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ABSTRACT

Sound zone control enables different users to enjoy different audio
contents in the same acoustic environment. Generalized eigenvalue
decomposition (GEVD)-based methods allow us to control the trade-
off between the acoustic contrast (AC) and signal distortion (SD).
However, such methods have a high computational complexity. In
this paper, we propose a fast reduced-rank sound zone control algo-
rithm using the conjugate gradient (CG) method. Instead of using the
eigenvectors as the basis for the solution space, the search directions
in the CG method are used to reduce the computational complexity.
Then, a low dimensional EVD is applied to obtain the sub-optimal
control filter coefficients. The dark zone power can be adjusted by
a parameter, which implicitly controls the trade-off between the AC
and SD. Compared with GEVD-based methods, experimental results
show that the proposed algorithm has a degradation of performance
(4–5 dB) in terms of AC or SD but a high improvement on compu-
tational efficiency.

Index Terms— Computational complexity, conjugate gradient,
reduced-rank, sound zone control, variable span trade-off filter

1. INTRODUCTION

After the concept of personal sound was first proposed about two
decades ago [1], the creation of sound zones became an active re-
search field [2,3] and various applications have been studied [4–10].
The main idea behind sound zones is to generate different listening
areas in the same acoustic space for different audio contents with
minimum or ideally no disturbance between the areas using a loud-
speaker array, e.g., a soundbar. In order to achieve this goal, the
following two zones for a single audio content are typically consid-
ered: a bright zone (or a listening zone) which is a confined area
whose acoustic potential energy is maximized or where a desired
sound field is reproduced and a dark zone (or a quiet zone) which is
another confined area whose acoustic potential energy is minimized.
By exploiting the superposition principle, multiple bright zones can
be obtained. Broadly, three different control strategies have been ex-
tensively studied: acoustic contrast control (ACC), pressure match-
ing (PM), and mode matching. Note that the mode matching(or the
modal domain) approach represents the sound fields in zones via a
spatial harmonic expansion [11,12] to find the control filters, but we
here focus on the first two methods. ACC maximizes the acoustic
contrast which describes the acoustic potential energy ratio between
the bright and dark zones [13]. Although ACC guarantees the max-
imum acoustic contrast at the corresponding frequency, it does not
ensure a proper distribution of sound pressure across the zones and
the frequency of interest which might degrade the reproduced sound

fields. This issue becomes more problematic when it is designed in
the time domain since the maximum acoustic contrast is often ob-
tained by filtering out all in the signal except for one or a few sinu-
soidal components which causes a significant signal distortion [14].
In order to mitigate this issue, various techniques have been stud-
ied, e.g., [14–16]. In contrast to ACC, PM minimizes the repro-
duction error which is the difference between the reproduced and
desired sound fields in the bright and dark zones. However, it has
a low acoustic contrast. A combination of the ACC and PM meth-
ods has been studied in both the frequency domain [17] and the time
domain [18] in order to trade-off the signal distortion in the bright
zone and the dark zone power, which implicitly changes the acoustic
contrast accordingly. Recently, motivated by the variable span lin-
ear filters for speech enhancement [19, 20], a framework referred to
as variable span trade-off (VAST) based on GEVD for sound zone
control has been proposed [21] which allows one to trade-off the
signal distortion and acoustic contrast. Moreover, the traditional ap-
proaches including ACC, PM, and ACC-PM can be seen as special
cases of VAST. However, in VAST, computing GEVD with high data
dimension leads to a high computational complexity. Moreover, al-
though VAST is derived based on a constrained optimization prob-
lem, the Lagrange multiplier has not yet been computed explicitly,
rather it is typically chosen as a fixed value.

In this paper, we propose a fast reduced-rank sound zone control
algorithm using the CG method. Using the CG method for obtaining
the basis for the solution space, instead of the GEVD, the computa-
tional complexity can be reduced. To control the dark zone power,
a low dimensional EVD is used to obtain the estimate of the sound
zone control filter. For both VAST and the proposed CG-based algo-
rithms, we show that a linear search method can be used to find the
Lagrange multiplier for a specifically chosen value of the dark zone
power. Both computational complexity analysis and experimental
results are used to verify the performance of the proposed algorithm.

