation to model the deformation

common in urban scenes to better exploit internal self-similarity. Fernandez-Granda and

Candes [74] super-resolved planar regions by factoring out perspective distortion and im-

posing group-sparse regularization over image gradients. Our method also incorporates

3D scene geometry for SR, but we can handle multiple planes and recover regular textu-

ral patterns beyond orthogonal edges through self-similarity matching. In addition, our

method is a generic SR algorithm that handles both man-made and natural scenes in one

framework. In the absence of any detected planar structures, our algorithm automatically

falls back to searching only affine transformed self-exemplars for SR.

Our work is also related to several recent approaches that solve other low-level vision

problems using over-parameterized (expanded) patch search spaces. Although more dif-

ficult to optimize than 2D translation, such over-parametrization often better utilizes the

available patch samples by allowing transformations. Examples include stereo [75], depth

upsampling [76], optical flow [77], image completion [1], and patch-based synthesis [14].

Such expansion of the search space is particularly suited for the SR problem due to the

limited size of internal dictionaries.

3.3 Overview

Super-resolution scheme: Given a LR image I, we first blur and subsample it to

obtain its downsampled version ID. Using I and ID, our algorithm to obtain an HR image

IH consists of the following steps:

1) For each patch P (target patch) in the LR image I, we compute a transformation matrix

T (homography) that warps P to its best matching patch Q (source patch) in the down-

sampled image ID, as illustrated in Figure 3.2 (c). To obtain the parameters of such a

transformation, we estimate a nearest neighbor field between I and ID using a modified

PatchMatch algorithm [17] (details given in Section 3.4).

2) We then extract QH from the image I, which is the HR version of the source patch Q.

3) We use the inverse of the computed transformation matrix T to ‘unwarp’ the HR patch

QH, to obtain the self-exemplar PH, which is our estimated HR version of the target patch

P. We paste PH in the HR image IH at the location corresponding to the LR patch P.

4) We repeat the above steps for all target patches to obtain an estimate of the HR image

28

Figure 3.2: Comparison with external dictionary and internal dictionary
(self-similarity) approaches. Middle row: Given LR image I. Our method allows
for geometrically transforming the target patch from the input image, while
searching for its nearest neighbor in the downsampled image. The HR version of
the best match found is then pasted on to the HR image. This is repeated for all
patches in the input image I.

IH.

5) We run the iterative backprojection algorithm [59] to ensure that the estimated IH sat-

isfies the reconstruction constraint with the given LR observation I.

Figure 3.2 schematically illustrates the important steps in our algorithm, and compares

it with other frameworks.

Motivation for using transformed self-exemplars: The key step in our algorithm

is the use of the transformation matrix T that allows for geometric deformation of patches,

instead of simply searching for the best patches under translation. We justify the use

of transformed self-exemplars with two illustrative examples in Figure 3.3. Matching

using the affine transformation and planar perspective transformation achieves both lower

matching errors and more accurate prediction of the HR content than matching patches

under translation.

29

3.4 Nearest Neighbor Field Estimation

3.4.1 Objective function

Let Ω be the set of pixel indices of the input LR image I. For each target patch P(ti)

centered at position ti = (tx
i , t

y
i)
> in I, our goal is to estimate a transformation matrix Ti

that maps the target patch P(ti) to its nearest neighbor in the downsampled image ID.

A dense nearest neighbor patch search forms a nearest-neighbor field (NNF) estimation

problem. In contrast to the conventional 2D translation (or offsets) field, here we have

a field of transformations parametrized by θi for ith pixel in the input LR image. Our

objective function for this NNF estimation problem takes the form

min
{θi}

∑
i∈Ω

Eapp(ti,θi)+Eplane(ti,θi)+Escale(ti,θi), (3.1)

where θi is the unknown set of parameters for constructing the transformation matrix Ti

that we need to estimate (in a way explained later). Our objective function includes three

costs: (1) appearance cost, (2) plane cost, and (3) scale cost. Below we first describe each

of these costs.

Appearance cost Eapp: This cost measures similarity between the sampled target and

source patches. We use Gaussian-weighted sum-of-squared distance in the RGB space as

our metric:

Eapp(ti,θi) = ||WWW i (P(ti)−Q(ti,θi)) ||22, (3.2)

where the matrix WWW i is the Gaussian weights with σ2 = 3, and Q(ti,θi) denotes the sam-

pled patch from ID using the transformation Ti with parameter θi.

We now present how we design and construct the transformation matrix Ti from esti-

mated parameter θi for sampling the source patch Q(ti,θi). The geometric transformation

of a patch in general can have up to 8 degrees of freedom (i.e., a projective transforma-

tion). One way to estimate the patch geometric transformation is to explicitly search in

the additional patch space (e.g., scale, rotation) [78, 79, 14] beyond translation. How-

ever, perspective distortion can only be approximated by scaling, rotation and shearing of

affine transformations. Therefore, affine transformations by themselves are less effective

in modeling the appearance variations in man-made, structured scenes. Huang et al. [1]

addressed this problem by detecting planes (and their parameters) and using them to deter-

mine the perspective transformation between the target and source patch. In Figure 3.4,

we show a visualization of vanishing point detection and posterior probability map for

detection of planes, as yielded by [1].

30

In this chapter, we combine the explicit search strategy of [78, 79, 14], along with

the perspective deformation estimation approach of [1]. Using the algorithm of [1],1 we

detect and localize planes and compute the planar parameters, as shown by the example in

Figure 3.4. We propose to parameterize Ti by θi = (si,mi), where si = (sx
i ,s

y
i ,s

s
i ,sθ

i ,sα
i ,s

β

i)

is the 6-D affine motion parameter of the source patch and mi is the index of detected plane

(using [1]). We propose a factored geometric transformation model Ti(θi) of the form:

Ti(θi) = H
(
ti,sx

i ,s
y
i ,mi

)
S
(

ss
i ,s

θ
i

)
A
(

sα
i ,s

β

i

)
, (3.3)

where the matrix H captures the perspective deformation given the target and source patch

positions and the planar parameters (as described in [1]). The matrix

S
(

ss
i ,s

θ
i

)
=

[
ss

i R(sθ
i) 0

0> 1

]
(3.4)

captures the similarity transformation through a scaling parameter ss
i and a 2×2 rotation

matrix R(sθ
i), and the matrix

A
(

sα
i ,s

β

i

)
=

 1 sα
i 0

sβ

i 1 0

0 0 1

 (3.5)

captures the shearing mapping in the affine transformation.

The proposed compositional transformation model resembles the classical decomposi-

tion of a projective transformation matrix into a concatenation of three unique matrices:

similarity, affine, and pure perspective transformation [80]. Yet, our goal here is to “syn-

thesize” rather than “analyze” the transformation Ti for sampling source patches. The

proposed formulation allows us to effectively factor out the dependency of the positions

of the target ti and source patch (sx
i ,s

y
i) for estimating the perspective deformation in

H
(
ti,sx

i ,s
y
i ,mi

)
from estimating affine shape deformation parameters using (ss

i ,sθ
i ,sα

i ,s
β

i)

for matrices S and A. This is crucial because we can then exploit piecewise smoothness

characteristics in natural images for efficient nearest neighbor field estimation.

Photometric compensation: Local photometric compensation is usually carried out in

prior work via normalizing the patch to be zero-mean and unit variance before compar-

ing patches. While this certainly reduces the complexity of patch appearance variations

when learning the LR-HR mapping using external dataset, we argue that the normaliza-

tion might hallucinate erroneous HR details when matching the target patch with self-

exemplars. Inspired by [79], we use the difference of target and source patch means to

compensate the bias in the RGB space reasonable predefined ranges. Specifically, we

1Available at https://github.com/jbhuang0604/StructCompletion

31

compensate ±25% of the intensity variations for each channel.

Plane compatibility cost Eplane: For man-made images, we can often reliably local-

ize planes in the scene using standard vanishing point detection techniques. The detected

3D scene geometry can be used to guide the patch search space. We modify the plane

localization code in [1] and add a plane compatibility cost to encourage the search over

the more probable plane labels for source and target patches.

Eplane =−λplane log
(
Pr[mi|(sx

i ,s
y
i)]×Pr[mi|(tx

i , t
y
i)]
)
, (3.6)

where the Pr[mi|(x,y)] is the posterior probability of assigning label mi at pixel position

(x,y) (see Figure 3.4 (b) for an example).

Scale cost Escale: Since we allow continuous geometric transformations, we observed

that the nearest neighbor field often converged to the trivial solution, i.e., matching target

patches to itself in the downsampled image ID. Such a match has small appearance cost.

This trivial solution leads to the conventional bicubic interpolation for SR. We avoid such

trivial solutions by introducing the scale cost Escale:

Escale = λscale min(0,SRF−Scale(Ti)), (3.7)

where SRF indicates the desired SR factor, e.g., 2x, 3x, or 4x, and the function Scale(·)
indicates the scale estimation of a projective transformation matrix. We approximately es-

timate the scale of the source patch sampled using Ti with the first-order Taylor expansion

[81]:

Scale(Ti) =

√√√√det

([
T1,1−T1,3T3,1 T1,2−T1,3T3,2

T2,1−T2,3T3,1 T3,1−T2,3T3,2

])
,

where Tu,v indicates the value of uth row and vth column in the transformation matrix Ti

with T3,3 normalized to one. Intuitively, we penalize if the scale of the source patches is

too small. Therefore, we encourage the algorithm to search for source patches that are

similar to the target patch and at the same time to have larger scale in the input LR image

space, and thereby to provide more high-frequency details for SR. We soft-threshold the

penalty to zero when the scale of the source patch is sufficiently large.

32

3.4.2 Inference

We need to estimate 7-dimensional (θi ∈ R7) nearest neighbor field solutions over all

overlapping target patches. Unlike the conventional self-exemplar based methods [54,

55], where only a 2D translation field needs to be estimated, the solution space in our

formulation is much more difficult to search. We modify the PatchMatch [17] algorithm

for this task with the following detailed steps.

Initialization: Instead of using the random initialization done in PatchMatch [17], we

initialize the nearest neighbor field with zero displacements and scales equal to the desired

SR factor. This is inspired by [55, 69], suggesting that good self-exemplars can often be

found in a localized neighborhood. We found that this initialization strategy provides a

good start for faster convergence.

Propagation: This step efficiently propagates good matches to neighbors. In contrast

to propagating the transformation matrix Ti directly, we propagate the parameter θi =

(si,mi) instead so that the affine shape transformation is invariant to the source patch

position.

Randomization: After propagation in each iteration, we perform randomized search

to refine the current solution. We simultaneously draw random samples of the plane index

based on the posterior probability distribution, randomly perturb the affine transforma-

tion and randomly sample position (in a coarse-to-fine manner) to search for the optimal

geometric transformation of source patches and reduce the matching errors.

3.5 Experiments

Datasets: Yang et al. [82] recently proposed a benchmark for evaluating single image SR

methods. Most images therein consist of natural scenes such as landscapes, animals, and

faces. Images that contain indoor, urban, architectural scenes, etc., rarely appear in this

benchmark. However, such images feature prominently in consumer photographs. We

therefore have created a new dataset Urban 100 containing 100 HR images with a variety

of real-world structures. We constructed this dataset using images from Flickr (under CC

license) using keywords such as urban, city, architecture, and structure.

In addition, we also evaluate our algorithm on the BSD 100 dataset, which consists of

100 test images of natural scenes taken from the Berkeley segmentation dataset [83]. For

this dataset, we evaluate for SR factors of 2x, 3x, and 4x.

Methods evaluated: We compare our results against several state-of-the-art SR al-

gorithms. Specifically, we choose four SR algorithms trained using a large number of

external LR-HR patches for training. The algorithms we use are: Kernel rigid regression

(Kim) [60], sparse coding (ScSR) [48], adjusted anchored neighborhood regression (A+)

33

[51], and convolutional neural networks (SRCNN) [52].2 We also compare our results

with those of the internal dictionary based approach (Glasner) [54] 3 and the sub-band

self-similarity SR algorithm (Sub-Band) [56].4 All our datasets, results, and the source

code are publicly available.5

Implementation details: We use 5× 5 patches and perform SR in multiple steps.

We achieve 2x, 3x, 4x SR factors in three, five and six upscaling steps, respectively. At

the end of each step, we run 20 iterations of the backprojection algorithm [59] with a

5×5 Gaussian filter with σ2 = 1.2. The NNF solution from a coarse level is upsampled

and used as an initialization for the next finer level. We empirically set the parameters

λplane = 10−3 and λscale = 10−3. The parameters are kept fixed for all our experiments.

Qualitative evaluation: In Figure 3.5, we show visual results on images from the

Urban 100 dataset. We show only the cropped regions here. We find that our method is

capable of recovering structured details that were missing in the LR image by properly

exploiting the internal similarity in the LR input. Other approaches, using external images

for training, often fail to recover these structured details. Our algorithm well exploits

the detected 3D scene geometry and the internal natural image statistics to super-resolve

the missing high-frequency contents. In Figures 3.6 and 3.7, we demonstrate that our

algorithm is not restricted to images of a single plane scene. We are able to automatically

search for multiple planes and estimate their perspective and affine transformations to

robustly predict the HR image.

In Figures 3.8 and 3.9, we show two results on natural images where no regular struc-

tures can be detected. In such cases, our algorithm reduces to searching for affine trans-

formations only in the nearest neighbor field, similar to [78]. On natural images without

any particular geometric regularity, our method performs as well as the recent, state-

of-the-art methods such as [52, 51], although, as can be seen in both examples, our

results contain slightly sharper edges and fewer artifacts such as ringing. We present

more results for both Urban 100 and BSD 100 datasets in our project page https:

//sites.google.com/site/jbhuang0604/publications/struct_sr.

