14 research outputs found

    A Comparative Study of Spatio-Temporal U-Nets for Tissue Segmentation in Surgical Robotics

    Get PDF
    In surgical robotics, the ability to achieve high levels of autonomy is often limited by the complexity of the surgical scene. Autonomous interaction with soft tissues requires machines able to examine and understand the endoscopic video streams in real-time and identify the features of interest. In this work, we show the first example of spatio-temporal neural networks, based on the U-Net, aimed at segmenting soft tissues in endoscopic images. The networks, equipped with Long Short-Term Memory and Attention Gate cells, can extract the correlation between consecutive frames in an endoscopic video stream, thus enhancing the segmentation’s accuracy with respect to the standard U-Net. Initially, three configurations of the spatiotemporal layers are compared to select the best architecture. Afterwards, the parameters of the network are optimised and finally the results are compared with the standard U-Net. An accuracy of 83:77%±2:18% and a precision of 78:42%±7:38% are achieved by implementing both Long Short Term Memory (LSTM) convolutional layers and Attention Gate blocks. The results, although originated in the context of surgical tissue retraction, could benefit many autonomous tasks such as ablation, suturing and debridement

    Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models

    Get PDF
    Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is much more strenuous than in 2D images. For 4D time-series tomograms, this is usually handled by segmenting the constituent tomograms independently through time with 3D convolutional neural networks. Inter-volume information is therefore not utilized, potentially leading to temporal incoherence. In this paper, we attempt to resolve this by proposing two hidden Markov model variants that refine 4D segmentation labels made by 3D convolutional neural networks working on each time point. Our models utilize not only inter-volume information, but also the prediction confidence generated by the 3D segmentation convolutional neural networks themselves. To the best of our knowledge, this is the first attempt to refine 4D segmentations made by 3D convolutional neural networks using hidden Markov models. During experiments we test our models, qualitatively, quantitatively and behaviourally, using prespecified segmentations. We demonstrate in the domain of time series tomograms which are typically undersampled to allow more frequent capture; a particularly challenging problem. Finally, our dataset and code is publicly available

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future
    corecore