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ABSTRACT

While automated storage and retrieval systems for textual and numeric data are now
commonplace, the development of analogous systems for pictorial data has lagged behind
- not through the lack of need for such systems, but because their development involves
a number of significant problems.

The aim of this project is to investigate these problems by designing and evaluating an
information retrieval system for a specific class of picture, 2-dimensional engineering
drawings. This involves consideration of the retrieval capabilities needed by such a
system, what storage structures it would require, how the salient features of each drawing -
should be represented, how query and stored shapes should be matched, what features
were of greatest importance in retrieval, and the mterfaces necessary to formulate queries
and display results.

A form of hierarchical boundary representation has been devised for stored shapes, in
which each boundary can be viewed as a series of levels of steadily increasing
complexity. A set of rules for boundary and segment ordering ensures that as far as
possible, each shape has a unique representation. For each level at which each boundary
can be viewed, a set of invariant shape features characterizing that level is extracted and
added to the shape representation stored in the database. Two classes of boundary feature
have been defined; global features, characteristic of the boundary as a whole, and local
features, corresponding to individual fragments of the boundary. To complete the shape
description, position features are also computed and stored, to specify the pattern of inner
boundaries within the overall shape.

Six different types of shape retrieval have been distinguished, although the prototype
system can offer only three of these - exact shape matching, partial shape matching and
similarity matching. Complete or incomplete query shapes can be built up at a terminal,
and subjected to a feature extraction process similar to that for stored drawings, yielding
a query file that can be matched against the shape database. A variety of matching
techniques is provided, including similarity estimation using global or local features, tests .
for the existence of specified local features in stored drawings, and cumulative angle vs
distance matching between query and stored shape boundaries. Results can be displayed
in text or graphical form.

The retrieval performance of the system in similarity matching mode has been evaluated
by comparing its rankings of shapes retrieved in response to test queries with those
obtained by a group of human subjects faced with the same task. Results, expressed as
normalized recall and precision, are encouraging, particularly for similarity estimation
using either global or local boundary features. While the detailed results are of limited
significance until confirmed with larger test collections, they appear sufficiently
promising to warrant the development of a more advanced prototype capable of handling
3-D geometric models. Some design aspects of the system would appear to be applicable
to a wider range of pictorial information systems.
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CHAPTER 1. INTRODUCTION

1.1 Graphics as a communication medium

It can be argued that graphical presentation of information is one of the oldest means of
communication known to man - prehistoric cave-dwellers painted pictures on the walls of their
caves, the ancient Greeks and Egyptians drew lines in the sand while developing their ideas on
geometry, and early navigators summarized their knowledge of the seas and coasts in the form of
maps. Engineers and architects have used plans as a means of developing their designs and
communicating their ideas to others for hundreds - maybe thousands - of years.

The use of computers in handling graphical information is still not fully developed. In the early
days of computing, computers were regarded only as number-crunchers. Later their record-
handling and text-processing ability was recognized, but their potential to display, manipulate
and store images was not realized until the 'Sketchpad’ project (Sutherland, 1965) came to
fruition in the early 1960's. The high cost of hardware, and the difficulty of creating good
graphics software, delayed the commercial acceptance of computer graphics for over a decade. It
was not until hardware costs began to fall dramatically in the late 1970's - and a mass market
developed for home computers capable of playing arcade games - that use became at all
widespread. Since then, computer graphics have become widely used as a display medium in
such apparently diverse fields as business (Ives, 1982), geography (Nagy and Wagle, 1979), and
chemistry (Max, 1983), where graphically-presented information can often be more easily
interpreted than tables of figures.

The main use of the computer's ability to process graphical information has been in the area of
design, whether engineering (e.g. Gardan and Lucas, 1983), architecture (Rogers, 1980), fashion
(Kunii et al, 1975), or graphic art (Dietrich, 1985). Engineers, in particular, have made
substantial use of computers for years - purely as a calculating tool to start with, but increasingly
as an interactive design aid, enabling them to create, modify, and store graphic representations of
the object they were designing. Sophisticated draughting and geometric modelling packages
have been developed, providing the designer with a far wider range of facilities than the old
drawing-board could offer.