2Implementations of [60, 48, 51, 52] are available on authors’ websites.
3We implement this from the paper [54].
4Results were provided by the authors.
5https://github.com/jbhuang0604/selfexsr

34

(a) Affine transformation

(b) Planar perspective transformation

Figure 3.3: Examples demonstrating the need for using transformed
self-exemplars in our self-similarity based SR. Red boxes indicate a selected
target patch (to be matched) in the input LR image I. We take the selected target
patch, remove its mean, and find its nearest neighbor in the downsampled image
ID. We show the error found while matching patches in ID in the second column.
Blue boxes indicate the nearest neighbor (best matched) patch found among only
translational patches, and green boxes indicate the nearest neighbor found under
the proposed (a) affine transformation and (b) planar perspective transformation.
In the third and fourth columns we show the matched patches Q in the
downsampled images ID and their HR version QH in the input image I.

35

Figure 3.4: (a) Vanishing point detection and (b) Visualization of posterior plane
probability.

HR Kim [60] ScSR [48] Glasner [54]

A+ [51] Sub-band [56] SRCNN [52] Ours

HR Kim [60] ScSR [48] Glasner [54]

A+ [51] Sub-band [56] SRCNN [52] Ours

HR Kim [60] ScSR [48] Glasner [54]

A+ [51] Sub-band [56] SRCNN [52] Ours

HR Kim [60] ScSR [48] Glasner [54]

A+ [51] Sub-band [56] SRCNN [52] Ours

Figure 3.5: Visual comparison for 4x SR. Our method is able to explicitly
identify perspective geometry to better super-resolve details of regular structures
occurring in various urban scenes.

36

HR (PSNR, SSIM)

A+ [51]

Kim [60]

Sub-band [56]

ScSR [48]

SRCNN [52]

Glasner [54]

Ours

Figure 3.6: Visual comparison for 4x SR. Our algorithm is able to super-resolve
images containing multiple planar structures. Image credit: Flickr user
thelearningcurvedotca.

HR (PSNR, SSIM)

A+ [51]

Kim [60]

Sub-band [56]

ScSR [48]

SRCNN [52]

Glasner [54]

Ours

Figure 3.7: Visual comparison for 4x SR. Our algorithm is able to better exploit
the regularity present in urban scenes than other methods. Image credit: Flickr
user jimnix.

HR (PSNR, SSIM)

A+ [51]

Kim [60]

Sub-band [56]

ScSR [48]

SRCNN [52]

Glasner [54]

Ours

Figure 3.8: Visual comparison for 3x SR. Our result produces sharper edges than
other methods. Shapes of fine structures (such as the horse’s ears) are reproduced
more faithfully in our result.

37

HR (PSNR, SSIM)

A+ [51]

Kim [60]

Sub-band [56]

ScSR [48]

SRCNN [52]

Glasner [54]

Ours

Figure 3.9: Visual comparison for 3x SR. Our result shows slightly sharper
reconstruction of the beaks.

38

Ta
bl

e
3.

1:
Q

ua
nt

ita
tiv

e
ev

al
ua

tio
n

on
U

rb
an

10
0

an
d

B
SD

10
0

da
ta

se
ts

.R
ed

in
di

ca
te

s
th

e
be

st
an

d
bl

ue
in

di
ca

te
s

th
e

se
co

nd
be

st
pe

rf
or

m
an

ce
.

M
et

ri
c

Sc
al

e
B

ic
ub

ic
Sc

SR
[4

8]
K

im
[6

0]
SR

C
N

N
[5

2]
A

+
[5

1]
Su

b-
ba

nd
[5

6]
G

la
sn

er
[5

4]
O

ur
s

PS
N

R
(U

rb
an

)
2x

26
.6

6
28

.2
6

28
.7

4
28

.6
5

28
.8

7
28

.3
4

28
.1

5
29

.3
8

4x
23

.1
4

24
.0

2
24

.2
0

24
.1

4
24

.3
4

24
.2

1
23

.7
9

24
.8

2

SS
IM

(U
rb

an
)

2x
0.

84
08

0.
88

28
0.

89
40

0.
89

09
0.

89
57

0.
88

20
0.

87
43

0.
90

32
4x

0.
65

73
0.

70
24

0.
71

04
0.

70
47

0.
71

95
0.

71
15

0.
68

38
0.

73
86

PS
N

R
(B

SD
)

2x
29

.5
5

30
.7

7
31

.1
1

31
.1

1
31

.2
2

30
.7

3
30

.5
6

31
.1

8
3x

27
.2

0
27

.7
2

28
.1

7
28

.2
0

28
.3

0
27

.8
8

27
.3

6
28

.3
0

4x
25

.9
6

26
.6

1
26

.7
1

26
.7

0
26

.8
2

26
.6

0
26

.3
8

26
.8

5

SS
IM

(B
SD

)
2x

0.
84

25
0.

87
44

0.
88

40
0.

88
35

0.
88

62
0.

87
74

0.
86

75
0.

88
55

3x
0.

73
82

0.
76

47
0.

77
88

0.
77

94
0.

78
36

0.
77

14
0.

74
90

0.
78

43
4x

0.
66

72
0.

69
83

0.
70

27
0.

70
18

0.
70

89
0.

70
21

0.
68

42
0.

71
08

39

Quantitative evaluation: We also perform quantitative evaluation of our method in

terms of PSNR (dB) and structural similarity (SSIM) index [84] (computed using lumi-

nance channel only). Since such quantitative metrics may not correlate well with visual

perception, we invite the reader to examine the visual quality of our results for better

evaluation of our method.

Table 3.1 shows the quantitative results on Urban 100 and BSD 100 datasets. Numbers

in red indicate the best performance and those in blue indicate the second best perfor-

mance. Our algorithm yields the best quantitative results for this dataset, 0.2-0.3 dB PSNR

better than the second best method (A+) [51] and 0.4-0.5 dB better than the recently pro-

posed SRCNN [52]. We are able to achieve these results without any training databases,

while both [51] and [52] require millions of external training patches. Our method also

outperforms the self-similarity approaches of [54] and [56], validating our claim of being

able to extract better internal statistics through the expanded internal search space. In the

BSD 100 dataset our results are comparable to those obtained by other approaches on this

dataset, with ≈ 0.1 dB lower PSNR than the results of A+ [51]. Our quantitative results

are slightly worse than the state-of-the-art in this dataset since it is difficult to find geomet-

ric regularity in such natural images, which our algorithm seeks to exploit. Also A+ [51]

is trained on patches that contain natural textures quite suitable for super-resolving the

BSD100 images. While we achieve slightly worse quantitative performance on BSD100,

our results are often visually more pleasing compared to others and do not have artifacts.

Effect of the number of NNF iterations: We investigate the effect of the number of

iterations for nearest neighbor field estimation using our algorithm in Figure 3.10, for one

step 2x SR. We show the intermediate results after 1, 2, and 5 iterations. The second row

shows a visualization of the source patch positions in the nearest neighbor field and the

matching cost in each stage. The in-place initialization (zero iterations) already provides

good matches for smooth regions. We can see a significant reduction in the matching cost

even with one iteration. We use 10 iterations for generating all our results.

Effect of patch size: Patch size is an important parameter for example-based SR al-

gorithms. Larger patches may be difficult to map to HR since they may contain complex

structural details. Very small patches may not contain sufficient information to accurately

predict their HR versions. In Figure 3.11, we plot PSNR/SSIM for patch sizes ranging

from 3×3 to 15×15. We obtain these plots by averaging over 25 images. We observe that

there is a wide range of patch sizes for which our algorithm is able to perform consistently.

Limitations: Our method has difficulty dealing with fine details when the planes are

not accurately detected. We show one such case in Figure 3.12 where we fail to recover

the regular structures. Another limitation of our approach is processing time. While

external database driven SR methods require time-consuming training procedures, they

run quite fast during test time [51, 50]. While our algorithm does not require an explicit

40

HR(PSNR,SSIM)

Initialization

(24.35, 0.8804)

1 iteration

(24.42, 0.8834)

2 iterations

(24.52, 0.8874)

5 iterations

Figure 3.10: Effect of iterations. First row: HR and the SR results on 1, 2, and 5
iterations. Second row: the visualization of the nearest neighbor field. Third row:
the patch matching cost.

Figure 3.11: Quantitative performance as a function of patch size.

training step, it is slow to super-resolve a test image. This drawback is associated with

all self-similarity based approaches [54, 56]. On an average, our Matlab implementation

takes around 40 seconds to super-resolve an image in BSD 100 by 2x with a 2.8 GHz Intel

i7 CPU and 12 GB memory.

3.6 Concluding Remarks
We have presented a self-similarity based image SR algorithm that uses transformed self-

exemplars. Our algorithm uses a factored patch transformation representation for simulta-

neously accounting for both planar perspective distortion and affine shape deformation of

41

HR Ours

SRCNN [52] A+ [51]

Figure 3.12: A failure case with SR factor 4x.

image patches. We exploit the 3D scene geometry and patch search space expansion for

improving the self-examplar search. In the absence of regular structures, our algorithm

reverts to searching affine transformed patches. We have demonstrated that even without

using external training samples, our method outperforms state-of-the-art SR algorithms

on a variety of man-made scenes while maintaining comparable performance on natural

scenes.

42

CHAPTER 4

TEMPORALLY COHERENT
COMPLETION OF DYNAMIC VIDEO

4.1 Introduction

Video completion methods are designed to fill user-specified spatio-temporal holes with

plausible content using remaining parts of the video. An effective video completion

method has many practical applications in video post-production, such as unwanted ob-

ject removal, full-frame video stabilization (as a byproduct), logo or watermark removal

in broadcast videos, and restoration of damaged vintage films.

Much progress has been made on automatic single-image completion, to a point of

where commercial solutions are now available.1 However, automatic video completion

algorithms have fared less well. This is due to the additional time dimension which in-

troduces major challenges: (1) viewpoint changes cause non-trivial appearance changes

in image-space; (2) the synthesized content needs to be temporally coherent; (3) there is

exponentially increased computational complexity due to the larger number of missing

pixels.

Many state-of-the-art video completion algorithms synthesize the missing (target) re-

gions by sampling spatio-temporal patches from the known (source) regions [16, 85] or by

solving spatio-temporal shift-maps using graph cuts [87]. While good results have been

shown, these approaches have two major limitations.

One limitation for translation-based sampling is the degradation caused by source and

target regions having inconsistent color, texture, or motion, which may be caused by

viewpoint changes in hand-held videos or non-periodic object motion. The inconsistency

problems can be partially alleviated by warping spatio-temporal object samples [89], sta-

bilizing the input video [85], or compensating geometric distortion through projective

transformation [86]. However, these approaches assume either a clean foreground and

background layer separation, simple parametric global motion, or static background and

therefore have difficulties in handling general situations.

Another limitation is that motion is not explicitly reconstructed even though motion-

1See, for example, http://www.adobe.com/technology/projects/
content-aware-fill.html

43

Table 4.1: Comparisons with state-of-the-art video completion algorithms. The
cells highlighted in red indicate limitations of an algorithm. The optimization
techniques used in [85] and our approach that alternate between patch search and
patch voting steps can be viewed as a “Hard EM” algorithm for estimating
maximum-likelihood solution [16]. The visibility assumption refers to each
missing pixel needing to be visible in at least one frame.

Method [86] [87] [85] [88] Ours
Synthesis unit Spatial Spatiotemporal Spatiotemporal Spatial Spatial
Optimization Graph-cut Graph-cut Hard-EM Greedy Hard-EM

Dynamic background No Yes Yes No Yes
Visibility assumption Yes No No No No

Flow estimation No No No Yes Yes
Warping Homography N/A Affine N/A Dense flow field

Temporal consistency No No No Yes Yes

based features are used as part of the similarity metric. As shown in our experiments,

video completion algorithms without explicit motion reconstruction often yield results

that are plausible when viewed as separate images, but are not temporally coherent. Sev-

eral recent approaches address the temporal consistency problem by explicitly synthesiz-

ing flow field in the target regions [88, 90]. However, these approaches smoothly interpo-

late the flow field with diffusion-based techniques, and are less effective in synthesizing

dynamic backgrounds.

In this chapter, we present a new video completion algorithm that does not make any

simplifying assumptions about the video content; it works on casual hand-held videos

with moving camera, dynamic content, lighting and color variations, and missing pixels

that are not seen in any of the known regions. Our method can fill missing regions in such

videos with plausible content in a temporally coherent manner.

Our method jointly estimates appearance (color) and dense flow field in the missing

region. The key idea is that the reconstructed pixel-wise forward and backward flow fields

allow us to explicitly promote temporal coherence. Since our flow field is non-parametric,

it can handle general motion parallax and dynamic scenes. This is in comparison with

existing video completion algorithms that use parametric motion to mostly compensate

for camera motion (e.g., affine [85] or homography [86]). We formulate video completion

as non-parametric patch-based optimization. The combination of non-parametric spatial

patch-based optimization and dense flow field estimation facilitate synthesizing colors

that are spatially coherent (i.e., locally appear similar to the known regions everywhere)

in each frame while maintaining temporal coherence (i.e., with small flow warp errors)

across frames.

We have tested our algorithm on numerous challenging videos that span a wide va-

riety of situations, including hand-held and stationary camera, static and dynamic back-

44

Figure 4.1: Algorithm pipeline. Given the input video and user-selected mask,
we start with computing the flow fields. After initialization (Sec 4.4.4) at the
coarsest level, in each scale our algorithm iterates through three steps (Sec 4.4.3):
(a) nearest neighbor field estimation: minimize the color spatial cost by finding
dense approximate nearest neighbor source patches for all target patches; (b)
color update: minimize the color spatial and color temporal cost so that the
synthesized colors are both spatially and temporally coherent; and (c) flow
update: refine the forward and backward flow fields. We then upsample the
solution of the nearest neighbor field and flow fields to the next finer level. The
color at the finer level is estimated by spatial patch voting (using the upsampled
nearest neighbor field).

ground, and multiple moving objects. We show representative still frames from the videos

throughout the chapter.

