937 research outputs found

    Frequency Based Radiance Cache for Rendering Animations

    Get PDF
    International audienceWe propose a method to render animation sequences with direct distant lighting that only shades a fraction of the total pixels. We leverage frequency-based analyses of light transport to determine shading and image sampling rates across an animation using a samples cache. To do so, we derive frequency bandwidths that account for the complexity of distant lights, visibility, BRDF, and temporal coherence during animation. We finaly apply a cross-bilateral filter when rendering our final images from sparse sets of shading points placed according to our frequency-based oracles (generally < 25% of the pixels, per frame)

    Realistic Volume Rendering with Environment-Synced Illumination in Mixed Reality

    Full text link
    Interactive volume visualization using a mixed reality (MR) system helps provide users with an intuitive spatial perception of volumetric data. Due to sophisticated requirements of user interaction and vision when using MR head-mounted display (HMD) devices, the conflict between the realisticness and efficiency of direct volume rendering (DVR) is yet to be resolved. In this paper, a new MR visualization framework that supports interactive realistic DVR is proposed. An efficient illumination estimation method is used to identify the high dynamic range (HDR) environment illumination captured using a panorama camera. To improve the visual quality of Monte Carlo-based DVR, a new spatio-temporal denoising algorithm is designed. Based on a reprojection strategy, it makes full use of temporal coherence between adjacent frames and spatial coherence between the two screens of an HMD to optimize MR rendering quality. Several MR development modules are also developed for related devices to efficiently and stably display the DVR results in an MR HMD. Experimental results demonstrate that our framework can better support immersive and intuitive user perception during MR viewing than existing MR solutions.Comment: 6 pages, 6 figure

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments

    Efficient global illumination for dynamic scenes

    Get PDF
    The production of high quality animations which feature compelling lighting effects is computationally a very heavy task when traditional rendering approaches are used where each frame is computed separately. The fact that most of the computation must be restarted from scratch for each frame leads to unnecessary redundancy. Since temporal coherence is typically not exploited, temporal aliasing problems are also more difficult to address. Many small errors in lighting distribution cannot be perceived by human observers when they are coherent in temporal domain. However, when such a coherence is lost, the resulting animations suffer from unpleasant flickering effects. In this thesis, we propose global illumination and rendering algorithms, which are designed specifically to combat those problems. We achieve this goal by exploiting temporal coherence in the lighting distribution between the subsequent animation frames. Our strategy relies on extending into temporal domain wellknown global illumination and rendering techniques such as density estimation path tracing, photon mapping, ray tracing, and irradiance caching, which have been originally designed to handle static scenes only. Our techniques mainly focus on the computation of indirect illumination, which is the most expensive part of global illumination modelling.Die Erstellung von hochqualitativen 3D-Animationen mit anspruchsvollen Lichteffekten ist für traditionelle Renderinganwendungen, bei denen jedes Bild separat berechnet wird, sehr aufwendig. Die Tatsache jedes Bild komplett neu zu berechnen führt zu unnötiger Redundanz. Wenn temporale Koherenz vernachlässigt wird, treten unter anderem auch schwierig zu behandelnde temporale Aliasingprobleme auf. Viele kleine Fehler in der Beleuchtungsberechnung eines Bildes können normalerweise nicht wahr genommen werden. Wenn jedoch die temporale Koherenz zwischen aufeinanderfolgenden Bildern fehlt, treten störende Flimmereffekte auf. In dieser Arbeit stellen wir globale Beleuchtungsalgorithmen vor, die die oben genannten Probleme behandeln. Dies erreichen wir durch Ausnutzung von temporaler Koherenz zwischen aufeinanderfolgenden Einzelbildern einer Animation. Unsere Strategy baut auf die klassischen globalen Beleuchtungsalgorithmen wie "Path tracing", "Photon Mapping" und "Irradiance Caching" auf und erweitert diese in die temporale Domäne. Dabei beschränken sich unsereMethoden hauptsächlich auf die Berechnung indirekter Beleuchtung, welche den zeitintensivsten Teil der globalen Beleuchtungsberechnung darstellt