1.2 Computers in engineering design

Computers have been used in engineering design since the 1950's, though the use of interactive
computer graphics to create and modify engineering drawings has a much shorter history. The
earliest systems, growing out of research programmes in large engineering-based firms such as
Lockheed and General Motors, were quite literally computerized draughting systems, allowing
the designer to produce drawings on a screen with the help of a light pen, or stylus and tablet.
These screen images could be selectively modified, stored for later use, or used to generate high-
quality engineering drawings on a suitable plotter. Such two-dimensional (2-D) draughting
packages are still in use today. They are best regarded as a direct replacement for the drawing-
board; just as with traditional engineering drawings, a number of views or projections from
different angles need to be drawn to describe an object to be manufactured. Each projection has
to be the subject of a separate drawing.

A typical 2-D draughting package is DOGS (drawing office graphics system) from PAFEC Ltd
of Nottingham. This package allows users to build up and edit drawings on a high-resolution
graphics screen, allowing input of drawing elements via keyboard or graphics tablet. A relatively
small set of primitives is used for constructing drawings - points, straight lines, circular arcs, and
text characters. More complex shapes such as ellipses are represented by chains of short straight-
line or circular segments. A variety of drawing aids is provided - users can define temporary
construction lines, zoom in to magnify selected parts of a drawing, and copy one part of a
drawing to another by translation, rotation, or mirroring. The facility is also provided to associate
sets of line elements into user-defined symbols, which can be saved in a library file, and



retrieved and manipulated as a unit. Drawings can be dimensioned, and drawn in a variety of line
styles. Hard copy can be provided as screen dumps or via a plotter, and drawings can be archived
on disc for later editing. For the advanced user, facilities are provided for defining multiple
views of a drawing, or defining drawings on different levels, which can be viewed separately or
together. A typical drawing generated by DOGS is shown in Fig 1.1.

40 <0 20 60

Fig 1.1 Typical engineering drawing pf'oduced using DOGS 2-D draughting system

DOGS faithfully represents the geometry (i.e. the type and spatial coordinates of each element)
of any drawing it is used to construct. Each element (point, line, arc, etc.) in the drawing is
represented by an individual record in the drawing file, containing an indicator of the element
type, its defining (x,y) coordinates, and ancillary information such as line type or (for circular
arcs) angle subtended. However, there is no specific indication of the topology of the object
represented (i.e. how elements are connected), unless the designer chooses to make this explicit
when the drawing is first created. Though four lines may trace the boundary of a square object,
this relationship will in general have to be inferred from the drawing(s) by the user.

Following the pioneering work of Braid (1973) and Voelker et al (1978), interest has grown in
developing software which is capable of modelling design objects directly, not via 2-D drawings.
The motivation behind Braid's original BUILD system was that since a relatively small set of
machining operations was sufficient to manufacture components of any desired complexity, it
should be possible to carry out design in a similar manner. BUILD thus allowed the user to
construct, store and display a solid model of an object such as that shown in Fig 1.2 by
performing Boolean operations on shapes constructed from a set of six solid primitives (cube,
tetrahedron, cylinder, wedge, segment and fillet). Most subsequent geometric modelling systems
have adopted this basic principle, though the range of operations provided has been considerably
enhanced. Two main forms of object representation are in common use in such systems -
constructive solid geometry (CSG), which represents solid objects as binary trees, indicating how
they were "built up” from a small set of primitives by repeated application of union, intersection,
difference or transformation operators (Fig 1.3), and boundary representation, in which the
geometry and topology of each bounding surface, edge and vertex are explicitly specified (Fig
1.4).