2. FUNDAMENTALS

In this section, we first introduce the VAST approach for sound zone
control and then briefly describe the CG method for obtaining a basis
of the solution space for the proposed low rank method.

2.1. Variable span trade-off filter for sound zone control

We consider the problem of generating a bright zone and a dark zone
in an enclosed space with measured/known room impulse responses
(RIRs) using L loudspeakers and L finite impulse response (FIR)
filters (a.k.a., control filters). The reproduced sound signal at the
mth, 1 ≤ m ≤MC sampling point in one of the sound zones can be



written as

ym,Cn =

L∑
l=1

xn ∗ qln ∗ hm,l,Cn , (1)

where superscript (·)C,C ∈ {B, D} is the zone index, C=B and C=D
denote the bright zone and dark zone, respectively, xn denotes the
input sound signal, qln denotes the lth control filter of length J for
the lth loudspeaker, hm,l,Cn denotes the RIR of length K from the lth

loudspeaker to the mth sampling point in zone C, ∗ denotes the con-
volution operator and n denotes the time index. For simplicity, we
have left out the B and D superscripts when not absolutely necessary.
Collecting N samples and writing (1) in a matrix form, we have

ym = Umq, (2)
where

ym = [ymN , · · · , ym1 ]T , q =
[
q1T , · · · ,qLT

]T
∈ RLJ×1,

ql =
[
q11 , · · · , qlJ

]T
,Um =

[
Um,1, · · · ,Um,L

]
∈ RN×LJ ,

Um,l =
[
um,lN ,um,lN−1, · · · ,u

m,l
1

]T
∈ RN×J ,

um,ln =
[
um,ln , · · · , um,ln−J+1

]T
, um,ln = xn ∗ hm,ln .

Assuming the desired sound signal for a sound zone is dm, where
dm is defined similarly to ymn , using (2), the least squares cost func-
tion for this zone can be expressed as

J(q) =

M∑
m=1

‖dm − ym‖22 = qTRq− 2qT r + κ, (3)

where κ =
∑M
m=1 ‖d

m‖22, R and r denote the spatial auto-
correlation matrix and spatial cross-correlation vector given by R =∑M
m=1(U

m)TUm and r =
∑M
m=1(U

m)Tdm. Note that, to re-
duce the signal power in the dark zone, dm,D = 0 is commonly
applied (leading to rD = 0), and we use this setting throughout this
paper [21]. Recently, motivated by a framework proposed in speech
enhancement [19, 22], a VAST method for sound zone control has
been proposed [21]. The VAST filter can be derived by solving the
following optimization problem:

q̂ = argmin
q
JB(q) s.t. JD(q) ≤ σ2, (4)

where σ2 denotes an upper bound for the dark zone power. Plugging
(3) into (4), using the method of Lagrange multipliers and following
the derivation in [21], the optimal control filter can be written as

q̂ =

V∑
i=1

uTi rB

λi + µ
ui, (5)

where ui and λi (λ1 ≤ λ2 ≤ · · · ≤ λLJ ) denote the eigenvector
and the eigenvalue, respectively, for the generalized eigenvalue prob-
lem RBui = λiR

Dui, 1 ≤ i ≤ LJ [23], µ denotes the Lagrange
multiplier and V denotes the total number of ranks. The Lagrange
multiplier µ is constrained by q̂TRDq̂ ≤ σ2. It is further shown
in [20], the parameter V can be used to control the trade-off between
the acoustic contrast and signal distortion. More specifically, a larger
V leads to a lower signal distortion but a decreased acoustic contrast,
and vice versa. In extreme cases, when V = 1, the VAST filter re-
duces to the ACC approach proposed in [24] and when V = LJ ,
the VAST filter reduces to the PM approach proposed in [25]. The
main disadvantage of VAST is its computational complexity. The
plain implementation of the GEVD requires O(L3J3) operations.
In this paper, we propose an alternative low rank sound zone control
method using the CG method with O(V L2J2) operations. We first
introduce the classical CG method in the next subsection.