4.2 Related Work

Image and video completion are well-explored topics; surveys by Guillemot and Le Meur

[91] and Ilan and Shamir [92] provide a more comprehensive review. Here we limit our

discussion to state-of-the-art or representative approaches. Table 4.1 shows a feature-by-

feature comparison with representative techniques.

Patch-based synthesis These methods fill missing regions by sampling non-local

spatio-temporal patches (e.g., 5× 5× 5) from the known input. Efros and Leung [22]

first introduced non-parametric sampling techniques for texture synthesis. The approach

is later extended and applied to image completion [24, 93] and video completion [94, 95].

However, for video completion, these techniques either assume static cameras [94] or

constrained camera motion [95] so that the foreground and background layers can be

easily separated and independently filled. Furthermore, the greedy patch filling process

inevitably propagates errors at early steps to the subsequent steps, yielding globally in-

consistent results.

45

To address the global inconsistency issue, patch-based completion algorithms have

been cast as a global optimization problem which is minimized by alternating between

patch search and reconstruction steps [16, 25]. Newson et al. [85] recently extend the

patch-based optimization approach by incorporating texture features, compensate domi-

nant camera motion with global affine transformation, and use a spatio-temporal version

of PatchMatch [17] for fast approximated nearest neighbor search.

Our algorithm builds upon the non-parametric optimization framework with three ma-

jor differentiators. First, we fill the hole by sampling spatial patches rather than spatio-

temporal patches. While spatio-temporal patches provide a simple way for encoding lo-

cal appearance and motion, the assumption that spatio-temporal blocks appear repeat-

edly through time is typically not valid under the hand-held camera condition and non-

repetitive scene motion. Spatial patches, on the other hand, have no such restriction and

thus are applicable to general scenarios. Second, our approach explicitly estimates dense

forward and backward flow fields. The estimated dense flow fields allow us to explicitly

enforce temporal coherence of the synthesized contents as well as propagate known con-

tent into the unknown regions. Third, similar to Darabi et al. [14], we augment the patch

search space to account for texture and structural inconsistency between the source and

the target regions. In addition to random search, we use the local flow vectors to predict

and propagate transformation parameters from frame to frame.

Segment-based synthesis Such methods pose completion as a labeling problem by

solving a correspondence map (or a shift map) between the source and target pixels. They

typically apply graph cuts to find optimal seams and thus do not need to specify patch

sizes. Kwatra et al. [96] propose a texture synthesis algorithm by iteratively select-

ing a shifted version of an input texture and using graph cut to find minimally notice-

able seams between the original and shifted textures. Moving beyond texture synthesis,

Pritch et al. [27] generalize segment-based approaches to several other image editing

tasks, including image reshuffling, retargeting and completion using a global multi-label

graph cut based optimization. Granados et al. [87] extend this method to video comple-

tion and introduce an interactive interface for users to help constrain the search space.

The major limitation of segment-based methods is that the synthesized content has to be

copied from the unoccluded regions “as is” in the known input. Therefore, these methods

in general cannot handle objects that undergo appearance changes (e.g., scale variations

when an object moves toward or away from the camera) as well as video captured with a

hand-held camera. Granados et al. [86] show that the appearance variations between the

source and target regions can be compensated by homographies. However, this approach

assumes manual labeling of foreground regions, piecewise planar and static background,

and visibility of the occluded region (i.e., the occluded region must be visible in some

46

other frames). In contrast, our method offers greater flexibility for handling appearance

variations and can handle videos captured by a freely moving camera.

Flow-based synthesis To address the temporal consistency problem, techniques have

been developed to fill motion field in missing regions, e.g., through a greedy selection

of spatio-temporal patches of local motion [97], per frame diffusion [88], or iterative

optimization [90] with propagated colors from the known boundary.

Our method differs in two ways. First, instead of treating flow estimation as an inde-

pendent step from color estimation [97, 88], our approach iteratively computes and refines

the dense flow field from the synthesized colors and vice versa. Second, filling the colors

only through propagating from the known boundary (e.g., [97, 90]) inevitably generate

blurry results due to successive averaging of colors and thus are applicable only for holes

with very narrow temporal span. In contrast, we synthesize color by patch-based opti-

mization and use the flow to enforce the temporal consistency. As a result, our approach

can handle holes with arbitrary temporal span.

Flow-based video editing and manipulation Our work is also related to several

flow-based video synthesis and editing tasks. Flow representation provides a direct way

to enforce temporal consistency for texture synthesis [25], fluid animation [98], video

editing [99] and high dynamic range video reconstruction [100]. The work most related

to our work is that of Xue et al. [101], which decomposes a set of images into a clean

background and occlusion/reflection layers. Unlike [101], our approach does not require

every pixel in the occluding region to be visible in at least one frame. That is, we are able

to hallucinate plausible contents for the unknown regions that are not visible in the entire

image sequence.

4.3 Overview

In our video completion algorithm, we jointly estimate the unknown color values and local

motion in the target regions. We start with computing forward and backward optical flow

in the known region for all adjacent frames using a two-frame optical flow algorithm [102].

We implement our color synthesis algorithm similar to the non-parametric patch-based

optimization algorithms of [16, 25]. In each iteration, we loop over three main steps: (1)

patch search, (2) color update and (3) forward/backward flow update. We summarize our

method in Algorithm 1 and illustrate the pipeline in Figure 4.1.

47

Algorithm 1: Proposed video completion algorithm.
Input : Video III, user-specified mask Ω

Output: Completed video III

1 Compute forward/backward flow fields UUU,VVV in Ω

2 Initialization: filling hole Ω in III,UUU,VVV at coarsest scale (Sec. 4.4.4)
3 for scale s from 1 to ns do
4 for iteration k from 1 to Ks do
5 (a) NNF estimation:
6 Minimize Eq. 4.2 w.r.t. {si,θi}, with III,UUU,VVV fixed.
7 (b) Color update:
8 Minimize Eq. 4.6 w.r.t. III, with UUU,VVV,{si,θi} fixed.
9 (c) Flow update:

10 Minimize Eqs. 4.3 and 4.4 w.r.t. UUU,VVV, with III,{si,θi} fixed.
11 end
12 Upsample UUU,VVV using bicubic interpolation.
13 Upsample {si,θ} using nearest-neighbor interpolation.
14 end

Patch search In this step, for all overlapping patches in the target regions, we search

their corresponding patches in the source region with most similar local appearances.

Our algorithm differs from existing non-parametric patch sampling methods in two ma-

jor aspects. First, in contrast to methods using spatio-temporal patches 5×5×5 pixels

for synthesis, we use spatial-only patches (5×5 patch in our experiments) as synthesis

units. We enforce temporal consistency by augmenting the patch matching cost with

color consistency along the flow vectors. Such representation allows us to handle com-

plex flow fields resulted from hand-held cameras and scenes with depth variations. For

example, in a video captured by a hand-held camera, spatial patches with the exact same

appearance may be embedded in significantly different spatio-temporal patches because

the spatially-varying motion field caused by the moving camera. Therefore, working with

spatio-temporal patches would have fundamental limitations in exploiting the non-local

repetition of patches for video completion. In contrast, working with spatial patches does

not suffer from such cases (Figure 4.2). Second, in contrast to copying exactly the local

color patches from the source to the target region, we augment the patch search space to

accommodate appearance variations. Specifically, we search additional geometric trans-

formation (scale and rotation) of patches. Similar to the single-image case [14], the ad-

ditional patch transformation offers greater flexibility in synthesizing visually plausible

contents even with limited appearance variations in the source regions.

48

(a) Input and hole Spatiotemporal Spatial

Figure 4.2: Limitation of using spatio-temporal patches/segments. We use a
frame from sequence DANCE-TWIRL and synthetically generate translational
motion along the x-axis. (a) A spatio-temporal x-t slice of the sequence with
mask overlay. (b) Using spatiotemporal patches (2D patches here) is not able to
properly fill the missing region because the motion between the source (yellow)
and target (green) regions are not consistent. (c) Using spatial patches (1D slices
here), on the other hand, offers greater flexibility by adapting to the local flow.

Color update In the conventional patch-based optimization framework, the recon-

struction step involves “patch voting,” where the pixel color at an unknown pixel is esti-

mated by averaging the colors of the corresponding nearest neighbors from all overlapping

patches [16]. This encourages spatial coherence, i.e., reconstructed patches look similar

to some place in the known region. We extend this step to incorporate also diffused colors

from the nearest transitive temporal neighbors in the known region (i.e., found by walk-

ing along the flow vectors until a known pixel is reached). We use forward/backward flow

consistency to identify areas of unreliable flow, e.g., in occluded or dis-occluded regions.

Forward and backward flow update After estimating color in the target region, we

update and refine the forward and backward flow fields. This step resembles the two-frame

optical flow computation in the known region. Here, we fix the flow in the source regions

and only update the flow in the target regions, resulting in an optical flow estimation

algorithm with spatio-temporal hole boundary constraints.

4.4 Completion as Optimization

In this section, we provide details for our approach. We start by introducing the problem

formulation and objective function. Next, we describe our optimization procedure for

joint color and flow estimation.

49

4.4.1 Problem formulation

Let III be the input video of height H, width W and number of frames L, and UUU ,VVV the

forward and backward flow fields, respectively. The forward flow at position (x,y, f) is

given by UUU(x,y, f) = (dx,dy,+1), indicating the flow vector (dx,dy) from a point located

at (x,y, f) to a point (x+dx, y+dy, f+1) in the video III. Similarly, the backward flow at

(x,y, f) is VVV (x,y, f) = (dx,dy,−1). We denote the set of unknown pixels by Ω (i.e., the

user-specified spatio-temporal regions) and the set of known pixels by Ω.

We define ti = (tx
i , t

y
i , t

f
i) ∈ Ω as the ith target pixel position, where (tx

i , t
y
i) is the 2D

spatial position and t f
i is the frame index. Our goal is to estimate the unknown color values

III(ti) for all target pixels, as well as the forward/backward flow vectors UUU(ti),VVV (ti). We

estimate the colors through non-parametric patch-based optimization. Specifically, for

the ith target (unknown) pixel, we seek source (known) pixel position si = (sx
i ,s

y
i ,s

f
i) ∈Ω

and 2D patch geometric transformation θi ∈ R2 (patch scaling and rotation) to minimize

spatial reconstruction errors. Temporal consistency of synthesized colors III(ti) is achieved

by enforcing color consistency along forward and backward flow fields UUU ,VVV . We describe

the objective function and iterative optimization steps in the following subsections.

4.4.2 Objective function

We solve the following problem:

argmin
III,UUU ,VVV ,{si,θi}

EEEcolor-spatial +EEEcolor-temporal +EEEflow-spatial, (4.1)

where: (1) EEEcolor-spatial penalizes spatial patch-based reconstruction errors of colors in

the target regions, (2) EEEcolor-temporal penalizes temporal inconsistency of the synthesized

colors, and (3) EEEflow-spatial is a spatial regularization term for the forward and backward

flow fields.

Spatial color cost This cost encourages local neighborhoods Pi in the target region to

appear similar to local neighborhoods Qi in the source region. It also encourages spatial

coherence, since we consider overlapping target patches. Pi is an axis-aligned 5×5 spatial

color patch, centered around ti, and Qi is centered around si, with scale and rotation

transformation specified by θi. The spatial color cost is the sum of square losses for all

overlapping patches in Ω and their correspondences:

EEEcolor-spatial = ∑
i∈Ω

‖Pi−Qi‖2
2 . (4.2)

50

We use a Gaussian falloff function with σ = 1 to give higher weights to pixels closer to

the center of the neighborhood.

Temporal color cost This cost encourages temporal color consistency between adja-

cent frames along the forward and backward flow vectors. We use a term that is commonly

employed in optical flow algorithms:

EEEcolor-temporal = ∑
i∈Ω

αφ

(∥∥III(ti)− III
(
ti +UUU(ti)

)∥∥2
2

)
+

αφ

(∥∥III(ti)− III
(
ti +VVV (ti)

)∥∥2
2

)
,

(4.3)

where the Charbonnier penalty φ(x2) =
√

x2 + ε with a small constant ε is a robust func-

tion (a differentiable variant of `1-norm), and α = 0.5 is the weight coefficient for this

cost.

Spatial flow cost To promote piecewise smooth flow fields, we introduce spatial reg-

ularization:

EEEflow-spatial = β

∫∫
φ

(
‖5UUUx(ti)‖2

2 +‖5UUUy(ti)‖2
2

)
dxdy +

β

∫∫
φ

(
‖5VVVx(ti)‖2

2 +‖5VVVy(ti)‖2
2

)
dxdy,

(4.4)

where β = 0.1 is the weight coefficient for this cost, and5 denotes the gradient operator.

This cost penalizes large magnitudes in the gradient of the flow field with a robust function

φ(x) and regularizes the flow vectors between the synthesized colors in adjacent frames.

4.4.3 Optimization

Since Equation 4.1 is non-convex, we use an iterative optimization algorithm that alter-

nates between minimizing different subsets of the variables. We apply the optimization in

a coarse-to-fine manner to reduce the chance of prematurely locking into a bad local min-

imum. At each iteration, we first fix the colors III and flow fields UUU ,VVV , and solve for source

patch position and transformation (si,θi) for each target patch ti. This corresponds to the

patch search step for estimating the dense approximate nearest neighbor field {si,θi}i∈Ω.

We then fix the estimated nearest neighbor field (si,θi) and flow fields UUU ,VVV and estimate

colors III. This color synthesis step minimizes local appearance differences between the

source and target patches spatially and the color differences along flow vectors tempo-

rally. Finally, we fix the synthesized colors III and update the forward/backward flow fields

UUU ,VVV . Algorithm 1 summarizes this procedure in pseudocode. We now describe each step

51

(a) PatchMatch propagation (b) Flow-guided propagation

Figure 4.3: Flow-guided temporal propagation. (a) The direct extension of the
PatchMatch algorithm [17] to 3D [85]. Similar to the spatial propagation case in
PatchMatch, candidate patches are propagated along the temporal axis. (b) The
proposed flow-guided temporal propagation relaxes the constraints of
axis-aligned propagation and uses local forward and backward flow vectors for
accurate prediction of the candidate source patch position and transformation.

in detail.

Nearest neighbor field estimation Given the currently estimated color III and for-

ward/backward flow fields UUU,VVV , we want to search for each target pixel position ti (1) the

source position si, and (2) the geometric patch transformation θi that minimizes the overall

objective in (Eq. 4.1). This is equivalent to just minimizing the first term of the objective

function (Eq. 4.2). To this end we extend the generalized PatchMatch algorithm [78] to

the spatio-temporal case. We initialize the source patch position si and patch transforma-

tion θi through random sampling, and then update the estimation by alternating between

the random search and propagation steps.

Random search: At this step, we generate a sequence of random samples (si,θi) (i.e.,

source position, rotation and scale) from an exponential distribution [78]. We update the

nearest neighbor field if any of the randomly selected sample achieves a lower cost.

Spatial and temporal propagation: This step involves propagating good nearest neigh-

bor candidates spatially and temporally. For the spatial propagation, we follow the gen-

eralized PatchMatch algorithm to take into account the geometric transformation of the

source patch. The temporal propagation step, however, has two important differences

regarding candidate patch position and transformation:

(1) Propagating patch position: In a straightforward extension of the PatchMatch al-

gorithm (e.g., as in [85]), for the target patch centered at (tx
i , t

y
i , t

f
i ± 1), the algorithm

would consider candidate source patches centered at (sx
i ,s

y
i ,s

f
i ± 1). However, this tem-

poral propagation strategy implicitly assumes that the motion at the target pixel ti is the

52

same as the motion at the source pixel si. We avoid this by temporally propagating the

candidate patches along the estimated forward and backward flow vectors; see Figure 4.3

as illustration of forward temporal propagation. For target patch ti, we generate the can-

didate source patch position si by: (1) finding temporal neighbor of ti using backward

flow: t′i = ti +VVV (ti), (2) finding the corresponding source patch s′i of the target patch t′i
from the current nearest neighbor field, and (3) propagating the source patch to the next

frame using forward flow si = s′i +UUU(si). The backward temporal propagation follows a

similar procedure. The flow-guided temporal propagation removes the assumption that

the motion must be consistent in the source and target patches.

(2) Propagating patch transformation: We observe that the local patches of flow vec-

tors provide cues of the patch transformation from the current frame to the adjacent

frames. For example, the apparent size of an object increases under camera zoom. Scal-

ing of patches can be inferred from the relative densities of flow vectors from frame to

frame. More specifically, we warp a grid of pixel positions using optic flow and estimate

the propagated candidate transformation matrix as T (UUU(s′i))S(θ ′i)T (VVV (ti)), where S(θ ′i)

is the transformation matrix of source patch s′i and T (VVV (ti)) is the estimated patch trans-

formation matrix using local flow vectors at position ti. T (UUU(s′i)) is similarly defined.

Flow-guided color synthesis Given the currently estimated forward/backward flow

fields UUU,VVV, we estimate the color in the missing regions by minimizing EEEcolor-spatial +

EEEcolor-temporal.

The spatial color cost EEEcolor-spatial by itself could be minimized using standard patch

voting, i.e., computing the weighted average of the overlapping source patches. Incorpo-

rating the temporal color cost EEEcolor-temporal turns the problem into a 3D Poisson equation

with temporal connections specified by the forward/backward flow vectors. It can be

solved with the Gauss-Seidel method. Let ZZZ denote the color field obtained by spatial

voting, i.e., the minimizer of EEEcolor-spatial. Applying the Gauss-Seidel method involves it-

eratively averaging ZZZ and the warped images from the forward/backward flow. However,

we found that this algorithm requires many iterations to convergence, particularly when

the hole contains a long temporal span. In addition, the repeated application of bicubic

interpolation (for sampling colors in sub-pixel positions) introduces unwanted blur and

ringing artifacts.

We propose a heuristic to address this issue. First, we categorize the missing pixels

into two classes:

Connected pixels are pixels that are visible somewhere in the video. By following their

forward or backward flow connections transitively we eventually reach a known

pixel. We call these known pixels the transitive temporal neighbors of the con-

nected pixel, designated rrr f
i (forward) and rrrb

i (backward) for ith pixel. For connected

53

Figure 4.4: Flow-guided color synthesis. For all target pixels, we find their
temporal neighbors in the source regions by traversing the estimated flow
vectors. We then use these temporal neighbors to enforce temporal coherence.

pixels we directly penalize deviation from the transitive temporal neighbor colors,

avoiding error accumulation from repeated resampling.

Isolated pixels are not transitively connected to any known pixels. It is difficult to syn-

thesize isolated pixels consistently using the Gauss-Seidel solver described above.

To address this issue we find the frame that has most isolated pixels and designate

it a key frame. The isolated pixels in the key frame are treated as if they are known

pixels, i.e., they become the transitive temporal neighbors for other isolated pixels,

turning them into connected pixels. We greedily pick key frames in this manner

until all isolated pixels are connected. The key frame pixels themselves do not

have temporal neighbors, and use spatial voting only. In a way they are synthe-

sized like in a standard image completion problem, albeit jointly solved in a video

completion problem.

Figure 4.4 illustrates the situations described above. Formally, the heuristic above is

implemented by minimizing the following objective:

argmin
III,ZZZ

∑
i∈Ω

‖III(ti)−ZZZ(ti)‖2
2 +αφ

(∥∥∥III(ti)− III(rrr f
i)
∥∥∥2

2

)
(4.5)

+αφ

(∥∥III(ti)− III(rrrb
i)
∥∥2

2

)
.

For pixels that are missing either rrr f
i or rrrb

i we drop the respective terms (key frames do not

have temporal neighbors, all other pixels have at least one temporal neighbor).

As this objective function decomposes into |Ω| independent loss functions, we can

drop the pixel index i for simplicity. We use the spatial voting results ZZZ as an initializa-

tion, which corresponds to only minimizing spatial cost and ignoring temporal coherence.

54

We then iteratively solve the best increment dIII by setting the derivative of the objective

function to zero. Denote the differences of the ZZZ(ti)− III(ti) as dZZZ, I(rrr f
i)− III(ti) as dIII f ,

and I(rrrb
i)− III(ti) as dIIIb. In each iteration, we can compute the optimal increment in close-

form:

dIII(ti) =
1
C

[
dZZZ +α

(
φ
′(dIII f)dIII f +φ

′
(

dIIIb
)

dIIIb
)]

, (4.6)

C = 1+α

(
φ
′(dIII f)+φ

′
(

dIIIb
))

, (4.7)

where φ ′(x2) = 1√
x2+ε2 is the first-order derivative of the robust function φ(·). We find

that five iterations are sufficient for convergence. Solving the modified objective function

in Eq. 4.6 strikes a good balance between temporal consistency and spatial coherence.

Forward and backward flow field estimation In this step, we fix the color III and

refine and update the forward/backward flow fields UUU ,VVV . The minimization problem cor-

responds to a typical two-frame optical flow estimation problem with a data term and a

spatial regularization term. We use the previously estimated flow as initialization and it-

eratively estimate the flow increments. We use the Iterative Reweighted Least Squares

(IRLS) formulation [102] to compute the forward and background flow field in the target

regions.

4.4.4 Initialization

To bootstrap the optimization process we need to initialize color, flow, and nearest neigh-

bor fields at the coarsest scale. We first initialize the nearest neighbor field {si,θi} with

random samples, and the flow fields UUU ,VVV by smoothly interpolating the known values at

the boundary inward (independently for each frame). Next, we initialize the colors III by

running the nearest neighbor field estimation and the flow-guided color synthesis step,

and finally update the flow fields using the synthesized colors.

4.4.5 Implementation details

We use a relatively small 5×5 patches in our synthesis. While typical image completion

algorithms use larger patches, e.g., 10× 10 [14], we observe that increasing the patch

size does not substantially improve the visual quality of the results while significantly

increasing the runtime. We attribute this effect to the additional temporal connections

by the forward and backward flow vectors. These connections help efficiently propagate

good candidates along the temporal dimension for nearest neighbor search. We set the

55

color temporal cost weight α = 0.5 and the flow spatial weight β = 0.1. We fix the

weights for all our experiments.

We optimize the objective function in a multi-resolution fashion. We set the number of

image pyramid levels such that the height at the coarse scale is between 32 and 64 pixels.

At the coarsest scale, we run 20 iterations and decrease iteration count in each subsequent

scale by 4 (though we never use less than 4 iterations).

Our algorithm relies on the estimated flow to enforce temporal consistency. Opti-

cal flow algorithms are far from perfect, however, particularly in occluded/dis-occluded

regions. We are thus interested in identifying unreliable flow pixels. While existing

learning-based flow confidence measures [103] appear to be robust, they are computation-

ally intensive. Instead, we use forward-backward flow consistency to identify unreliable

flow. Specifically, we compute confidence scores c f
i ,c

b
i for forward and backward flow,

c f
i = exp

(
−‖U

UU(ti)+VVV (ti +UUU(ti))‖2
2

2σ2
F

)
,

cb
i = exp

(
−‖V

VV (ti)+UUU(ti +VVV (ti))‖2
2

2σ2
F

)
,

where σF = 1 controls the sensitivity. We label the forward flow UUU(ti) at ti as “unreliable”

when the confidence score c f
i < 0.5, and similar for the backward flow. We discard these

unreliable flow vectors when searching for the temporal neighbors of the missing pixels.

As a result, we drop the respective terms in Eq. 4.6 when performing the flow-guided

color update, preventing the influence by unreliable flows.

4.5 Results

We implement the completion algorithm in MATLAB. For optical flow computation, we

use the C++ implementation from Liu [102]. Processing a short video with 854× 480

pixels and 90 frames and with a moderately sized missing region (e.g., CAMEL: 6.5M =

17.81% of pixels missing) our non-optimized implementation took around 3 hours on a

desktop computer with 2.8 GHz Intel i7 CPU (quad-core) and 12GB memory. All the
data, results, and source code will be made publicly available.

Removing dynamically moving objects in natural scenes We evaluated our al-

gorithm on a variety of challenging sequences from a recent benchmark dataset [104].

While the dataset was intended for evaluating video object segmentation algorithms, the

image sequences present multiple instances of challenges for evaluating video comple-

tion algorithms “in the wild.” The major challenges including dynamic background, mo-

56

tion blur, camera shake, background clutter, and complicated hole shapes. We dilate the

ground truth pixelwise annotation using a 15× 15 structuring element. We then use the

RotoBrush tool in Adobe AfterEffect to include cast shadows in the mask.

Figure 4.5 shows sample frames from five input image sequences with mask overlay

(odd rows) and our completion results (even rows). In the first three sequences CAMEL,

BREAKDANCE, and KITE-SURF, we demonstrate that our algorithm can seamlessly fill

the missing dynamic background for videos captured with freely moving camera. The

HORSEJUMP-LOW and FLAMINGO sequences highlight the advantage of our flow-guided

color synthesis for accurately propagating known colors into the hole.

Comparisons with state-of-the-art methods We qualitatively compare our method

with a recent state-of-the-art patch-based video completion algorithm [85]. We used the

code released by the author and tested it on the image sequences [104] using the default

parameters provided by the authors. Figure 4.6 shows the representative frames from four

sequences and the completion results. Newson et al. [85] fill the hole by sampling spatio-

temporal patches from source regions. We can see that such a technique introduces severe

artifacts because of the inconsistent motion between the source and target regions. Our

method, on the other hand, fills the missing regions with convincing contents.

In Figure 4.7, we compare with a segmentation-based technique for background [86]

and foreground inpainting [87]. As the code is not publicly available, we compare with

them using sequences from their papers. Our method achieves comparable quality without

the need to provide dense pixel-wise mask of the foreground objects [86] or specify spatio-

temporal search regions [87].

In Figure 4.8, we highlight the temporal coherence aspect of the completion results.

In Figure 4.8(b), we show a spatio-temporal x-t slice of the video along the marked pro-

file. In Figure 4.8(c)(d), we show the x-t slice of the completed video by [85] and our

approach, respectively. From the x-t slice visualization we can clearly see that our results

are temporally coherent and are adapted to the non-trivial camera motion in the known

regions.

Contributions of each component We evaluate the contributions of each of the ma-

jor components to the final performance in Figure 4.9. We tested the sequence ROLLERBLADE

by disabling (1) patch-based optimization (i.e., propagate colors from the known bound-

ary into the hole) and (2) flow estimation (i.e., using interpolated flow only), respectively.

As the input image sequence inevitably has bias, gain, color, or tone differences from

one frame to another, the completion results may contain visible boundary along the hole.

We compensate this photometric inconsistency by blending the synthesized contents with

the original input video through solving a 3D spatio-temporal Poisson problem. Fig-

57

Figure 4.5: Object removal from video sequences CAMEL, BREAKDANCE,
KITE-SURF, HORSEJUMP-LOW, and FLAMINGO. For each input sequence (odd
row), we show representative frames with mask overlay. We show the completed
results in even rows.

