9 research outputs found

    Spatial-Spectral Joint Detection for Wideband Spectrum Sensing in Cognitive Radio Networks

    Full text link
    Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. Since individual cognitive radios might not be able to reliably detect weak primary signals due to channel fading/shadowing, this paper proposes a cooperative wideband spectrum sensing scheme, referred to as spatial-spectral joint detection, which is based on a linear combination of the local statistics from spatially distributed multiple cognitive radios. The cooperative sensing problem is formulated into an optimization problem, for which suboptimal but efficient solutions can be obtained through mathematical transformation under practical conditions.Comment: To appear in the Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, March 30-April 4, 200

    A Bayesian Framework for Collaborative Multi-Source Signal Detection

    Full text link
    This paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations from a sensor array. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on recent tools of finite random matrix theory, in conjunction with the maximum entropy principle, is used to compute the hypothesis selection criterion. Quite remarkably, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. The proposed Bayesian detector is shown to outperform the classical power detector when the noise power is known and provides very good performance for limited knowledge on the noise power. Simulations corroborate the theoretical results and quantify the gain achieved using the proposed Bayesian framework.Comment: 15 pages, 9 pictures, Submitted to IEEE Trans. on Signal Processin

    Performance of Statistical Tests for Single Source Detection using Random Matrix Theory

    Full text link
    This paper introduces a unified framework for the detection of a source with a sensor array in the context where the noise variance and the channel between the source and the sensors are unknown at the receiver. The Generalized Maximum Likelihood Test is studied and yields the analysis of the ratio between the maximum eigenvalue of the sampled covariance matrix and its normalized trace. Using recent results of random matrix theory, a practical way to evaluate the threshold and the pp-value of the test is provided in the asymptotic regime where the number KK of sensors and the number NN of observations per sensor are large but have the same order of magnitude. The theoretical performance of the test is then analyzed in terms of Receiver Operating Characteristic (ROC) curve. It is in particular proved that both Type I and Type II error probabilities converge to zero exponentially as the dimensions increase at the same rate, and closed-form expressions are provided for the error exponents. These theoretical results rely on a precise description of the large deviations of the largest eigenvalue of spiked random matrix models, and establish that the presented test asymptotically outperforms the popular test based on the condition number of the sampled covariance matrix.Comment: 45 p. improved presentation; more proofs provide

    Mathematical Foundations of Cognitive Radios, Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    Recently, much interest has been directed towards software defined radios and embedded intelligence in telecommunication devices. However, no fundamental basis for cognitive radios has ever been proposed. In this paper, we introduce a fundamental vision of cognitive radios from a physical layer viewpoint. Specifically, our motivation in this work is to embed human-like intelligence in mobile wireless devices, following the three century-old work on Bayesian probability theory, the maximum entropy principle and minimal probability update. This allows us to partially answer such questions as, what are the signal detection capabilities of a wireless device, when facing a situation in which most parameters are missing, how to react and so on. As an introductory example, we will present previous works from the same authors following the cognitive framework, and especially the multi-antenna channel modeling and signal sensing

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Analisi e implementazione di algoritmi di Detection per sistemi ad sntenne Multiple su piattaforma programmabile USRP2

    Get PDF

    Spatial-spectral joint detection for wideband spectrum sensing in cognitive radio networks

    No full text
    Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. Since individual cognitive radios might not be able to reliably detect weak primary signals due to channel fading/shadowing, this paper proposes a cooperative wideband spectrum sensing scheme, referred to as spatial-spectral joint detection, which is based on a linear combination of the local statistics from spatially distributed multiple cognitive radios. The cooperative sensing problem is formulated into an optimization problem, for which suboptimal but efficient solutions can be obtained through mathematical transformation under practical conditions

    Spatial-spectral joint detection for wideband spectrum sensing in cognitive radio networks

    No full text

    Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    kwartalni
    corecore