5,045 research outputs found

    Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model

    No full text
    International audienceThis paper presents a novel approach to incorporate spatial information in the bag-of-visual-words model for category level and scene classification. In the traditional bag-of-visual-words model, feature vectors are histograms of visual words. This representation is appearance based and does not contain any information regarding the arrangement of the visual words in the 2D image space. In this framework, we present a simple and effi- cient way to infuse spatial information. Particularly, we are interested in explicit global relationships among the spatial positions of visual words. Therefore, we take advantage of the orientation of the segments formed by Pairs of Identical visual Words (PIW). An evenly distributed normalized histogram of angles of PIW is computed. Histograms pro- duced by each word type constitute a powerful description of intra type visual words relationships. Experiments on challenging datasets demonstrate that our method is com- petitive with the concurrent ones. We also show that, our method provides important complementary information to the spatial pyramid matching and can improve the overall performance

    Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model

    Full text link

    Enhanced spatial pyramid matching using log-polar-based image subdivision and representation

    Get PDF
    This paper presents a new model for capturing spatial information for object categorization with bag-of-words (BOW). BOW models have recently become popular for the task of object recognition, owing to their good performance and simplicity. Much work has been proposed over the years to improve the BOW model, where the Spatial Pyramid Matching (SPM) technique is the most notable. We propose a new method to exploit spatial relationships between image features, based on binned log-polar grids. Our model works by partitioning the image into grids of different scales and orientations and computing histogram of local features within each grid. Experimental results show that our approach improves the results on three diverse datasets over the SPM technique

    Spatial histograms of soft pairwise similar patches to improve the bag-of-visual-words model

    No full text
    International audienceIn the context of category level scene classification, the bag-of-visual-words model (BoVW) is widely used for image representation. This model is appearance based and does not contain any information regarding the arrangement of the visual words in the 2D image space. To overcome this problem, recent approaches try to capture information about either the absolute or the relative spatial location of visual words. In the first category, the so-called Spatial Pyramid Representation (SPR) is very popular thanks to its simplicity and good results. Alternatively, adding information about occurrences of relative spatial configurations of visual words was proven to be effective but at the cost of higher computational complexity, specifically when relative distance and angles are taken into account. In this paper, we introduce a novel way to incorporate both distance and angle information in the BoVW representation. The novelty is first to provide a computationally efficient representation adding relative spatial information between visual words and second to use a soft pairwise voting scheme based on the distance in the descriptor space. Experiments on challenging data sets MSRC-2, 15Scene, Caltech101, Caltech256 and Pascal VOC 2007 demonstrate that our method outperforms or is competitive with concurrent ones. We also show that it provides important complementary information to the spatial pyramid matching and can improve the overall performance

    Image Reconstruction from Bag-of-Visual-Words

    Full text link
    The objective of this work is to reconstruct an original image from Bag-of-Visual-Words (BoVW). Image reconstruction from features can be a means of identifying the characteristics of features. Additionally, it enables us to generate novel images via features. Although BoVW is the de facto standard feature for image recognition and retrieval, successful image reconstruction from BoVW has not been reported yet. What complicates this task is that BoVW lacks the spatial information for including visual words. As described in this paper, to estimate an original arrangement, we propose an evaluation function that incorporates the naturalness of local adjacency and the global position, with a method to obtain related parameters using an external image database. To evaluate the performance of our method, we reconstruct images of objects of 101 kinds. Additionally, we apply our method to analyze object classifiers and to generate novel images via BoVW

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore