210 research outputs found

    NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics

    Full text link
    Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.Comment: NeurIPS2

    The topology of structural brain connectivity in diseases and spatio-temporal connectomics

    Get PDF
    The brain is a complex system, composed of multiple neural units interconnected at different spatial and temporal scales. Diffusion MRI allows probing in vivo the anatomical connectivity between different cortical areas through white matter tracts. In parallel, functional MRI records neural-related signals of brain activity. Particularly, during rest (in absence of specific external task) reproducible dynamical patterns of functional synchronization have been shown across different brain areas. This rich information can be conveniently represented in the form of a graph, a mathematical object where nodes correspond to cortical regions and are connected by edges representing anatomical connections. On the top of this structural network, or brain connectome, individual nodes are associated to functional signals representing neural activity over observation periods. Network science has fundamentally contributed to the characterization of the human connectome. The brain is a small-world network, able to combine segregation and integration aspects. These properties allow functional specialization on the one side, and efficient communication between distant brain areas on the other side, supporting complex cognitive and executive functions. Graph theoretical methods quantify brain topological properties, and allow their comparison between different populations and conditions. In fact, brain connectivity patterns and interdependences between anatomical substrate and functional synchronization have been proved to be impaired in a variety of brain disorders, and to change across human development and aging. Despite these important advancements in the understanding of the brain structure and functioning, many questions are currently unanswered. It is not clear for instance how structural connectivity features are related to individual cognitive capabilities and deficits, and if they have the concrete potential to distinguish pathological subgroups for early diagnosis of brain diseases. Most importantly, it is not yet understood how the connectome topology relates to specific brain functions, and how the transmission of information happens on the top of the structural connectivity infrastructure in order to generate observed functional dynamics. This thesis was motivated by these interdisciplinary inputs, and is the result of a strong interaction between biological and clinical questions on the one hand, and methodological development needs on the other hand. First, we have contributed to the characterization of the human connectome in health and pathologies by adapting and developing network measures for the description of the brain architecture at different scales. Particularly, we have focused on the topological characterization of subnetworks role within the overall brain network. Importantly, we have shown that the topological alteration of distinct brain subsystems may be a biomarker for different brain disorders. Second, we have proposed an original network model for the joint representation of brain structural and functional connectivity properties. This flexible spatio-temporal framework allows the investigation of functional dynamics at multiple temporal scales. Importantly, the investigation of spatio-temporal graphs in healthy subjects have allowed to disclose temporal relationships between local brain activations in resting state recordings, and has highlighted functional communication principles across the brain structural network

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Tracing Network Evolution Using the PARAFAC2 Model

    Full text link
    Characterizing time-evolving networks is a challenging task, but it is crucial for understanding the dynamic behavior of complex systems such as the brain. For instance, how spatial networks of functional connectivity in the brain evolve during a task is not well-understood. A traditional approach in neuroimaging data analysis is to make simplifications through the assumption of static spatial networks. In this paper, without assuming static networks in time and/or space, we arrange the temporal data as a higher-order tensor and use a tensor factorization model called PARAFAC2 to capture underlying patterns (spatial networks) in time-evolving data and their evolution. Numerical experiments on simulated data demonstrate that PARAFAC2 can successfully reveal the underlying networks and their dynamics. We also show the promising performance of the model in terms of tracing the evolution of task-related functional connectivity in the brain through the analysis of functional magnetic resonance imaging data.Comment: 5 pages, 5 figures, conferenc

    Stability of spontaneous, correlated activity in mouse auditory cortex

    Full text link
    Neural systems can be modeled as networks of functionally connected neural elements. The resulting network can be analyzed using mathematical tools from network science and graph theory to quantify the system's topological organization and to better understand its function. While the network-based approach is common in the analysis of large-scale neural systems probed by non-invasive neuroimaging, few studies have used network science to study the organization of networks reconstructed at the cellular level, and thus many very basic and fundamental questions remain unanswered. Here, we used two-photon calcium imaging to record spontaneous activity from the same set of cells in mouse auditory cortex over the course of several weeks. We reconstruct functional networks in which cells are linked to one another by edges weighted according to the correlation of their fluorescence traces. We show that the networks exhibit modular structure across multiple topological scales and that these multi-scale modules unfold as part of a hierarchy. We also show that, on average, network architecture becomes increasingly dissimilar over time, with similarity decaying monotonically with the distance (in time) between sessions. Finally, we show that a small fraction of cells maintain strongly-correlated activity over multiple days, forming a stable temporal core surrounded by a fluctuating and variable periphery. Our work provides a careful methodological blueprint for future studies of spontaneous activity measured by two-photon calcium imaging using cutting-edge computational methods and machine learning algorithms informed by explicit graphical models from network science. The methods are easily extended to additional datasets, opening the possibility of studying cellular level network organization of neural systems and how that organization is modulated by stimuli or altered in models of disease.Comment: 15 pages, 3 figure

    A transformer model for learning spatiotemporal contextual representation in fMRI data

    Get PDF
    AbstractRepresentation learning is a core component in data-driven modeling of various complex phenomena. Learning a contextually informative representation can especially benefit the analysis of fMRI data because of the complexities and dynamic dependencies present in such datasets. In this work, we propose a framework based on transformer models to learn an embedding of the fMRI data by taking the spatiotemporal contextual information in the data into account. This approach takes the multivariate BOLD time series of the regions of the brain as well as their functional connectivity network simultaneously as the input to create a set of meaningful features that can in turn be used in various downstream tasks such as classification, feature extraction, and statistical analysis. The proposed spatiotemporal framework uses the attention mechanism as well as the graph convolution neural network to jointly inject the contextual information regarding the dynamics in time series data and their connectivity into the representation. We demonstrate the benefits of this framework by applying it to two resting-state fMRI datasets, and provide further discussion on various aspects and advantages of it over a number of other commonly adopted architectures
    • …
    corecore