143 research outputs found

    Labeling, discovering, and detecting objects in images

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 131-138).Recognizing the many objects that comprise our visual world is a difficult task. Confounding factors, such as intra-class object variation, clutter, pose, lighting, dealing with never-before seen objects, scale, and lack of visual experience often fool existing recognition systems. In this thesis, we explore three issues that address a few of these factors: the importance of labeled image databases for recognition, the ability to discover object categories from simply looking at many images, and the use of large labeled image databases to efficiently detect objects embedded in scenes. For each of the issues above, we will need to cope with large collections of images. We begin by introducing LabelMe, a large labeled image database collected from users via a web annotation tool. The users of the annotation tool provided information about the identity, location, and extent of objects in images. Through this effort, we have collected about 160,000 images and 200,000 object labels to date. We show that the database spans more object categories and scenes and offers a wider range of appearance variation than most other labeled databases for object recognition. We also provide four useful extensions of the database: (i) resolving synonym ambiguities that arise in the object labels, (ii) recovering object-part relationships, (iii) extracting a depth ordering of the labeled objects in an image, and (iv) providing a semi-automatic process for the fast labeling of images. We then seek to learn models of objects in the extreme case when no supervision is provided. We draw inspiration from the success of unsupervised topic discovery in text. We apply the Latent Dirichlet Allocation model of Blei et al. to unlabeled images to automatically discover object categories. To achieve this, we employ the visual words representation of images, which is analogous to the words in text.(cont) We show that our unsupervised model achieves comparable classification performance to a model trained with supervision on an unseen image set depicting several object classes. We also successfully localize the discovered object classes in images. While the image representation used for the object discovery process is simple to compute and can distinguish between different object categories, it does not capture explicit spatial information about regions in different parts of the image. We describe a procedure for combining image segmentation with the object discovery process toby Bryan Christopher Russell.Ph.D

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    SLEMS : a knowledge based approach to soil loss estimation and modelling

    Get PDF
    ThesisThesis (M.Sc.E.), University of New Brunswick, 199

    Third Conference on Artificial Intelligence for Space Applications, part 1

    Get PDF
    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Design and evaluation of a shape retrieval system

    Get PDF
    PhD ThesisWhile automated storage and retrieval systems for textual and numeric data are now commonplace, the development of analogous systems for pictorial data has lagged behind - not through the lack of need for such systems, but because their development involves a number of significant problems. The aim of this project is to investigate these problems by designing and evaluating an information retrieval system for a specific class of picture, 2-dimensional engineering drawings. This involves consideration of the retrieval capabilities needed by such· a system, what storage structures it would require, how the salient features of each drawing should be represented, how query and stored shapes should be matched, what features were of greatest importance in retrieval, and the interfaces necessary to formulate queries and display results. A form of hierarchical boundary representation has been devised for stored shapes, in which each boundary can be viewed as a series of levels of steadily increasing complexity. A set of rules for boundary and segment ordering ensures that as far as possible, each shape has a unique representation. For each level at which each boundary can be viewed, a set of invariant shape features characterizing that level is extracted and added to the shape representation stored in the database. Two classes of boundary feature have been defmed; global features, characteristic of the boundary as a whole, and local features, corresponding to individual fragments of the boundary. To complete the shape description, position features are also computed and stored, to specify the pattern of inner boundaries within the overall shape. Six different tYPes of shape retrieval have been distinguished, although the prototype system can offer only three of these - exact shape matching, partial shape matching and similarity matching. Complete or incomplete query shapes can be built up at a terminal, and subjected to a feature extraction process similar to that for stored drawings, yielding a query fIle that can be matched against the shape database. A variety of matching techniques is provided, including similarity estimation using global or local features, tests for the existence of specified local features in stored drawings, and cumulative angle vs distance matching between query and stored shape boundaries. Results can be displayed in text or graphical form. The retrieval performance of the system in similarity matching mode has been evaluated by comparing its rankings of shapes retrieved in response to test queries with those obtained by a group of human subjects faced with the same task. Results, expressed as normalized recall and precision, are encouraging, particularly for similarity estimation using either global or local boundary features. While the detailed results are of limited significance until confrrmed with larger test collections, they appear sufficiently promising to warrant the development of a more advanced prototype capable of handling 3-D geometric models. Some design aspects of the system would appear to be applicable to a wider range of pictorial information systems

    Context based detection of urban land use zones

    Get PDF
    This dissertation proposes an automated land-use zoning system based on the context of an urban scene. Automated zoning is an important step toward improving object extraction in an urban scene
    corecore