Algorithm 1 The conjugate gradient method

1: Initiate q1 = 0,d1 = r1 = r, g1 = rT1 r1
2: for p = 1, 2, · · · , P do
3: cp = Rdp O(P 2)
4: αp =

gp
dT
p cp

O(P )

5: qp+1 = qp + αpdp O(P )
6: rp+1 = rp − αpcp O(P )
7: gp+1 = rTp+1rp+1 O(P )
8: βp+1 =

gp+1

gp
O(1)

9: dp+1 = rp+1 + βp+1dp O(P )
10: end for

2.2. The conjugate gradient (CG) method

Considering solving a linear equation Rq = r, where R is a P ×P
full-rank symmetric matrix and P = LJ , the plain implementa-
tion of q = R−1r requires O(P 3) operations. It can be easily
shown that solving Rq = r is equivalent to finding the optimal
point for argminq f(q) = qTRq − 2rTq [26]. The CG method
iteratively minimizes the quadratic cost function f(q) along a set of
R-orthogonal search directions. The CG algorithm and its compu-
tation complexity for each step is shown in Algorithm 1, where dn
and rn denote the search direction and residual vector at the nth it-
eration, respectively. One important property of the CG algorithm is
that the search directions dn, n ≥ 1 are R-orthogonal, i.e.,

DT
p RDp = ΛCG

p , 1 ≤ p ≤ P, (6)

where ΛCG
p = diag{dT1 Ad1, · · · ,dTp Adp}, and Dp =

[d1, · · · ,dp]. Using (6) and setting p = P , we can easily obtain

R−1r = DP (Λ
CG
P )−1DT

P r. (7)

Also, as can be seen from Algorithm 1, by setting q1 = 0 and using
the iterative equation qp+1 = qp + αpdp, we have

R−1r = DPαP , (8)

where αP = [α1, · · · , αP ]T denotes the weighting vector for
search directions. Comparing (7) and (8), we yield

αP = (ΛCG
P )−1DT

P r. (9)

3. REDUCED-RANK SOUND ZONE CONTROL USING
THE CG METHOD

In this paper, we propose a fast reduced-rank (e.g., V-rank and
V ≤ LJ) sound zone control algorithm using the CG method and
only a V−dimensional EVD is required for the proposed method.
Substituting (3) into (4), the optimization problem becomes

q̂ = argmin
q

qTRBq− 2qT rB + κB s.t. qTRDq ≤ σ2. (10)

We constrain the solution space for q to a V -dimensional subspace
KV with a basis {u1, · · · ,uV }. Denote UV = [u1, · · · ,uV ] and
let q = UV z. Then, the constrained optimization problem (10) is
equivalent to

ẑ = argmin
z

zT (UV
TRBUV )z− 2zT (UV

T rB), (11)

s.t. zT (UV
TRDUV )z ≤ σ2.

The basis matrix UV can be chosen in different ways. For exam-
ple, if we set V = LJ and UV = I, the solution to (11) is simply



the PM solution [25]. Another example is to set each column vec-
tor of UV to the eigenvector for the generalized eigenvalue problem
RBui = λiR

Dui, then we can obtain the VAST filter. In this pa-
per, we use the search directions in the CG method to form the basis
matrix, i.e., UV = [d1,d2, · · · ,dV ], where dv, 1 ≤ v ≤ V de-
notes the search directions in Algorithm 1 for solving the problem
RBx = rB. There are multiple reasons for this choice. First, a filter
with the smallest signal distortion for the bright zone can be obtained
by solving RBq = rB. Secondly, the search directions are RB-
orthogonal, making the optimization problem (11) simpler. Thirdly,
obtaining a V -dimensional basis matrix UV by using the CG method
(O(V L2J2 + 6V LJ)) is computationally simpler than the GEVD
(O(L3J3)) method. Using (6), the spatial auto-correlation matrix of
the bright zone can be diagonalized to

UV
TRBUV = ΛCG

V . (12)

Moreover, using (9), we can obtain

αV = (ΛCG
V )−1UT

V rB, (13)

where αV = [α1, · · · , αV ]T . Substituting (12) and (13) into (11)
and letting t = (ΛCG

V )1/2z, we obtain

t̂ = argmin
t

tT t− 2tT ((ΛCG
V )1/2αV ),

s.t. tTMV t ≤ σ2, (14)

where

MV = (ΛCG
V )−1/2UV

TRDUV (Λ
CG
V )−1/2. (15)

