29 research outputs found

    Spatial Multizone Soundfield Reproduction Design

    No full text
    It is desirable for people sharing a physical space to access different multimedia information streams simultaneously. For a good user experience, the interference of the different streams should be held to a minimum. This is straightforward for the video component but currently difficult for the audio sound component. Spatial multizone soundfield reproduction, which aims to provide an individual sound environment to each of a set of listeners without the use of physical isolation or headphones, has drawn significant attention of researchers in recent years. The realization of multizone soundfield reproduction is a conceptually challenging problem as currently most of the soundfield reproduction techniques concentrate on a single zone. This thesis considers the theory and design of a multizone soundfield reproduction system using arrays of loudspeakers in given complex environments. We first introduce a novel method for spatial multizone soundfield reproduction based on describing the desired multizone soundfield as an orthogonal expansion of formulated basis functions over the desired reproduction region. This provides the theoretical basis of both 2-D (height invariant) and 3-D soundfield reproduction for this work. We then extend the reproduction of the multizone soundfield over the desired region to reverberant environments, which is based on the identification of the acoustic transfer function (ATF) from the loudspeaker over the desired reproduction region using sparse methods. The simulation results confirm that the method leads to a significantly reduced number of required microphones for an accurate multizone sound reproduction compared with the state of the art, while it also facilitates the reproduction over a wide frequency range. In addition, we focus on the improvements of the proposed multizone reproduction system with regard to practical implementation. The so-called 2.5D multizone oundfield reproduction is considered to accurately reproduce the desired multizone soundfield over a selected 2-D plane at the height approximately level with the listener’s ears using a single array of loudspeakers with 3-D reverberant settings. Then, we propose an adaptive reverberation cancelation method for the multizone soundfield reproduction within the desired region and simplify the prior soundfield measurement process. Simulation results suggest that the proposed method provides a faster convergence rate than the comparative approaches under the same hardware provision. Finally, we conduct the real-world implementation based on the proposed theoretical work. The experimental results show that we can achieve a very noticeable acoustic energy contrast between the signals recorded in the bright zone and the quiet zone, especially for the system implementation with reverberation equalization

    An efficient approach to dynamically weighted multizone wideband reproduction of speech soundfields

    Get PDF
    This paper proposes and evaluates an efficient approach for practical reproduction of multizone soundfields for speech sources. The reproduction method, based on a previously proposed approach, utilises weighting parameters to control the soundfield reproduced in each zone whilst minimising the number of loudspeakers required. Proposed here is an interpolation scheme for predicting the weighting parameter values of the multizone soundfield model that otherwise requires significant computational effort. It is shown that initial computation time can be reduced by a factor of 1024 with only 85dB of error in the reproduced soundfield relative to reproduction without interpolated weighting parameters. The perceptual impact on the quality of the speech reproduced using the method is also shown to be negligible. By using pre-saved soundfields determined using the proposed approach, practical reproduction of dynamically weighted multizone soundfields of wideband speech could be achieved in real-time

    Three-dimensional wave-domain acoustic contrast control using a circular loudspeaker array

    Full text link
    © 2019 Acoustical Society of America. This paper proposes a three-dimensional wave-domain acoustic contrast control method to reproduce a multizone sound field using a circular loudspeaker array. In this method, sound field analysis is based on spherical harmonic decomposition, and the loudspeaker weights are obtained by maximizing the acoustic energy contrast between the predefined bright zone and dark zone. Simulation results show that the proposed method provides good multizone separation performance over a large spatial region and requires lower-order spherical harmonics, resulting in a much lower number of microphones required to measure the acoustic transfer functions

    A comparison of two strategies for generating sound zones in a room.

    Get PDF

    A fast reduced-rank sound zone control algorithm using the conjugate gradient method

    Get PDF

    An approach to generating two zones of silence with application to personal sound systems

    No full text
    An application of current interest in sound reproduction systems is the creation of multizone sound fields which produce multiple independent sound fields for multiple listeners. The challenge in producing such sound fields is the avoidance of interference between sound zones, which is dependent on the geometry of the zone and the direction of arrival of the desired sound fields. This paper provides a theoretical basis for the generation of two zones based on the creation of sound fields with nulls and the positioning of those nulls at arbitrary positions. The nulls are created by suppressing low-order mode terms in the sound field expansion. Simulations are presented for the two-dimensional case which shows that suppression of interference is possible across a broad frequency audio range

    Generation of half-space sound fields with application to personal sound systems

    No full text
    A method is presented for generating a sound field that is significantly attenuated over half of the reproduction region, which has application to the generation of two independent sound fields for two listeners. The half-space sound field is produced by attenuating the negative or positive modes in the cylindrical or spherical expansion of a plane wave or point source sound field. It is shown that this is equivalent to adding to the original sound field, in quadrature, a second field which is the Hilbert transform of the original field. The resulting analytic field has a small magnitude in one half of the plane. Methods are presented for controlling the attenuation in the unwanted half-space. Finally, a simulation is presented showing the generation of a wideband pulse that propagates across half of the area within a circular array of sources

    Recent Technological Advances in Spatial Active Noise Control Systems

    Get PDF
    This article provides a broad overview of the recent advances in the field of active noise control techniques to reduce unwanted noise over a certain spatial region of interest. Thanks to commercial and technological advances in local active noise control systems extending the size of the quiet zone seems to be a crucial step to developing the next generation of active control systems for a more personalized and quieter audio product. In this review article, the advances over the past decade the in design and development of spatial active noise control techniques to enlarge the controlled sound zone is reviewed. The focus is specifically on the adaptive control techniques and the methods proposed in the frequency domain to control the sound field. The study has paid specific attention to the most important performance measures in designing a spatial active noise control system such as convergence rate, stability and robustness of the algorithm, the size of the quiet zone and how it can be enlarged by configuring the loudspeaker and microphone array geometries. Finally, the authors will discuss the current and future challenges that should be overcome to improve the effectiveness of the recently proposed methods to expand the silence zone

    A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Get PDF
    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization
    corecore