58

Input + mask [85] Our results

Figure 4.6: Comparison to [85] on sequences BMX-BUMPS, SWING, and TENNIS.
These sequences are challenging due to the motion blur from the fast camera
motion. Our algorithm seamlessly removes the dynamic object under shaky
motion. Newson et al. [85], on the other hand, produces visible artifacts spatially
and fails to generate temporally coherent results.

ure 4.10 shows one example of the blending result that hides the visible seams on the

boundary.

Comparison to single image completion algorithms Figure 4.11 shows the ad-

vantage of video completion (or multi-frame image completion) over conventional image

completion from a single image. In the sequence DANCE-JUMP, searching for usable

texture from the same source image fails to complete the missing region with plausible

contents. We show in Figure 4.11 results from two state-of-the-art image completion al-

gorithms: Photoshop Content Aware Fill and [1]. Our video completion result (top-right)

shows a convincing completion by transferring available contents that are visible in other

frames in the sequence.

Limitations Our video completion has several limitations. First, the computational

complexity of the proposed algorithm is still high and far from interactive rate. The long

computational time makes the method impractical for many video editing applications. In

our experiments, about 65% of the overall computation is spent on iteratively computing

and refining the forward and backward flow fields in the image sequence. Using GPU to

59

speed up the flow computation may help speed up the completion process.

Second, as our algorithm relies on dense flow fields to guide the completion, we of-

ten fail to generate convincing completion of dynamic textures, e.g., waves, due to the

unreliable flows.

Third, when a large area is occluded throughout the entire image sequence (i.e., a

large number of isolated pixels), the performance of our algorithm is limited by how

well an image completion algorithm can fill the hole. We show such a case in Figure 4.12.

While our completion is still temporally coherent, spatial artifacts are visible with a closer

examination.

4.6 Conclusions

In this chapter, we presented a robust video completion algorithm that is capable of han-

dling a wide variety of challenging scenarios. Our main contribution is to combine the ad-

vantages of patch-based optimization framework and pixel-wise flow field representation

for temporally coherent synthesis. We formulate the filling process as a global optimiza-

tion of color and flow and present an alternating optimization approach to minimize the

objective function. Experimental results show that our approach significantly extends the

capacity of existing video completion algorithms on videos containing multiple dynamic

objects, and with scene depth variations.

60

Input + mask [86] Ours

Input + mask [87] Ours

Figure 4.7: Comparison to segmentation-based methods for background [86] and
foreground [87] inpainting on sequences from their paper. Our approach achieves
similar visual quality without the need of manually segmenting out the dynamic
foreground objects in the scene or manually specifying search regions.

61

(a) Sample frame (b) Input + mask

(c) [85] (d) Ours

Figure 4.8: Temporally coherent completion. We take the sequence CAMEL and
visualize the completion results using spatiotemporal x-t slice of the video along
the profile (yellow line) in (a). (b) The x-t slice of the video with mask marked as
red. (c) Results from [85]. (d) Our results. We can clearly see that the completion
results in (c), while seeming locally plausible, fail to maintain long-term
temporal consistency. The combination of patch-based optimization and dense
flow field allows us to preserve the temporal continuity with high spatial
frequency.

(a) Input + mask (b) Our result

(c) w/o patch-based synthesis (d) w/o flow update

Figure 4.9: Contribution of different components of the proposed algorithm to
the final results. (b) Our result. (c) Without patch-based synthesis, the algorithm
cannot hallucinate regions that are not visible in the image sequence (see the blue
box). (d) Disabling the flow update introduces visible artifacts.

62

Figure 4.10: The effect of using Poisson blending for compensating the
photometric inconsistency. (a) Input + hole. (b) Our result w/o blending. (c) Our
result with Poisson blending.

Frame #29

Photoshop Content-Aware Fill

Our result

[1]

Figure 4.11: The advantage of video completion over image completion
algorithms. Our video completion algorithm faithfully recover the missing region
by taking all the frames into consideration.

Figure 4.12: Our algorithm may fail to hallucinate large missing areas. Here the
artifacts are visible with a closer examination.

63

CHAPTER 5

DETECTING MIGRATING BIRDS AT
NIGHT

5.1 Introduction

Bird migration is the regular seasonal, large-scale, often long-distance movement between

breeding and wintering grounds. Many species of bird migrate. Migration behavior is

a critical indicator for evaluating environmental health [105]. By identifying important

stopover and wintering locations, one can take action to save these key locations to pro-

tect endangered species. Scientists use a variety of methods to monitor bird migration,

including satellite tracking, weather radar, moon-watching, or attaching geolocators on

captured birds. However, these methods are either expensive (e.g., satellite tracking),

inaccurate because they are indirect (e.g., weather surveillance radars), labor-intensive

and error-prone (e.g., moon-watching), or intrusive (e.g., geolocators). Moreover, these

techniques only crudely estimate the bulk density of migrating birds aloft.

We propose to use a vision-based approach as a complementary sensing modality to

build a bird migration monitoring system. By setting up stereo cameras facing up to the

night sky, we can detect and track migrating birds in flight illuminated from below by

light pollution in the recorded videos, as shown in Figure 5.1. Vision-based solutions

offer several advantages over existing techniques. First, we can automatically and accu-

rately count the number of individual birds aloft along with detailed trajectory estimation

such as orientation, speed, and altitude. Such unprecedented accuracy in the reconstructed

trajectories of individual birds may help re-evaluate migration, locomotion and navigation

theories. Second, the estimated statistics could be used to calibrate other sensing modal-

ities such as weather radar. Third, low-cost digital cameras allow us to build large-scale,

distributed monitoring systems that cover broad areas.

There are three main challenges in developing a robust bird detection algorithm from

videos. First, as migration usually occurs at night, the recorded videos inevitably contain

substantial noise because of the low-light environment — the birds are generally invisible

to the naked eye in the sky unless they pass in front of an illuminated object such as the

moon. We illustrate this using sample frames from three video sequences in Figure 5.2.

Second, depending on the species, migrating birds fly at altitudes ranging from several

64

Figure 5.1: An example of automatic bird detection in stereo sequences. Our
system takes stereo videos of the night sky as inputs, detects migrating birds in
flight, and infers their orientation, speed, and altitude in very low SNR.

hundred feet to two miles. If the lens and camera provide an adequate field of view, the

imaged bird may span only 1-2 pixels in a frame. This suggests that motion is the only

reliable cue for detecting a bird. Third, efficient algorithms are required for large-scale

deployment.

Several methods have been proposed to detect small objects in image sequences un-

der different problem contexts. In Automatic Target Recognition (ATR) [106, 107] the

presence of the target is detected using either simple frame differencing, filter responses,

or matching against a known template and then tracking over time. Similarly, in ridge

detection in three-dimensional volumetric data (e.g., vessel extraction [108]), the ridge

is often detected using a pre-defined set of oriented filters. The common drawback of

these approaches is that the detection is mostly performed locally. These techniques are

thus not directly applicable to our problem due to the extremely low SNRs in our case.

Recent methods address this issue by designing filter banks to improve detection of faint

signals [109, 110, 111, 112] or by searching a large set of curves [113, 114]. However,

most of these algorithms, designed specifically for 2D images, are computationally infea-

sible for 3D image data. In multi-object tracking, several algorithms have been proposed

to track objects in 3D using stereoscopy [115, 116].

In general, the problem of target tracking can be divided into four main categories: (1)

Large objects in bright light (e.g., tracking cars, pedestrians, faces in daylight). (2) Small

objects in bright light (e.g., meteor streaks in sky surveys, planes with lights at night or

in daylight at a great distance, rockets/missiles that are bright in IR). (3) Large objects

in dim light (e.g., people detection and tracking at night under surveillance illumination).

(4) Small objects in low light (e.g., birds flying over 1 mile high at night illuminated

by light pollution). Unfortunately, a direct application of existing techniques does not

suffice for our problem (category 4). These techniques often pose tracking and trajectory

reconstruction as independent problems of frame-level target localization and cross-frame

and cross-view data-association. The target size and SNR in our case are so low that

targets cannot be reliably detected in individual frames.

65

Figure 5.2: Detecting migrating birds from noisy image sequences. Each row
shows a set of frames from a video sequence. From top to bottom, the sequences
shown here have increasing levels of difficulty. Most of the bright spots in the
images are stars. Color boxes indicate the birds in the first and the last frame of
each sequence. Because of the low SNR and small size of high-flying birds (1-2
pixels), detection is very difficult, and often impossible, when looking at
individual frames. It is only by detecting motion in the video stream that the
human perceptual system can identify and track most birds. Similarly, the
detection algorithm can only detect the more difficult high-flying birds by
looking at the full video sequence and by simultaneously using stereo constraints
from both cameras. Results are best viewed on a high-resolution display with
adequate zoom level.

In this chapter, we tackle this problem using a two-stage robust model fitting approach.

In contrast to prior work that aims at local detections in each frame, we aim at detecting

using domain knowledge and global reasoning. Our fundamental assumption is that the

migrating birds do not significantly change course and speed over short temporal spans

(e.g., 5 seconds). We can thus cast the bird detection as finding curved 3D ridges in a

spatiotemporal volume. The core detection algorithm consists of two main stages:

(1) Geometric verification: Given a large collection of noisy local detections, we ex-

tend the RANSAC-based 3D line fitting algorithm by explicitly incorporating stereo vi-

sion constraints. Specifically, we fit the model to both views jointly, which offers several

advantages over a straightforward application of RANSAC independently in each view.

First, the sample subset is used to determine the full bird model including altitude, speed,

orientation, and position. Second, we can quickly reject a large number of physically

implausible model hypotheses by checking the disparity, the temporal alignment, and ex-

treme speed and altitude. Third, our model hypothesis allows us to exploit simultaneously

the detected foreground points from both views by compensating the disparity. We set a

loose threshold for line fitting so that birds flying at time-varying speed or directions could

also be detected. To the best of our knowledge, while RANSAC has been extensively ap-

plied to two-view robust correspondence problems (e.g., solving the fundamental matrix,

homography), it is less explored in robust model fitting (e.g., fitting 3D lines in volumetric

data) by incorporating multi-view inputs and constraints.

66

(a) Bird patches (b) Background patches

Figure 5.3: The difficulty of detection based on local image patches. (a) 16
cropped local image patch along a manually labeled bird trajectory. (b) 16
cropped random background patches. These patches are virtually
indistinguishable by the naked eye.

(2) Trajectory verification: In this step, we aim at verifying the presence of the bird

using guidance from geometric verification. Given a small set of 3D line hypotheses,

we integrate the signals along the direction of the coarse 3D trajectory while account-

ing for spatial uncertainties due to time-varying speed, direction, and altitude. This is

technically realized using the generalized distance transform to efficiently search over all

possible spatial deformations. The trajectory verification allows us to integrate all of the

local responses along the predicted trajectory, resulting in a more discriminative signal

for separating birds from noisy background night sky and ranking hypothesis. This step

is critical for handling challenging low-SNR scenarios.

We make the following contributions in this chapter:

1. We address a novel application domain using computer vision algorithms. The

vision-based system provides a low-cost, accurate, and new sensing modality for

monitoring and studying bird migration.

2. We propose a RANSAC-based 3D line fitting algorithm that explicitly incorpo-

rates stereo vision constraints. We demonstrate that such constraints are crucial for

robust model fitting in very low SNRs.

3. We account for birds flying with time-varying speeds and directions using de-

formable part modeling. The trajectory verification step allows us to gather all the

local responses along the predicted trajectory, resulting in a discriminative signal

for separating birds from the noisy background night sky.

67

Figure 5.4: Overview of the bird detection algorithm. Our algorithm consists of
three main modules: (a) Foreground detection: using statistical background
modeling for moving object detection. (b) Geometric verification:
RANSAC-based line fitting with stereo vision constraints. The three red boxes
indicate the selected hypothetical inliers. This strategy naturally handles
disparity estimation and offers computational efficiency by rejecting a large
number of physically implausible configurations. (c) Trajectory verification:
with the coarse 3D line fitting, we integrate weak signals along the predicted
trajectory for both videos to verify if there is a bird. To account for birds flying at
time-varying speed and directions, we interpret the motion compensated local
image patch as a “part” of an object and use the generalized distance
transform [117] for handling such spatial uncertainty. We detect the birds by
thresholding the final response map.

5.2 Related Work

Bird migration monitoring techniques. Scientists use methods such as weather

radar [118, 119, 120] and acoustic sensors [121, 122, 123] to monitor migrating birds [124,

125, 126]. Radar networks can provide wide area coverage over 1000s of kilometers, but

radar reflectivity data is difficult to interpret and requires careful calibration as the data

contain many biological (birds, bats, and insects) and meteorological phenomena. Cal-

ibration often is based on a traditional method for counting migrating birds: the use of

a telescope to count birds as they pass across the full moon. Although moon-watching

[127, 128] can provide direct visual bird counts, it is labor-intensive, error-prone (e.g.,

when multiple birds fly across), and only covers a very small portion of the night sky (the

moon is about 0.5 deg wide in the sky). In contrast, our vision-based approach can accu-

rately detect birds, infer their orientations, speeds, altitudes, and cover a large portion of

the sky — a 5-10 degree FOV covers 250 to 1000× larger area than the moon.

Small target detection in image sequences. Detecting and tracking small targets

in infrared image sequences is a long-standing problem in computer vision with numerous

military applications. These methods typically rely on detecting the small targets locally,

e.g., using frame-differencing [129], max-mean/max-median filter [130], top-hat trans-

formation [131], or directional filters [132]. Local detections are then linked over time

using sequential hypothesis testing or motion models such as Kalman, particle filters, or

68

global optimization approaches [116, 115]. As our videos contain a substantial amount

of noise, local detections are not reliable (as shown in Figure 5.3). Unlike previous ap-

proaches that aim at getting correct local detections, we leverage top-down models with

global reasoning for robust detection.

