49 research outputs found

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Ecosystem synergies, change and orchestration

    Get PDF
    This thesis investigates ecosystem synergies, change, and orchestration. The research topics are motivated by my curiosity, a fragmented research landscape, theoretical gaps, and new phenomena that challenge extant theories. To address these motivators, I conduct literature reviews to organise existing studies and identify their limited assumptions in light of new phenomena. Empirically, I adopt a case study method with abductive reasoning for a longitudinal analysis of the Alibaba ecosystem from 1999 to 2020. My findings provide an integrated and updated conceptualisation of ecosystem synergies that comprises three distinctive but interrelated components: 1) stack and integrate generic resources for efficiency and optimisation, 2) empower generative changes for variety and evolvability, and 3) govern tensions for sustainable growth. Theoretically grounded and empirically refined, this new conceptualisation helps us better understand the unique synergies of ecosystems that differ from those of alternative collective organisations and explain the forces that drive voluntary participation for value co-creation. Regarding ecosystem change, I find a duality relationship between intentionality and emergence and develop a phasic model of ecosystem sustainable growth with internal and external drivers. This new understanding challenges and extends prior discussions on their dominant dualism view, focus on partial drivers, and taken-for-granted lifecycle model. I propose that ecosystem orchestration involves systematic coordination of technological, adoption, internal, and institutional activities and is driven by long-term visions and adjusted by re-visioning. My analysis reveals internal orchestration's important role (re-envisioning, piloting, and organisation architectural reconfiguring), the synergy and system principles in designing adoption activities, and the expanding arena of institutional activities. Finally, building on the above findings, I reconceptualise ecosystems and ecosystem sustainable growth to highlight multi-stakeholder value creation, inclusivity, long-term orientation and interpretative approach. The thesis ends with discussing the implications for practice, policy, and future research.Open Acces

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Model-data fusion in digital twins of large scale dynamical systems

    Get PDF
    Digital twins (DTs) are virtual entities that serve as the real-time digital counterparts of actual physical systems across their life-cycle. In a typical application of DTs, the physical system provides sensor measurements and the DT should incorporate the incoming data and run different simulations to assess various scenarios and situations. As a result, an informed decision can be made to alter the physical system or at least take necessary precautions, and the process is repeated along the system's life-cycle. Thus, the effective deployment of DTs requires fulfilling multi-queries while communicating with the physical system in real-time. Nonetheless, DTs of large-scale dynamical systems, as in fluid flows, come with three grand challenges that we address in this dissertation.First, the high dimensionality makes full order modeling (FOM) methodologies unfeasible due to the associated computational time and memory costs. In this regard, reduced order models (ROMs) can potentially accelerate the forward simulations by orders of magnitude, especially for systems with recurrent spatial structures. However, traditional ROMs yield inaccurate and unstable results for turbulent and convective flows. Therefore, we propose a hybrid variational multi-scale framework that benefits from the locality of modal interactions to deliver accurate ROMs. Furthermore, we adopt a novel physics guided machine learning technique to provide on-the-fly corrections and elevate the trustworthiness of the resulting ROM in the sparse data and incomplete governing equations regimes.Second, complex natural or engineered systems are characterized by multi-scale, multi-physics, and multi-component nature. The efficient simulation of such systems requires quick communication and information sharing between several heterogeneous computing units. In order to address this challenge, we pioneer an interface learning (IL) paradigm to ensure the seamless integration of hierarchical solvers with different scales, physics, abstractions, and geometries without compromising the integrity of the computational setup. We demonstrate the IL paradigm for non-iterative domain decomposition and the FOM-ROM coupling in multi-fidelity computations.Third, fluid flow systems are continuously evolving and thus the validity of the DT should be warranted across varying operating conditions and flow regimes. To do so, we embed data assimilation (DA) techniques to enable the DT to self-adapt based on in-situ observational data and efficiently replicate the physical system. In addition, we combine DA algorithms with machine learning models to build a robust framework that collectively addresses the model closure problem, the error in prior information, and the measurement noise

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic
    corecore