Fig 1.2 The part illustrated in Fig 1.1, as modelled by a 3-D system
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Fig 1.3 Representation of a solid object (shown in cross-section) as a {SG tree.
The solid primitives P1 and P2 are combined by the union operator U , and the
resultant solid combined again with the result of translating primitive P2 the
specified distance along the x-axis. Figure reproduced from (Requicha, 1980) by
permission of the Association for Computing Machinery. Copyright ACM 1980




XBODY ABC ZNAME GENERATOR 8
ZSURFACE §18 %PLANAR ZPOINT ON PLANE ( 0.0,0.0 ) @
ZNORMAL_TO_PLANE ( 0.0,0.0,-1.0 )
$48 XPLANAR ZPOINT ON PLANE ( 0.0,0.0,10.0 ) @
ZNORMAL_TO_PLANE ( 0.0,0.0,~1.0 )
$21 XCYLINDRICAL ZAXIS POINT ( 0.0,0.0 )
ZDIRECTION ( 0.0,0.0,1.0 ) @
%RADIUS 5.0
ZTRACK  $13 %CIRCULAR %CENTRE ( 0.0,0.0 )
' ZNORMAL _TO PLANE ( 0.0,0.0,-1.0 ) @
%RADIUS™ 5.0
$11 XCIRCULAR %CENTRE ( 0.0,0.0,10.0 ) @
ZNORMAL TO PLANE ( 0.0,0.0,-1.0 ) %RADIUS 5.0
$46 ZLINEAR
ZPOINT Pl ( =-2.23607,4.47214 )
P6 ( -2.23607,4.47214,10.0 )
ZFACE  FO ZFOLLOWING %SURFACE $18 ZHA 0.0 0.0 0.0
%LOOP
ZIVERTEX Pl ZEDGE  E2 %FOLLOWING ZTRACK  §13
XFACE  F3 %OPPOSING %SURFACE $48 ZHA 0.0 0.0 0.0
ZLOOP
ZVERTEX P6 %EDGE  ES5 %OPPOSING XTRACK §l1l
ZFACE  F4 ZFOLLOWING %SURFACE $21 ZHA 0.0 0.0 0.0
%LOOP
ZVERTEX P1 ZEDGE  E2 ZOPPOSING ZTRACK  $13
Pl ZEDGE  E7 ZFOLLOWING ZTRACK  $46
P6 ZEDGE  E5 %FOLLOWING %TRACK  §$l1
P6 ZEDGE  E7 Z%OPPOSING ZIRACK  $46
ZEND ABC

Fig 1.4 An example of the boundary representation of a cylindrical object, as
generated by the ROMULUS geometric modelling system, specifying both the
geomertry of each surface, track (path followed by an edge) and point, and the
topological relationships between faces, edges, and vertices.

A typical boundary representation-based geometric modelling package is ROMULUS, from
Shape Data Ltd, Cambridge. This allows users to create, modify, and store solid models and
generate 2-D views of such models from any desired angle The user builds up a geometric
model of the design object by specifying appropriate combinations of solid primitives (cube,
rectangular block, regular prism, cylinder, cone, sphere or torus). He can create instances of any
of these primitives at any given location in 3-space, with specified size and orientation, and can
modify their surface or edge geometry, reposition them by scaling, translation, rotation, or
mirroring, and combine them into more complex objects by using suitable Boolean operators (for
example, a block with four cylindrical holes would be generated by specifying a solid block and
four cylinders of suitable size and position, then subtracting the cylinders from the block).
"Sweep" operators are also provided, allowing 2-D shapes to be "extruded" into solid form,
either along a specified linear path, or around a given axis, generating a solid of revolution.
ROMULUS can display orthographic (top and side) views of the design object, or perspective
views from any desired angle, with all hidden edges removed. The user can also generate cross-
sectional views. Again, all or part of the model can be stored on disc for later use. Facilities are
provided for the user to specify additional associations by defining sets of faces which make up a
common feature, share a common type of geometry, or are traversed by a given ray (a vector
with specified direction and starting-point), though the use of this facility is purely optional.