The work most related to our work is that of Ballerini et al. [133], which uses stereo

vision to reconstruct 3D positions of individual birds to study the collective behavior of

flocks of birds during the day. Our problem differs from theirs because many birds migrate

at night. The challenge thus lies in how to detect birds in very low SNRs reliably. We can

perform detection only by doing detection and tracking simultaneously so that detection

is enabled by additional constraints coming from tracking, and vice versa.

Ridge detection in three-dimensions. We can view our problem as ridge detection

in three-dimensional volumetric data (i.e., spatiotemporal volume). Ridge detection tech-

niques often detect ridges using a pre-defined set of oriented filters at multiple scales.

However, the local filters are not optimal for detecting faint signals in low SNR settings.

Recent efforts include designing image representation for facilitating faint signal detec-

tion [109, 110, 112] or detecting faint curved edges in images [113, 114].

Geometric model fitting. Our work is related to classical parametric shape fitting

techniques in computer vision such as RANSAC [134] and generalized Hough trans-

form [135]. In our problem context, Hough transform would need to construct a 5-D pa-

rameter space, making the memory cost prohibitively high. Our method uses a RANSAC-

based algorithm to perform line fitting in 3D point clouds (2D space + 1D time). The

novelty lies in that we propose a sample selection approach for generating hypothetical

inliers by leveraging the stereo vision constraints.

5.3 Overview

Figure 5.4 illustrates the three main steps for detecting migrating birds in flight. Given

a pair of stereo videos, we first use classical statistical background modeling to detect

foreground candidates (Section 5.4.3). As shown in Figure 5.4, the substantial number of

outliers obscure the hidden curved line. Second, we use a RANSAC-based 3D line fitting

algorithm to generate and verify hypotheses (Section 5.4.4). We propose a sampling strat-

egy that explicitly incorporates stereo vision constraints. Such constraints are powerful

because they allow us to reject a large portion of physically implausible configurations,

and thereby offer computational efficiency when a large number of random samples are

required due to the unusually high outliers ratio. We use a coarse threshold to maintain

69

high recall in detection. Third, we use trajectory verification (Section 5.4.4) to integrate

the faint signals along the predicted trajectory from geometric verification while account-

ing for spatial uncertainties. Unlike RANSAC-based detection methods that use sparse

detection data (i.e., 3D point clouds), we exploit dense information across the spatiotem-

poral volume. Through gathering local evidence across a long temporal span, we get a

clean and discriminative signal that allows us to separate birds from the noisy background

with high precision.

5.4 Stereo-based Bird Detection

In this section, we describe the proposed method in detail. We first present the local bird

trajectory model by assuming a weak perspective camera model. We then briefly describe

pre-processing steps for rectifying videos of the night sky by registering stars, followed

by the core detection algorithm: (1) foreground detection, (2) geometry verification, and

(3) trajectory verification.

5.4.1 Bird trajectory modeling

To model the coarse bird trajectory in a video, we make the following two assumptions.

First, we assume affine camera models because the migrating birds in flight are reasonably

far away from the camera (with altitudes ranging from several hundred feet to two miles)

compared with the size of a bird. Second, we assume that birds fly at relatively constant

speed, orientation, and altitude during a short time-frame (e.g., 5 seconds).

Denoting the three-dimensional position in space of a bird at time t as Pt = [Xt ,Yt ,Zt]
>,

we can express the imaged position of the bird pt = [xt ,yt]
> as pt = M[P>t ,1]>, where

M ∈ R2×4 is the camera projection matrix. Using the constant speed, orientation, and

altitude assumptions, we simplify the 3D position Pt as Pt = P0 + t[Vx,Vy,0]>, where

P0 indicates the position at time t = 0, and Vx,Vy are the physical speeds in space. We

can write down the imaged position pt = p0 + t[vx,vy]
>, where vx,vy are the speed in the

image space. We can thus view this idealized bird trajectory as a thin, straight ridge in the

spatio-temporal video cube.

5.4.2 Stereo image rectification

Our system uses stereo vision to determine the altitude of a flying bird from correspon-

dence. To simplify the 2D correspondence search to 1D, we first rectify the images from

two views so that all epipolar lines are parallel to the horizontal axis. We follow the

70

(a) Correspondence (b) Stereo rectification

Figure 5.5: Stereo image rectification using star registration. (a) Correspondence,
(b) Stereo image rectification.

standard procedure for stereo image rectification: (1) finding a set of correspondences in

the stereo pair of videos, (2) estimate the fundamental matrix [136], and (3) compute the

rectifying matrices using [137].

For night sky images, we cannot apply the commonly used local interest point and fea-

ture descriptor matching approaches to establish correspondences. Fortunately, mother

nature provides stars as markers. The two cameras are set up to capture roughly the same

patch of the sky, so we exploit the imaged star positions for image registration. For each

video, we first apply a moving average filter over the temporal axis to suppress the back-

ground noise. We then apply a single-scale 2D Laplacian of the Gaussian (LoG) to locate

bright blob structures. After thresholding the LoG filter response and non-maximum sup-

pression, we obtain a set of star positions (i.e., 2D point cloud) for each video.

With the detected star positions, we use the Iterative Closest Point (ICP) algorithm

[138] with an affine motion model to find the transformation and inlier matches. However,

as the stars are infinitely far away from the camera, the correspondences from stars give

rise to a degenerate case in fundamental matrix estimation. To eliminate this degeneracy,

we manually label the position of a flying bird in several frames. We only need to do this

manual labeling once because we assume the cameras remain fixed through the videos. It

is possible to use the proposed automatic flying bird detection to perform self-calibration

(e.g., for cases where the stereo camera setup cannot remain fixed over time), but we leave

that for future work.

We show in Figure 5.5(a) the detected stars in two views (Red and Green) the corre-

spondence from ICP in Blue line. Figure 5.5(b) shows the rectified positions for the stars

and the manually labeled bird. The stars from two views align accurately (as they are in-

finitely far) and the labeled birds fall on horizontal lines. Note that the results shown here

contain star positions over 20 mins. The purpose of using this “star trail” is to provide

71

Figure 5.6: Foreground detection. (a) Sample foreground detection plots. Flying
birds in a video appear like curved lines in the spatio-temporal volume. In this
scattered plot, there are three curved lines. (b) Projection of foreground detection
onto X-Y, X-T, and Y-T planes.

additional accuracy for registration.

5.4.3 Foreground detection

In this step, we look for local evidences for detecting flying birds. As imaged flying birds

appear brighter than the surrounding background (illuminated from below by light pollu-

tion), the imaged bird trajectory can be seen as an intensity ridge in the video sequence.

The problem of bird detection could be naturally cast as a ridge detection task in a 3D

spatiotemporal video cube. Ridge (and valley) detection have been extensively studied in

computer vision and image analysis with typical applications for detecting road in aerial

images and for detecting blood vessels in 2D retinal or 3D magnetic resonance images.

These methods often rely on designing filters that respond to locally linear intensity fea-

tures followed by linking processes. However, these methods cannot directly be applied

to our problem. As our videos have very low SNR, achieving accurate local detection

would require evaluating a large collection of oriented filters with large kernel sizes, and

thus would not scale well with large-scale video datasets.

For efficiency, we rely on top-down knowledge and global reasoning for detecting dim

flying birds and resort to a simple statistical background modeling approach for local fore-

ground pixel detection. Specifically, we build a per-pixel Gaussian model and compute

the response of a pixel by measuring the intensity deviation from the learned model. We

detect foreground pixels by thresholding the local responses. We estimate the parameters

of the per-pixel Gaussian model (mean and variance) online using a pre-defined learning

rate. Note that while other more sophisticated background modeling and subtraction tech-

72

niques are available, we did not observe substantial improvement. Figure 5.6 shows the

three-dimensional (X-Y-T) scattered plot of the foreground detection on the West and East

cameras on a video with a flock of three birds. Figure 5.6(b) shows the projections of the

3D point cloud onto X-Y, Y-T, and X-T planes, respectively. We could visually spot the

three flying birds. The challenge, however, lies in how to handle the high outliers ratio.

5.4.4 Geometric verification

Our coarse bird model (i.e., a straight line in a 3D video cube) consists of 5 parameters,

including an initial spatial position in the image plane (2D), constant motion vectors (2D),

and disparity from stereo vision (1D). The goal of geometric verification is to fit coarse

bird models to the 3D point clouds with a significant portion of outliers from the fore-

ground detection step. The most widely used robust fitting algorithms are (1) Generalized

Hough Transform (GHT) and (2) RANSAC. We choose to perform geometric verification

using RANSAC because of the demanding memory complexity in GHT for estimating 5D

models.

A straightforward approach would be using RANSAC-based 3D line fitting method

independently for each video and then solve the disparity by matching fitted lines in two

views after the models in each video are found. However, such an approach does not

exploit the available physical constraints presented in the stereo videos. For example,

the two corresponding 3D lines in the stereo pair should be parallel, having the same

y-coordinate at all frames, and with positive disparity values. To incorporate these con-

straints, we propose a stereo-based 3D line fitting algorithm. Specifically, of the detected

foreground points from the stereo pair, we select random subsets of three detected points

to estimate the bird model, where two points are drawn from one video, and one point is

drawn from the other video.

Figure 5.4(b) illustrates the three-point hypothetical inlier. The proposed three-point

subset sampling strategy offers several advantages. First, we can fully determine the

5D bird model using the selected three points. Second, we can quickly reject a large

collection of model hypotheses that are not physically plausible by checking the disparity

and temporal alignment. Third, as we also have disparity in the estimated model, we can

simultaneously exploit the detected foreground points from both videos by compensating

for the disparity.

We follow the standard RANSAC algorithm and count the number of inliers (number

of foreground points fall inside the 3D tube). We then apply the J-linkage clustering al-

gorithm [139] to group repeatedly sampled hypotheses. Once we have the grouped model

hypothesis, we perform least squares fitting using all the inlier foreground points from

both videos to compute a more reliable bird model estimation. We solve this refinement

73

Figure 5.7: Trajectory verification. Given a 3D line model, we gather the spatial
patches along the coarse trajectory from T = 1 (when the bird enters the frame)
to T = N (when the bird leaves the frame). These local responses are noisy and
misaligned due to time-varying speed and directions. We transform the responses
to account for spatial uncertainty.

step iteratively. Given an estimated disparity, we can solve the orientation using Singu-

lar Value Decomposition. In turn, we fix the orientation and update the disparity using

least-square fitting.

5.4.5 Trajectory verification

While geometric verification can efficiently detect flying birds by exploiting the stereo

vision constraints, we observe a high false positive rate due to inevitable noisy foreground

detections. We address this issue by integrating signals along the bird’s trajectory. Unlike

geometric verification that fit models to sparse foreground candidates, trajectory verifica-

tion exploits dense information across the entire video cube.

One way to achieve this is to use the corresponding matched filter that computes the

average local response along its trajectory. However, the actual bird trajectory may not

74

be a perfect 3D straight line in the video because the bird may not fly along the same

direction or maintain constant speed and altitude. Simply using the estimated coarse bird

model to filter the videos is clearly sub-optimal as spatial misalignments lead to blurry

accumulated response.

We address this problem by allowing the bird trajectory to be “deformed” as illustrated

in Figure 5.7. We interpret the bird response at the predicted position using the coarse

model at a frame as the local response for a “part”. The detection of the bird can then be

cast as the detection of a deformable part model. Specifically, we evaluate the score of a

small window (e.g., 15 × 15) as

score(x,y) =
Nt

∑
t=1

max
dx,dy

[
Rt (xt +dx,yt +dy)−α

(
dx2 +dy2)] ,

where Rt is the response map for foreground object, (xt ,yt) is the predicted position at

time t using the hypothesized 3D line from the geometric verification step, and α is the

weights for allowing different levels of spatial deformation. As we also have the disparity

estimation, we aggregate the scores from two views. We use the Generalized Distance

Transform [117] to efficiently search over all possible deformations through time. These

transformed responses can then be added together and ranked for verification.

5.5 Experimental Results

5.5.1 Implementation details

In foreground detection, we classify a pixel as a foreground if its intensity is greater than

the mean background intensity by 2.75 standard deviations. In geometric verification, we

keep model hypotheses with at least 5 inliers and reject the rest. In trajectory verification,

we use 15×15 windows and set the spatial deformation parameter α = 0.5. We fix these

parameters throughout all experiments.

We process a video in a mini-batch mode, by dividing a long video sequence into a set

of overlapping five-second sequences with a one-second interval. We detect birds in each

video clip and cluster these detections in the nearby clips to generate our final results. In

a video with frame rate 30 fps, we have in total 150 frames. For processing one 5 second

video clip, our MATLAB implementation takes 7 seconds on a PC with 1.9GHz and 8 GB

memory. The data and source code are available on the project website.1

1https://sites.google.com/site/jbhuang0604

75

Table 5.1: Quantitative performance

Method Precision Recall
Geometric verification only 6.08% 83.10%

Geometric and Trajectory verification 97.30% 83.72%

5.5.2 Evaluation on real videos

To evaluate the proposed method, we have developed a prototype stereo video system to

capture videos of migrating birds at night. In what follows, we present the data collection

steps and our results on real videos.

Data collection We use two low-light near-IR mono industrial VGA cameras to cap-

ture the stereo video. We chose the cameras because of their superior low-light sensitivity

(10k–100k × more sensitive than consumer video cameras). The cameras have a spatial

resolution of 640×480 pixels. We use a pair of 50 mm lenses and set the two cameras on

tripods facing the sky with a two-meter baseline. We captured hours of stereo video on

different nights and selected a 40-minutes long video from Spring migration for testing.

Quantitative results To evaluate performance, we developed a Graphical User Inter-

face to allow experts to annotate the birds flying across video frames. In total, 86 birds

were found in the video. A majority of the birds head North +− 20 degrees. Among

the 86 annotated birds, our method detects 74 of them, with two false positives and 12

missed detections. In Table 5.1, we show the quantitative performance of our algorithm.

