5 research outputs found

    HiRIS: an Airborne Sonar Sensor with a 1024 Channel Microphone Array for In-Air Acoustic Imaging

    Full text link
    Airborne 3D imaging using ultrasound is a promising sensing modality for robotic applications in harsh environments. Over the last decade, several high-performance systems have been proposed in the literature. Most of these sensors use a reduced aperture microphone array, leading to artifacts in the resulting acoustic images. This paper presents a novel in-air ultrasound sensor that incorporates 1024 microphones, in a 32-by- 32 uniform rectangular array, in combination with a distributed embedded hardware design to perform the data acquisition. Using a broadband Minimum Variance Distortionless Response (MVDR) beamformer with Forward-Backward Spatial Smoothing (FB-SS), the sensor is able to create both 2D and 3D ultrasound images of the full-frontal hemisphere with high angular accuracy with up to 70dB main lobe to side lobe ratio. This paper describes both the hardware infrastructure needed to obtain such highly detailed acoustical images, as well as the signal processing chain needed to convert the raw acoustic data into said images. Utilizing this novel high-resolution ultrasound imaging sensor, we wish to investigate the limits of both passive and active airborne ultrasound sensing by utilizing this virtually artifact-free imaging modality

    Autonomous robot systems and competitions: proceedings of the 12th International Conference

    Get PDF
    This is the 2012’s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICA’ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interaction of Eindhoven University of Technology, Netherlands.The conference is kindly sponsored by the IEEE Portugal Section / IEEE RAS ChapterSPR-Sociedade Portuguesa de Robótic

    Sensorimotor Model of Obstacle Avoidance in Echolocating Bats

    Get PDF
    Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour
    corecore