Solid modelling systems of this kind demand new ways of working from the design engineer
who has to think in three dimensions rather than two. They also need to handle more informatior;
about }h; object. In order to describe the shape and size of a three-dimensional (3-D) object
ful_ly, 1t 1s essential to include information about both its geometry and its topology. Concave
objects such as those shown in Fig 1.5 cannot be represented unambiguously by geometry alone.
Some information - explicit or implicit - needs to be provided on the topological relationships
between faces, edges, and vertices. However, solid modellers do provide considerably more

Fig 1.5 Ambiguity of shape described by vertices alone

functionality than 2-D packages - their ability to calculate mass properties such as centres of
gravity or moments of inertia, to perform interference analysis and to generate finite element
meshes for stress analysis means that they can genuinely be regarded as computer-aided design
(not just draughting) tools. Further developments such as automatic code generation for NC
machine tools and automatic process planning are actively being researched, offering the real
prospect of linking design and manufacture into an integrated whole (Requicha, 1988; Voelker,
1990).

1.3 Data exchange in computer-aided design (CAD)

As CAD systems have grown in popularity, the need to exchange data between different CAD
systems has grown in importance. Organizations working on cooperative projects, who in the
past would have exchanged design drawings, now wish to do the same with their machine-
readable equivalents. Since the majority of commercially-available CAD systems store data in
quite different formats, direct exchange of data between independent CAD systems is virtually
impossible. To allow such data exchange requires either (a) the development of interface
software to translate directly between each pair of systems (a task which rapidly becomes
impracticable with more than a handful of systems; to create all required interfaces between n
systems requires n(n-1) separate pieces of software), or (b) the definition of a standard
interchange format, and the provision of interface software between each CAD system and this
standard format (requiring no more than 2n pieces of software to interface n CAD systems).

The attractiveness of the second option has led to several attempts at standardization, of which
the most successful to date has been IGES, the Initial Graphics Exchange Specification (National
Bureau of Standards, 1983). This was developed largely out of standardization efforts made by



the Boeing Corporation and other large American organizations during the 1970's, and attempts
to define a common format for exchange of data between any pair of 2-D draughting systems. It
has some limited 3-D capabilities, but was not designed with 3-D solid modellers in mind.
Standardization for data exchange needs to address three main areas (Liewald & Kennicott,
1982): format (file structures required, and bit representations to be used for integer, floating-
point number and character definitions); representation (the set of geometric primitives chosen
to define an object's shape), and meaning (how to preserve structural and other relationships
present in the original drawing).

The IGES standard addresses the first two of these issues in considerable detail. An IGES file
describes a single drawing, and consists of five separate sections, each containing one or more
80-character records (a relic from the days of punched cards) in ASCII character format. These
five sections are: : '

- A start section, providing a "human-readable” file header which may be displayed by the
receiving system.

- A giobal section, defining standard parameters for system use, including file name, date
and time of creation, number of bits used to represent integers and floating point numbers
in the sending system, and reduction scale used.

- A directory section, containing two records for each geometric entity (point, line, surface,
etc) in the drawing, which define the entity type, point to its associated parameter value
records, and indicate line type and weight, and entity status.

- A parameter section, containing a variable number of records for each entity, giving
values for whatever parameters are required to define that particular entity.

- A terminator section, consisting of a single record, holding record counts for all preceding
sections.

The IGES standard allows a wide variety of entity types to be defined; some of the commoner
types are shown in Table 1.1. As can be seen from the table, there is considerable variety in the
choice of defining parameters for different entities. It is also possible to define a given geometric
entity in more than one way, e.g. straight lines as entity type 106 or 110, curves as type 102, 112
or possibly 104. This allows great flexibility in representation, and minimizes the danger of
distorting complex entities. It also unfortunately makes it virtually impossible to define a
"standard" IGES representation of a drawing, as so many valid alternatives exist. In general,
there will be several thousand, if not million, valid IGES representations of any drawing of
average complexity. To recognize that any two of these actually represent the same drawing is a
non-trivial task. :