When using geometric verification only, we achieve 83.10% in recall. However, precision

is very poor, with only 6.08%. Coupled with trajectory verification, precision rises above

95% with 83% recall. The automatic system detects 9 birds missed by the experts.

We further evaluate the relative contributions from (1) fusing information from two

views and (2) using the deformable part model to account for the inevitable spatial un-

certainty when using real videos of birds migrating at night. Specifically, we report the

precision and recall values using the four variants. One View: use only the video from

the West camera. Two Views: use both West and East videos. Without deformation: did

not transform the scores in each local image patch. With deformation: use the generalized

distance transform to allow spatial uncertainty.

To make the contribution of each term clear, Figure 5.8 shows the precision and re-

call of these four variants using a version of the system that does no post-processing

to reduce false detections. In cases of integrating signals along the estimated trajectory

(from geometric verification) in one view, both the precision and recall improve when

we account for the spatial deformation. When using two views without accounting for

76

Figure 5.8: Precision and recall of four variants of the proposed trajectory
verification approach on real videos.

the spatial deformation, we found that the recall drops significantly. We attribute the

performance degradation to the imperfect disparity estimation between the two views. In-

tegrating scores from two views without taking the spatial uncertainty into account, the

results suggest that the algorithm may not be able to accumulate the weak signals due

to the misalignment, and, therefore, fails to detect dim birds. Overall, the best perfor-

mance is achieved by taking advantage of the stereo constraint while also allowing for

deformation to account for spatial uncertainty.

Qualitative results In Figure 5.9, we show detection results in a variety of scenarios

to demonstrate the effectiveness of the proposed approach. For example, our method can

detect birds flying at altitudes ranging from 200 meters to more than 2,500 meters as well

as at different directions and speeds. We can also handle multiple birds flying across the

video frame. Unlike existing techniques that can only detect the presence of the birds, the

direct visual analysis provides detailed measurements about the trajectory of individual

birds. We believe such information may provide valuable insights about the behavior of

migrating flocks.

77

Figure 5.9: Detection results on real videos. Our system can handle diverse
scenarios, e.g., single, multiple birds, birds flying parallel with each other, or
birds flying at very different altitudes.

5.5.3 Discussion

Limitations One potential problem and limitation in evaluating the performance on

real videos is that the groundtruth annotations are not available, and the human visual

system may not be able to detect very dim, high-flying birds from the video. In the

future, we plan to investigate a multi-modal solution (e.g., vision-based, acoustics-based,

and weather radar) to this problem. Figure 5.10 shows a few of the limitations of our

method. First, as our foreground detection is based on a statistical background modeling

approach, we are not able to handle dynamic background or sudden illumination changes.

For example, in Figure 5.10(a), our method falsely detects the moving cloud as a bird.

Second, even with the use of stereo-based constraints for rejecting physically implausible

detections (e.g., Figure 5.10(b)), our method may sometimes produce false positives due

to the substantial noise in the video. One potential solution is to use three or more cameras

covering the same patch of the night sky. Our framework could be extended to multi-

camera settings to further improve the detection performance. Third, in Figure 5.10(c) we

show that our method is robust to other types of flying objects. The altitude estimation

provides important cues for separating migrating birds from high-flying objects (satellites

or airplanes) and low-flying objects (insects).

78

(a) FP (cloud) (b) FP (noises) (c) TN (insect)

Figure 5.10: Interesting cases: (a) A false positive detection due to a moving
cloud. (b) A false positive detection due to noise. (c) A true negative — the
moving blob is an insect. Our system uses the estimated altitude to avoid
confusion with high-flying objects (e.g., above 3000 meters) such as satellites or
planes and low-flying objects (e.g., under 50 meters) such as insects.

5.6 Conclusions

We presented the first stereo-vision-based approach for monitoring migrating birds at

night. From a pair of stereo videos, we perform stereo image rectification by detect-

ing and registering stars. The core bird detection algorithm then consists of three main

steps. First, we use statistical background modeling for foreground detection for each

video. This produces a noisy three-dimensional point cloud. Second, we propose a novel

RANSAC-based 3D line fitting that explicitly takes into account stereo vision constraints.

Third, we apply deformable part modeling for handling the spatial uncertainty of birds due

to time-varying speed and orientation. Through evaluation on real videos captured from a

physical setup, we demonstrate the effectiveness of the proposed method. We believe the

new capabilities will make a significant impact on computational ecology.

While our work addresses a particular application, the approach for detecting and track-

ing multiple small targets in 3D volumetric data with very low SNR using multiple cam-

eras is general and potentially can be applied to many other important problems. In this

work, we show how to leverage the underlying physical constraints and domain knowl-

edge to achieve physically plausible detection that otherwise would not be feasible due to

the high level of noise.

79

CHAPTER 6

CONCLUSIONS

In this dissertation, we have studied the use of physically grounded visual constraints

for addressing visual analysis and synthesis problems. First, we propose to incorporate

scene-specific geometric constraints as well as translational symmetry into a patch-based

optimization framework. Using this framework, we demonstrate two important appli-

cations: (1) filling unknown pixels of an image caused by the removal of a foreground

or background object and (2) predicting the missing high-frequency components that are

not resolvable in the low-resolution observation. We show that such approaches are not

only conceptually simple, but also outperform existing approaches by a large margin.

Second, we investigate the role of physically grounded constraints in the spatio-temporal

case. Specifically, we propose to jointly estimate the missing colors and motion fields for

temporally coherent completion of dynamic video. Our algorithm achieves convincing

synthesis results without making any assumptions about the input video (such as static

cameras or periodic moving objects). For the visual analysis task, we exploit the stereo

camera constraints for detecting and tracking multiple small targets in low-SNR videos.

We apply the technique to a practical application, migrating bird monitoring, as the first

video-based solution for detecting migrating birds at night.

The main contribution of this thesis is in incorporating physically grounded constraints

for processing, synthesizing, and extracting information from images and videos. We

demonstrate such techniques through applications in image/video completion, super-resolution,

and small target detection and tracking. We hope that the thesis work not only extends

the capacity of algorithms to individual problems, but also sheds light on using physically

grounded visual constraints in addressing other problems in computer vision.

80

REFERENCES

[1] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf, “Image completion using planar
structure guidance,” ACM Trans. on Graphics, vol. 33, no. 4, p. 129, 2014.

[2] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-
formed self-exemplars,” in CVPR, 2015.

[3] J.-B. Huang, R. Caruana, A. Farnsworth, S. Kelling, and N. Ahuja, “Detecting
migrating birds at night,” in CVPR, 2016.

[4] J.-B. Huang and C.-S. Chen, “Moving cast shadow detection using physics-based
features,” in CVPR, 2009.

[5] J.-B. Huang and M.-H. Yang, “Fast sparse representation with prototypes.” in
CVPR, 2010.

[6] Z. Hu, J.-B. Huang, and M.-H. Yang, “Single image deblurring with adaptive dic-
tionary learning,” in ICIP, 2010.

[7] C.-Y. Yang, J.-B. Huang, and M.-H. Yang, “Exploiting self-similarities for single
frame super-resolution,” in ACCV, 2010.

[8] J.-B. Huang and N. Ahuja, “Saliency detection via divergence analysis: A unified
perspective,” 2012.

[9] J.-B. Huang, J. Kopf, N. Ahuja, and S. B. Kang, “Transformation guided image
completion,” in ICCP, 2013.

[10] J.-B. Huang, Q. Cai, Z. Liu, N. Ahuja, and Z. Zhang, “Towards accurate and robust
cross-ratio based gaze trackers through learning from simulation,” in Proceedings
of the Symposium on Eye Tracking Research and Applications, 2014.

[11] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolutional fea-
tures for visual tracking,” in ICCV, 2015.

[12] D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang, “Weakly supervised object
localization with progressive domain adaptation,” in CVPR, 2016.

[13] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, “A comparative study
for single image blind deblurring,” in CVPR, 2016.

[14] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen, “Image Meld-
ing: Combining inconsistent images using patch-based synthesis,” ACM Trans. on
Graphics, vol. 31, no. 4, 2012.

81

[15] K. He and J. Sun, “Statistics of patch offsets for image completion,” in ECCV,
2012.

[16] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of video,” IEEE
TPAMI, vol. 29, no. 3, pp. 463–476, 2007.

[17] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “PatchMatch: a ran-
domized correspondence algorithm for structural image editing,” ACM Trans. on
Graphics, vol. 28, no. 3, p. 24, 2009.

[18] A. Mansfield, M. Prasad, C. Rother, T. Sharp, P. Kohli, and L. Van Gool, “Trans-
forming image completion,” in BMVC, 2011.

[19] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques. ACM Press/Addison-Wesley Publishing Co., 2000, pp. 417–424.

[20] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by
joint interpolation of vector fields and gray levels,” IEEE TIP, vol. 10, no. 8, pp.
1200–1211, 2001.

[21] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous structure and tex-
ture image inpainting,” IEEE TIP, vol. 12, no. 8, pp. 882–889, 2003.

[22] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in
ICCV, vol. 2, 1999.

[23] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,”
ACM Trans. on Graphics, vol. 20, no. 3, pp. 341–346, 2001.

[24] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object removal by
exemplar-based image inpainting,” IEEE TIP, vol. 13, no. 9, pp. 1200–1212, 2004.

[25] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for example-
based synthesis,” in ACM Trans. on Graphics, vol. 24, no. 3, 2005, pp. 795–802.

[26] N. Komodakis and G. Tziritas, “Image completion using efficient belief propaga-
tion via priority scheduling and dynamic pruning,” IEEE TIP, vol. 16, no. 11, pp.
2649–2661, 2007.

[27] Y. Pritch, E. Kav-Venaki, and S. Peleg, “Shift-map image editing,” in ICCV, 2009.

[28] J. Hays and A. A. Efros, “Scene completion using millions of photographs,” in
ACM Trans. on Graphics, vol. 26, no. 3, 2007, p. 4.

[29] Y. Zhang, J. Xiao, J. Hays, and P. Tan, “Framebreak: Dramatic image extrapolation
by guided shift-maps,” in CVPR, 2013, pp. 1171–1178.

[30] O. Whyte, J. Sivic, and A. Zisserman, “Get out of my picture! internet-based
inpainting,” in BMVC, 2009.

[31] J. Jia and C. Tang, “Image repairing: Robust image synthesis by adaptive nd tensor
voting,” in CVPR, 2003.

82

[32] H. Huang, K.Yin, M. Gong, D. Lischinski, D. Cohen-Or, U. Ascher, and B. Chen,
“Mind the gap: Tele-registration for structure-driven image completion,” ACM
Trans. on Graphics, vol. 32, pp. 174:1–174:10, 2013.

[33] J. Kopf, W. Kienzle, S. Drucker, and S. B. Kang, “Quality prediction for image
completion,” ACM Trans. on Graphics, vol. 31, no. 6, p. 131, 2012.

[34] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, “Image
analogies,” ACM Trans. on Graphics, vol. 20, no. 3, pp. 327–340, 2001.

[35] J. Sun, L. Yuan, J. Jia, and H. Shum, “Image completion with structure propaga-
tion,” ACM Trans. on Graphics, vol. 24, no. 3, pp. 861–868, 2005.

[36] D. Pavić, V. Schönefeld, and L. Kobbelt, “Interactive image completion with per-
spective correction,” The Visual Computer, vol. 22, no. 9, pp. 671–681, 2006.

[37] Y. Liu, W.-C. Lin, and J. Hays, “Near-regular texture analysis and manipulation,”
ACM Trans. on Graphics, vol. 23, no. 3, pp. 368–376, 2004.

[38] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[39] O. Chum and J. Matas, “Planar affine rectification from change of scale,” in ACCV,
2010.

[40] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, “TILT: Transform invariant low-rank
textures,” International Journal of Computer Vision, vol. 99, no. 1, pp. 1–24, 2012.

[41] D. Aiger, D. Cohen-Or, and N. J. Mitra, “Repetition maximization based texture
rectification,” Computer Graphics Forum, vol. 31, no. 2pt2, pp. 439–448, 2012.

[42] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, 2004.

[43] O. Barinova, V. Konushin, A. Yakubenko, K. Lee, H. Lim, and A. Konushin, “Fast
automatic single-view 3-d reconstruction of urban scenes,” in ECCV, 2008.

[44] Y. Liu, H. Hel-Or, and C. Kaplan, Computational symmetry in computer vision and
computer graphics. Now Publishers, 2010.

[45] D. Comaniciu and P. Meer, “Mean Shift: A robust approach toward feature space
analysis,” IEEE TPAMI, vol. 24, no. 5, pp. 603–619, 2002.

[46] W. T. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,” IEEE
CG&A, vol. 22, no. 2, pp. 56–65, 2002.

[47] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embed-
ding,” in CVPR, 2004.

[48] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” IEEE TIP, vol. 19, no. 11, pp. 2861–2873, 2010.

[49] C.-Y. Yang and M.-H. Yang, “Fast direct super-resolution by simple functions,” in
ICCV, 2013.

83

[50] R. Timofte, V. De, and L. V. Gool, “Anchored neighborhood regression for fast
example-based super-resolution,” in ICCV, 2013.

[51] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored neighborhood
regression for fast super-resolution,” in ACCV, 2014.

[52] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network
for image super-resolution,” in ECCV, 2014.

[53] M. Ebrahimi and E. R. Vrscay, “Solving the inverse problem of image zooming
using self-examples,” in Image analysis and Recognition, 2007.

[54] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,” in
ICCV, 2009.

[55] G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,”
ACM Trans. on Graphics, vol. 30, no. 2, p. 12, 2011.

[56] A. Singh and N. Ahuja, “Super-resolution using sub-band self-similarity,” in
ACCV, 2014.