    Efficient global illumination for dynamic scenes

    Get PDF
    The production of high quality animations which feature compelling lighting effects is computationally a very heavy task when traditional rendering approaches are used where each frame is computed separately. The fact that most of the computation must be restarted from scratch for each frame leads to unnecessary redundancy. Since temporal coherence is typically not exploited, temporal aliasing problems are also more difficult to address. Many small errors in lighting distribution cannot be perceived by human observers when they are coherent in temporal domain. However, when such a coherence is lost, the resulting animations suffer from unpleasant flickering effects. In this thesis, we propose global illumination and rendering algorithms, which are designed specifically to combat those problems. We achieve this goal by exploiting temporal coherence in the lighting distribution between the subsequent animation frames. Our strategy relies on extending into temporal domain wellknown global illumination and rendering techniques such as density estimation path tracing, photon mapping, ray tracing, and irradiance caching, which have been originally designed to handle static scenes only. Our techniques mainly focus on the computation of indirect illumination, which is the most expensive part of global illumination modelling.Die Erstellung von hochqualitativen 3D-Animationen mit anspruchsvollen Lichteffekten ist für traditionelle Renderinganwendungen, bei denen jedes Bild separat berechnet wird, sehr aufwendig. Die Tatsache jedes Bild komplett neu zu berechnen führt zu unnötiger Redundanz. Wenn temporale Koherenz vernachlässigt wird, treten unter anderem auch schwierig zu behandelnde temporale Aliasingprobleme auf. Viele kleine Fehler in der Beleuchtungsberechnung eines Bildes können normalerweise nicht wahr genommen werden. Wenn jedoch die temporale Koherenz zwischen aufeinanderfolgenden Bildern fehlt, treten störende Flimmereffekte auf. In dieser Arbeit stellen wir globale Beleuchtungsalgorithmen vor, die die oben genannten Probleme behandeln. Dies erreichen wir durch Ausnutzung von temporaler Koherenz zwischen aufeinanderfolgenden Einzelbildern einer Animation. Unsere Strategy baut auf die klassischen globalen Beleuchtungsalgorithmen wie "Path tracing", "Photon Mapping" und "Irradiance Caching" auf und erweitert diese in die temporale Domäne. Dabei beschränken sich unsereMethoden hauptsächlich auf die Berechnung indirekter Beleuchtung, welche den zeitintensivsten Teil der globalen Beleuchtungsberechnung darstellt

    Multiplexed photography : single-exposure capture of multiple camera settings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 115-124).The space of camera settings is large and individual settings can vary dramatically from scene to scene. This thesis explores methods for capturing and manipulating multiple camera settings in a single exposure. Multiplexing multiple camera settings in a single exposure can allow post-exposure control and improve the quality of photographs taken in challenging lighting environments (e.g. low light or high motion). We first describe the design and implementation of a prototype optical system and associated algorithms to capture four images of a scene in a single exposure, each taken with a different aperture setting. Our system can be used with commercially available DSLR cameras and photographic lenses without modification to either. We demonstrate several applications of our multi-aperture camera, such as post-exposure depth of field control, synthetic refocusing, and depth-guided deconvolution. Next we describe multiplexed flash illumination to recover both flash and ambient light information as well as extract depth information in a single exposure. Traditional photographic flashes illuminate the scene with a spatially-constant light beam. By adding a mask and optics to a flash, we can project a spatially varying illumination onto the scene which allows us to spatially multiplex the flash and ambient illuminations onto the imager. We apply flash multiplexing to enable single exposure flash/no-flash image fusion, in particular, performing flash/no-flash relighting on dynamic scenes with moving objects. Finally, we propose spatio-temporal multiplexing, a novel image sensor feature that enables simultaneous capture of flash and ambient illumination.(cont.) We describe two possible applications of spatio-temporal multiplexing: single-image flash/no-flash relighting and white balancing scenes containing two distinct illuminants (e.g. flash and fluorescent lighting).by Paul Elijah Green.Ph.D
    • …
    corecore