This task is made considerably more difficult because IGES makes no serious attempt to address
the third main standardization issue - how to preserve the meaning implicit in the original
drawing. A limited amount of semantic information can be passed from sending to receiving
system by the use of the "associativity” and "property" entities (types 402 and 406). These allow
the user of the sending system to make explicit the topology of the object described, to specify
that certain geometric entities are grouped together to form a structural unit, or to specify certain
non-geometric properties such as materials or surface finish. There is nothing mandatory about
using this feature, however, and it remains completely up to the designer what associations, if
any, are specified. The user of the receiving system cannot assume that any such information has
been supplied.

Implementation of IGES has been patchy. A number of CAD systems now incorporate modules
for reading drawing files in IGES format. A smaller number are capable of generating IGES files
- though these often turn out to be extremely limited in the range of entity types they can handle.
DOGS, for example, is capable of reading IGES files, generated by other CAD systems,



containing entity types 100 (circular a{c), 106 (copious data), 110 (line), and 112 (spline curve).
IGES files generated by DOGS contain only two types of geometric entity - 100 (circular arc)
and 106 (copious data). .

IGES was never intended as more than an interim standard for data exchange; the original IGES
committee proposed that it should be replaced within two or three years by a new standard to be
known as PDES (Product Definition Exchange Standard), and further extensions, involving
interchange of both 2-D drawings and 3-D solid modelling data, have been proposed in the
intervening years (Wilson, 1987). Recent standardization activity has been directed towards
drawing together as many disparate standards as possible within a new international standard
known as STEP, or STandard for Exchange of Product data (Wilson, 1989). At the time of
writing, however, IGES remains the only officially-adopted ISO standard (Wilson, 1990).

1.4 Data management for CAD

The concept of database, where data are held in applications- independent form and accessed
only via specific database management software, has gained widespread acceptance in the
commercial field. It has yet to make a great deal of impact in the engineering area - proprietary
CAD systems such as DOGS store drawing representations in a completely application-specific
form, making it impossible to use their drawing files for any other purpose without writing
interface software. While such systems remain standalone draughting packages whose sole
function is to produce drawings, this is an acceptable situation. However, with the rise in
importance of computer-integrated manufacturing (CIM), where CAD systems are directly
interfaced with numerically-controlled machine tools, and bill of materials and production-
scheduling applications, interest in database management for engineering has grown.

A unified engineering database, holding information on materials, manufacturing methods, and
design specifications as well as shape information, can play a central role in integrating
engineering design and manufacture (Kimura et al, 1982). There are, however, fundamental
problems in applying conventional database models to this kind of application (Eberlein and
Wedekind, 1982; Staley and Anderson, 1986). These include the need to be able to cope with
transactions lasting for several hours, and the ability to extend database schema definitions
dynamically as the structure of the object being designed gradually emerges. '

In theory, conventional DBMS can cope with the schema definition problem if one chooses
simple enough building blocks for one's database (see chapter 5 below). In practice, however,
this approach is of limited use, although at least one CAD-oriented database management system
(DBMS) designed along these lines has been described in the literature (Ulfsby et al, 1982). Its
main limitation is that it fails to capture any of the semantic information conveyed by the
original drawing, such as the relationships between assemblies and their constituent parts, and
the presence within such components of recognizable structural features.

One way to capture part-assembly relationships is to construct a database which shows such
relationships explicitly from the start. This in essence was the "Product structured data base"
approach described by Johnson and Dewhirst (1982) and adopted for their COMCAD system,
which allowed complex products such as diesel engines to be specified as a hierarchy of
assemblies and components, each identified by name, and containing a geometric description of
each named component. A more general approach to the problem, proposed by a group from
Rensselaer Polytechnic Institute, NY (Spooner et al, 1985), lies in the creation of an integrated
design environment, in which boundary representations, CSG models, finite element meshes and
part-assembly hierarchies are represented as high-level abstract data types whose detailed
implementation need not concern the user.