[57] M. Barnsley, Fractals Everywhere. Academic Press Professional, Inc., 1988.

[58] M. Zontak and M. Irani, “Internal statistics of a single natural image,” in CVPR,
2011.

[59] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP:
Graphical models and image processing, vol. 53, no. 3, pp. 231–239, 1991.

[60] K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse regression
and natural image prior,” IEEE TPAMI, vol. 32, no. 6, pp. 1127–1133, 2010.

[61] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training
for image super-resolution,” IEEE TIP, vol. 21, no. 8, pp. 3467–3478, 2012.

[62] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-
representations,” in International Conference on Curves and Surfaces, 2012.

[63] J. Sun, Z. Xu, and H.-Y. Shum, “Gradient profile prior and its applications in image
super-resolution and enhancement,” IEEE TIP, vol. 20, no. 6, pp. 1529–1542, 2011.

[64] R. Fattal, “Image upsampling via imposed edge statistics,” ACM Trans. on Graph-
ics, vol. 26, no. 3, p. 95, 2007.

[65] Y. HaCohen, R. Fattal, and D. Lischinski, “Image upsampling via texture halluci-
nation,” in ICCP, 2010, pp. 1–8.

[66] J. Sun, J. Zhu, and M. Tappen, “Context-constrained hallucination for image super-
resolution,” in CVPR, 2010.

[67] L. Sun and J. Hays, “Super-resolution from Internet-scale scene matching,” in
ICCP, 2012.

84

[68] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,”
in CVPR, 2005.

[69] J. Yang, Z. Lin, and S. Cohen, “Fast image super-resolution based on in-place
example regression,” in CVPR, 2013.

[70] T. Michaeli and M. Irani, “Nonparametric blind super-resolution,” in ICCV, 2013.

[71] A. Singh, F. Porikli, and N. Ahuja, “Super-resolving noisy images,” in CVPR, 2014.

[72] A. Singh and N. Ahuja, “Sub-band energy constraints for self-similarity based
super-resolution,” in ICPR, 2014.

[73] Y. Zhu, Y. Zhang, and A. L. Yuille, “Single image super-resolution using de-
formable patches,” in CVPR, 2014.

[74] C. Fernandez-Granda and E. J. Candes, “Super-resolution via transform-invariant
group-sparse regularization,” in ICCV, 2013.

[75] M. Bleyer, C. Rhemann, and C. Rother, “PatchMatch stereo-stereo matching with
slanted support windows.” in BMVC, 2011.

[76] M. Hornáček, C. Rhemann, M. Gelautz, and C. Rother, “Depth super resolution by
rigid body self-similarity in 3d,” in CVPR, 2013.

[77] M. Hornáček, F. Besse, J. Kautz, A. Fitzgibbon, and C. Rother, “Highly overpa-
rameterized optical flow using patchmatch belief propagation,” in ECCV, 2014.

[78] C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstein, “The generalized patch-
match correspondence algorithm,” in ECCV, 2010.

[79] Y. HaCohen, E. Shechtman, D. Goldman, and D. Lischinski, “Non-rigid dense cor-
respondence with applications for image enhancement,” ACM Trans. on Graphics,
vol. 30, no. 4, p. 70, 2011.

[80] J. J. Koenderink, A. J. Van Doorn et al., “Affine structure from motion,” JOSA A,
vol. 8, no. 2, pp. 377–385, 1991.

[81] O. Chum and J. Matas, “Planar affine rectification from change of scale,” in ACCV,
2010.

[82] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A bench-
mark,” in ECCV, 2014.

[83] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring
ecological statistics,” in ICCV, 2001.

[84] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE TIP, vol. 13, no. 4, pp.
600–612, 2004.

[85] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, P. Pérez et al., “Video inpainting
of complex scenes,” SIAM Journal on Imaging Sciences, 2014.

85

[86] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and C. Theobalt, “Background
inpainting for videos with dynamic objects and a free-moving camera,” in ECCV,
2012.

[87] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and C. Theobalt, “How not
to be seenobject removal from videos of crowded scenes,” in Computer Graphics
Forum, vol. 31, no. 2pt1, 2012, pp. 219–228.

[88] M. Strobel, J. Diebold, and D. Cremers, “Flow and color inpainting for video com-
pletion,” in German Conference on Pattern Recognition, 2014.

[89] J. Jia, Y.-W. Tai, T.-P. Wu, and C.-K. Tang, “Video repairing under variable illumi-
nation using cyclic motions,” IEEE TPAMI, vol. 28, no. 5, pp. 832–839, 2006.

[90] M. Roxas, T. Shiratori, and K. Ikeuchi, “Video completion via spatio-temporally
consistent motion inpainting,” Information and Media Technologies, vol. 9, no. 4,
pp. 500–504, 2014.

[91] C. Guillemot and O. Le Meur, “Image inpainting: Overview and recent advances,”
IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 127–144, 2014.

[92] S. Ilan and A. Shamir, “A survey on data-driven video completion,” Computer
Graphics Forum, 2014.

[93] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image completion,” in
ACM Trans. on Graphics, vol. 22, no. 3, 2003, pp. 303–312.

[94] K. A. Patwardhan, G. Sapiro, and M. Bertalmio, “Video inpainting of occluding
and occluded objects,” in ICIP, 2005.

[95] K. A. Patwardhan, G. Sapiro, and M. Bertalmı́o, “Video inpainting under con-
strained camera motion,” IEEE TIP, vol. 16, no. 2, pp. 545–553, 2007.

[96] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures: Image
and video synthesis using graph cuts,” in ACM Trans. on Graphics, vol. 22, no. 3,
2003, pp. 277–286.

[97] T. Shiratori, Y. Matsushita, X. Tang, and S. B. Kang, “Video completion by motion
field transfer,” in CVPR, 2006.

[98] O. Jamriška, J. Fišer, P. Asente, J. Lu, E. Shechtman, and D. Sỳkora, “Lazyfluids:
Appearance transfer for fluid animations,” ACM Trans. on Graphics, vol. 34, no. 4,
p. 92, 2015.

[99] K. S. Bhat, S. M. Seitz, J. K. Hodgins, and P. K. Khosla, “Flow-based video syn-
thesis and editing,” in ACM Trans. on Graphics, vol. 23, no. 3, 2004, pp. 360–363.

[100] N. K. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B. Goldman, and P. Sen,
“Patch-based high dynamic range video.” ACM Trans. on Graphics, vol. 32, no. 6,
pp. 202–1, 2013.

86

[101] T. Xue, M. Rubinstein, C. Liu, and W. T. Freeman, “A computational approach
for obstruction-free photography,” ACM Trans. on Graphics, vol. 34, no. 4, p. 79,
2015.

[102] C. Liu, “Beyond pixels: Exploring new representations and applications for motion
analysis,” Ph.D. dissertation, Massachusetts Institute of Technology, 2009.

[103] O. Mac Aodha, A. Humayun, M. Pollefeys, and G. J. Brostow, “Learning a con-
fidence measure for optical flow,” IEEE TPAMI, vol. 35, no. 5, pp. 1107–1120,
2013.

[104] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and evaluation methodology for video object seg-
mentation,” in CVPR, 2016.

[105] H. Higuchi, “Bird migration and the conservation of the global environment,” Jour-
nal of Ornithology, vol. 153, no. 1, pp. 3–14, 2012.

[106] B. Bhanu, “Automatic target recognition: State of the art survey,” IEEE Transac-
tions on Aerospace and Electronic Systems, no. 4, pp. 364–379, 1986.

[107] W. Zhang, M. Cong, and L. Wang, “Algorithms for optical weak small targets
detection and tracking: Review,” in International Conference on Neural Networks
and Signal Processing, 2003.

[108] C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,”
ACM Computing Surveys, vol. 36, no. 2, pp. 81–121, 2004.

[109] M. Galun, R. Basri, and A. Brandt, “Multiscale edge detection and fiber enhance-
ment using differences of oriented means,” in ICCV, 2007.

[110] K. Guo and D. Labate, “Optimally sparse multidimensional representation using
shearlets,” SIAM journal on mathematical analysis, vol. 39, no. 1, pp. 298–318,
2007.

[111] D. L. Donoho and X. Huo, “Beamlets and multiscale image analysis,” Multiscale
and Multiresolution Methods: Theory and Applications, vol. 20, p. 149, 2002.

[112] D. L. Donoho and O. Levi, “Fast x-ray and beamlet transforms for three-
dimensional data,” Modern signal processing, vol. 46, 2002.

[113] S. Alpert, M. Galun, B. Nadler, and R. Basri, “Detecting faint curved edges in
noisy images,” in ECCV, 2010.

[114] N. Ofir, M. Galun, B. Nadler, and R. Basri, “Fast detection of curved edges at low
snr,” arXiv:1505.06600, 2015.

[115] Z. Wu and M. Betke, “Global optimization for coupled detection and data associa-
tion in multiple object tracking,” vol. 143, pp. 25–37, 2016.

[116] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelic, S. Melillo, L. Parisi,
F. Pellacini, E. Shen, E. Silvestri et al., “Greta-a novel global and recursive track-
ing algorithm in three dimensions,” IEEE TPAMI, vol. 37, no. 12, pp. 2451–2463,
2015.

87

[117] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled functions,”
Cornell University, Tech. Rep., 2004.

[118] A. M. Dokter, F. Liechti, H. Stark, L. Delobbe, P. Tabary, and I. Holleman, “Bird
migration flight altitudes studied by a network of operational weather radars,” Jour-
nal of The Royal Society Interface, vol. 8, no. 54, pp. 30–43, 2011.

[119] D. Sheldon, A. Farnsworth, J. Irvine, B. Van Doren, K. Webb, T. G. Dietterich,
and S. Kelling, “Approximate bayesian inference for reconstructing velocities of
migrating birds from weather radar,” in AAAI Conference on Artificial Intelligence,
2013.

[120] A. Farnsworth, B. M. Van Doren, W. M. Hochachka, D. Sheldon, K. Winner,
J. Irvine, J. Geevarghese, and S. Kelling, “A characterization of autumn nocturnal
migration detected by weather surveillance radars in the northeastern us,” Ecolog-
ical Applications, 2015.

[121] T. A. Marques, L. Thomas, S. W. Martin, D. K. Mellinger, J. A. Ward, D. J. Moretti,
D. Harris, and P. L. Tyack, “Estimating animal population density using passive
acoustics,” Biological Reviews, 2012.

[122] R. Bardeli, D. Wolff, F. Kurth, M. Koch, K.-H. Tauchert, and K.-H. Frommolt,
“Detecting bird sounds in a complex acoustic environment and application to bioa-
coustic monitoring,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1524–1534,
2010.

[123] W. R. Evans and K. V. Rosenberg, “Acoustic monitoring of night-migrating birds:
A progress report,” Strategies for bird conservation: The Partners in Flight plan-
ning process, pp. 1–5, 2000.

[124] P. Berthold, Bird Migration: A General Survey. Oxford University Press, 2001,
vol. 12.

[125] T. Alerstam, A. Hedenström, and S. Åkesson, “Long-distance migration: Evolution
and determinants,” Oikos, vol. 103, no. 2, pp. 247–260, 2003.

[126] E. S. Bridge, K. Thorup, M. S. Bowlin, P. B. Chilson, R. H. Diehl, R. W. Fléron,
P. Hartl, K. Roland, J. F. Kelly, W. D. Robinson et al., “Technology on the move:
Recent and forthcoming innovations for tracking migratory birds,” BioScience,
vol. 61, no. 9, pp. 689–698, 2011.

[127] F. Liechti, B. Bruderer, and H. Paproth, “Quantification of nocturnal bird migra-
tion by moonwatching: Comparison with radar and infrared observations (cuan-
tificación de la migración nocturna de aves observando la luna: Comparación con
observaciones de radar e intrarrojas),” Journal of Field Ornithology, pp. 457–468,
1995.

[128] K. G. Horton, W. G. Shriver, and J. J. Buler, “A comparison of traffic estimates
of nocturnal flying animals using radar, thermal imaging, and acoustic recording,”
Ecological Applications, vol. 25, no. 2, pp. 390–401, 2015.

88

[129] S. D. Blostein and T. S. Huang, “Detecting small, moving objects in image se-
quences using sequential hypothesis testing,” IEEE Transactions on Signal Pro-
cessing, vol. 39, no. 7, pp. 1611–1629, 1991.

[130] S. D. Deshpande, H. E. Meng, R. Venkateswarlu, and P. Chan, “Max-mean and
max-median filters for detection of small targets,” in SPIE’s International Sympo-
sium on Optical Science, Engineering, and Instrumentation, 1999.

[131] X. Bai and F. Zhou, “Analysis of new top-hat transformation and the application
for infrared dim small target detection,” Pattern Recognition, vol. 43, no. 6, pp.
2145–2156, 2010.

[132] T.-W. Bae, F. Zhang, and I.-S. Kweon, “Edge directional 2d lms filter for infrared
small target detection,” Infrared Physics & Technology, vol. 55, no. 1, pp. 137–145,
2012.

[133] M. Ballerini et al., “Interaction ruling animal collective behavior depends on topo-
logical rather than metric distance: Evidence from a field study,” Proceedings of
the National Academy of Sciences, vol. 105, no. 4, pp. 1232–1237, 2008.

[134] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[135] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,” Pat-
tern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[136] Z. Zhang, “Determining the epipolar geometry and its uncertainty: A review,”
IJCV, vol. 27, no. 2, pp. 161–195, 1998.

[137] C. Loop and Z. Zhang, “Computing rectifying homographies for stereo vision,” in
CVPR, 1999.

[138] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE
TPAMI, vol. 14, no. 2, pp. 239–256, 1992.

[139] R. Toldo and A. Fusiello, “Robust multiple structures estimation with j-linkage,”
in ECCV, 2008.

89