By using the method of Lagrange multipliers, a stationary point of
the constrained optimization problem (14) can be obtained as

t̂ = (I + µMV )
−1((ΛCG

V )1/2αV ), (16)

where µ denotes the Lagrange multiplier, and it needs to satisfy the
constraint t̂TMV t̂ ≤ σ2. Using a V-dimensional eigenvalue de-
composition (EVD) to diagonalize MV ∈ RV×V , i.e.,

FTV MV FV = ΛEig
V , (17)

where the column vectors of FV are orthonormal eigenvectors, and
the diagonal elements of ΛEig

V contain the corresponding eigenvalues.
Substituting (17) into (16), we then obtain

t̂ = FV (I + µΛEig
V )−1FTV ((Λ

CG
V )1/2αV ), (18)

with the constraint

f(µ) =

V∑
v=1

λEig
v c2v

(1 + µλEig
v )2

≤ σ2, (19)

where cv denotes the vth element of FTV ((Λ
CG
V )1/2αV ). Because

MV is a nonnegative definite matrix, the eigenvalue λEig
v is nonnega-

tive. Therefore, f(µ) is monotonically decreasing for µ ≥ 0 and the
solution for f(µ) ≤ σ2 exists since limµ→∞ f(µ) = 0. In this pa-
per, the Newton’s method [27] is applied to find the solution for the
Lagrange multiplier µ. By using q = UV z and t = (ΛCG

V )1/2zn,
the estimated control filter can be expressed as

q̂ = UV (Λ
CG
V )−1/2t̂. (20)

The proposed Reduced-Rank sound zone control algorithm using the
CG method (RR-CG) is summarized in Algorithm 2, where niter de-
notes the number of iterations for the Newton’s method.

In VAST [21], the Lagrange multiplier µ is set to a fixed value
(e.g., µ = 0.8). In fact, when the basis matrix UV is formed by
the eigenvectors using GEVD (denoted as UV,GEVD), the matrices

Algorithm 2 The proposed Reduced-Rank sound zone control algo-
rithm using the CG method (RR-CG)

1: Initiate the number of ranks V and σ2.
2: Run the CG method V iterations for the problem RBx = rB,

and store UV , αV , and ΛCG
V . O(V (LJ)2)

3: Form MV based on (15). O(V (LJ)2)
4: Compute the EVD of MV . O(V 3)
5: Use the Newton’s method to find µ based on (19). O(niterV )
6: Compute t̂ based on (18). O(V 2)
7: Compute q̂ based on (20). O(V LJ)

0 1 2 3 4 5
0
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5
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x [m]

y
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]

Loudspeakers Zone A Zone B Virtual source

Fig. 1. An example of sound zone control system setup with eight
loudspeakers, 25 control points in each zone and two virtual sources
on the same location.

RB and RD can be jointly diagonalized by UV,GEVD. Using this
property and solving (11), the optimal µ can be expressed as

g(µ) =

V∑
v=1

c2v,GEVD

(µ+ λv)2
≤ σ2, (21)

where cv,GEVD denotes the vth element of UT
V,GEVDrB, and λv de-

notes the vth eigenvalue. Again, the Newton’s search can be used to
find the solution for (21). We refer to this algorithm as VAST with
Optimal µ (VAST-O). The advantage of using the tuning parameter
σ2 in VAST-O, instead of the µ in VAST, is that σ2 has physical
meaning and it can be seen as the upper bound for the reconstructed
dark zone power.

4. RESULTS

In this section, the performance of the RR-CG and VAST-O meth-
ods 1 for sound zone control is compared with the ACC, PM, and
VAST methods [21] on real speech signals. Three types of perfor-
mance measures are used to quantify the experimental results, i.e.,
acoustic contrast (AC), signal distortion (SD) and target to interferer
ratio (TIR) (see [28] for more on this). As shown in Fig. 1, we con-
sider a system which consists of a circular array with eight evenly
distributed loudspeakers, two zones, and a virtual source. Each of
the zones are spatially sampled by a 2-D square grid of 5 × 5 con-
trol points spaced by 5 cm is used. We assume that all loudspeakers

1MATLAB code in https://github.com/LimingShi/RR-CG.



