1,341 research outputs found

    Maximum-principle preserving space-time isogeometric analysis

    Get PDF
    In this work we propose a nonlinear stabilization technique for convection-diffusion-reaction and pure transport problems discretized with space-time isogeometric analysis. The stabilization is based on a graph-theoretic artificial diffusion operator and a novel shock detector for isogeometric analysis. Stabilization in time and space directions are performed similarly, which allow us to use high-order discretizations in time without any CFL-like condition. The method is proven to yield solutions that satisfy the discrete maximum principle (DMP) unconditionally for arbitrary order. In addition, the stabilization is linearity preserving in a space-time sense. Moreover, the scheme is proven to be Lipschitz continuous ensuring that the nonlinear problem is well-posed. Solving large problems using a space-time discretization can become highly costly. Therefore, we also propose a partitioned space-time scheme that allows us to select the length of every time slab, and solve sequentially for every subdomain. As a result, the computational cost is reduced while the stability and convergence properties of the scheme remain unaltered. In addition, we propose a twice differentiable version of the stabilization scheme, which enjoys the same stability properties while the nonlinear convergence is significantly improved. Finally, the proposed schemes are assessed with numerical experiments. In particular, we considered steady and transient pure convection and convection-diffusion problems in one and two dimensions

    Fast space-variant elliptical filtering using box splines

    Get PDF
    The efficient realization of linear space-variant (non-convolution) filters is a challenging computational problem in image processing. In this paper, we demonstrate that it is possible to filter an image with a Gaussian-like elliptic window of varying size, elongation and orientation using a fixed number of computations per pixel. The associated algorithm, which is based on a family of smooth compactly supported piecewise polynomials, the radially-uniform box splines, is realized using pre-integration and local finite-differences. The radially-uniform box splines are constructed through the repeated convolution of a fixed number of box distributions, which have been suitably scaled and distributed radially in an uniform fashion. The attractive features of these box splines are their asymptotic behavior, their simple covariance structure, and their quasi-separability. They converge to Gaussians with the increase of their order, and are used to approximate anisotropic Gaussians of varying covariance simply by controlling the scales of the constituent box distributions. Based on the second feature, we develop a technique for continuously controlling the size, elongation and orientation of these Gaussian-like functions. Finally, the quasi-separable structure, along with a certain scaling property of box distributions, is used to efficiently realize the associated space-variant elliptical filtering, which requires O(1) computations per pixel irrespective of the shape and size of the filter.Comment: 12 figures; IEEE Transactions on Image Processing, vol. 19, 201

    Isogeometric Analysis in advection-diffusion problems: tension splines approximation

    Get PDF
    We present a novel approach, within the new paradigm of isogeometric analysis introduced by Hughes et al., to deal with advection dominated advection-diffusion problems. The key ingredient is the use of Galerkin approximating spaces of functions with high smoothness, as in IgA based on classical B-splines, but particularly well suited to describe sharp layers involving very strong gradients

    Weighted Quasi Interpolant Spline Approximations: Properties and Applications

    Get PDF
    Continuous representations are fundamental for modeling sampled data and performing computations and numerical simulations directly on the model or its elements. To effectively and efficiently address the approximation of point clouds we propose the Weighted Quasi Interpolant Spline Approximation method (wQISA). We provide global and local bounds of the method and discuss how it still preserves the shape properties of the classical quasi-interpolation scheme. This approach is particularly useful when the data noise can be represented as a probabilistic distribution: from the point of view of nonparametric regression, the wQISA estimator is robust to random perturbations, such as noise and outliers. Finally, we show the effectiveness of the method with several numerical simulations on real data, including curve fitting on images, surface approximation and simulation of rainfall precipitations

    Data-driven quasi-interpolant spline surfaces for point cloud approximation

    Get PDF
    In this paper we investigate a local surface approximation, the Weighted Quasi Interpolant Spline Approximation (wQISA), specifically designed for large and noisy point clouds. We briefly describe the properties of the wQISA representation and introduce a novel data-driven implementation, which combines prediction capability and complexity efficiency. We provide an extended comparative analysis with other continuous approximations on real data, including different types of surfaces and levels of noise, such as 3D models, terrain data and digital environmental data

    Invariant higher-order variational problems II

    Full text link
    Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesics on the group of transformations project to cubics. Finally, we apply second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome
    • …
    corecore