−50 −40 −30 −20
0

20

40

Power ratio θ [dB]

A
C

[d
B
]

−50 −40 −30 −20

−10

−5

0

Power ratio θ [dB]

S
D

[d
B
]

RR–CG (V = 240) VAST (µ = 0.8, V = 240) VAST-O (V = 240) ACC PM

−50 −40 −30 −20
0

10

20

30

40

Power ratio θ [dB]

T
IR

[d
B
]

Fig. 2. The AC, SD and TIR performances of the proposed RR-CG for different choices of σ2 by adjusting the power ratio θ.
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Fig. 3. The AC, SD and TIR performances of the proposed RR-CG for different choices of σ2 by adjusting the rank V (LJ = 960).

and control points are located on the same plane. For simplicity, we
assume that no reverberation is present, i.e., free field. The lengths
of the control filters and impulse responses are set to J = 120 and
K = 1600, respectively. The sampling frequency is set to 8 kHz.
Two six-seconds long speech signals from the movie “Zootopia” in
two different languages, i.e., English and Danish, are used as the in-
put signal xn. The signal powers for the two input signals are set
to be the same. In RR-CG and VAST-O, the maximum number of
iterations for the Newton’s method is set to 104, the in initial value
for µ is set to 0 and the stopping threshold is set to 10−7.

First, the performance of the RR-CG and VAST-O is tested for
different choices of the upper bound for the dark zone power σ2,
which is computed based on σ2 = θ(qu)TRDqu, where qu =
1L ⊗ i1 denotes the uncontrolled filter, 1L denotes the all-ones vec-
tor with L elements, i1 denotes the all-zeros vector except the first
element is one, and θ denotes the power ratio controlling the amount
of reduction for the dark zone power. The rank V for the RR-CG,
VAST-O and VAST is set to LJ/4 (i.e., 240). The Lagrange multi-
plier for VAST is set to µ = 0.8. The AC, SD, and TIR for the pro-
posed RR-CG, VAST-O, VAST, ACC, and PM are shown in Fig. 2.
As can be seen, the ACC approach has the largest AC and TIR, but
the highest SD. The PM has a low SD, but small AC and TIR. By us-
ing one forth of the eigenvectors, the AC, TIR, and SD of the VAST
approach is between ACC and PM. With an increasing θ, the AC,
TIR and SD of the VAST-O decreases until θ is larger than a thresh-
old, from where the optimal µ is computed as 0 (i.e., the dark zone
power constraint is satisfied using the chosen V ). For the proposed
RR-CG, with an increasing θ, both the AC and TIR decrease but the
SD becomes lower. When the AC for the RR-CG and VAST is set to
be the same, i.e,. using θ ≈ 10−4, the SD performance of the RR-
CG is 5 dB larger than VAST. When the AC for the RR-CG and PM
is set to be the same, i.e,. using θ ≈ 5× 10−3, the SD performance
of the RR-CG is 4.5 dB higher than PM.

Secondly, the performance of RR-CG, VAST-O and VAST is
tested for different choices of the rank V with θ = −40 dB for
RR-CG and VAST-O. The experimental results are shown in Fig.
3. For the proposed RR-CG, the AC and TIR increase, whereas the
SD decreases with an increasing V . When V ≈ 50 (LJ = 960),
RR-CG starts to converge.
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Fig. 4. The computation time for VAST and the proposed RR-CG
using the same rank V .

Thirdly, we verify the performance of the proposed RR-CG
method in terms of processing time. All timings are computed on
a 3.6 GHz Intel(R) Core(TM) i7-4790 CPU with Ubuntu Linux Ker-
nel 4.4.0-97-generic and MATLAB R2017b. The computation time
is evaluated as averaged results for 100 Monte Carlo trials with dif-
ferent data dimensions (LJ). The results are shown in Fig. 4. As
can be seen, the proposed RR-CG is close to seven times faster than
VAST when V = LJ/8.

5. CONCLUSION

A fast reduced-rank sound zone control approach using the CG
method is proposed. The CG method is applied to form the basis for
the solution space due to its low computational complexity compared
with the GEVD. For both the CG and GEVD-based approaches,
we present a method to control the trade-off between the acoustic
contrast and signal distortion by adjusting the upper bound for the
reconstructed dark zone power. The proposed CG-based approach
has around 4–5 dB lower performance than traditional GEVD-based
sound zone control approaches in terms of acoustic contrast and sig-
nal distortion, but it features a low computational complexity.
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