Table 1.1 - some common IGES entity types

Type no.

Name

Defining parameters

Geometric entities:

100

102

104

106

108

110

112

Circular arc

Composite curve

Conic arc

Copious data

Plane

Line

Parametric spline

Non-geometric entities:

202

212

214

216

402

404

406

410

Angular dimension

General note

Leader

Linear dimension

Associativity
Drawing
Property

View

(x,y) coordinates of centre of
circle, start and end point

Pointers to constituent curve
segments (lines or arcs)

Coefficients a..f of defining
equation, (x,y) coordinates of
start & end points

Sets of (x,y) or (x,y,2z)
coordinates forming a set of line
segments

Coefficients a..d of defining
equation

(x,y,z) coordinates of start and
end points
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Various
Various
Various

Various




1.5 The need for retrieval by feature

A system such as that described above can be of enormous help to design teams working on
large and complex assemblies. Yet it has at least one significant limitation. It provides no means
of helping the designer with questions such as "What standard components do we have similar to
the one shown on this sketch, or with such-and-such a combination of design features?". Such
questions can be important to designers, production engineers, and their managers. Designers
have no wish to waste their time reinventing standard parts, production engineers may well wish
to take advantage of feature similarity among parts to machine a whole family of parts in a single
run - and any cost-conscious management needs to discourage the proliferation of almost-
identical parts, each of which has to be separately manufactured and stocked, when a single part
would suffice. Surveys such as that reported by Schaffer (1981) have suggested that a typical
company could cut the number of new drawings it generates by anything up to 30% by adopting
such standardization.

A database that represents components purely in terms of points, lines and surfaces is of minimal
use in such a situation. Design engineers tend to think primarily in terms of shape features, such
as slots, grooves or pockets. (Similarly, architects think in terms of features such as architraves,
columns, and gables). This is the language they use when talking about objects to be machined,
and there is strong evidence of a connection between the way people use language and the way
they think (Stamper, 1973). However, language is notoriously ambiguous in the way objects are
denoted - an identical object can be known by several different names. Kyprianou (1980) quotes
an illuminating example of a simple cylindrical part separately designed, made and stocked

under a dozen different names, including "arbor”, "boss", "cotter", "mandrel”, "pin", "pivot",
"rod", and "spindle". :

Engineers have in the past responded to the need to recognize components by structural feature
through classifying parts into families on the basis of shape features. A number of standard parts
classification schemes have been put forward, the main impetus being the rise during the 1960s
and 1970s in the importance of group technology, which involved grouping together small
batches of parts requiring similar machining steps, in order to increase batch size and reduce unit
costs. One of the best known coding schemes is the Opitz code (Opitz et al, 1969). This was
devised, according to the author, to provide a widely usable coding system capable of providing
a means for quick retrieval of drawings and working plans, the selection of similar groups of
components, and surveying the types of components suitable for a given machine tool. It
classifies parts, first on overall shape (rotational/non-rotational; length/width ratio, etc), then on
the presence, type and orientation of machined features such as slots, grooves, or holes. Fig 1.6
shows an example of the Opitz code for a simple machined part.

While codes of this kind have proved successful in use, they have significant limitations. Firstly,
there is the overhead of manually classifying each part. The need to make manual encoding as
easy as possible imposes severe limitations on the number and specificity of features that can be
coded. Secondly, human classifiers will not always agree on the coding to apply to a given part
(some categories involve an element of subjective judgement), and will on occasion inevitably
make mistakes. Thirdly, manual classification systems lack flexibility - they take account only of
those features their original authors considered important. This problem has been tackled in
many classification systems by making provision for local extensions and variations.
Unfortunately, this brings  its own problems if firms wish to share their design data -
classification codes assigned in one centre may be meaningless in another. There is thus a
demonstrable need for more economical, reliable and flexible systems.

1.6 Automatic shape recognition in CAD

The question of how shape features can best be defined and represented is central to this whole
investigation. What constitutes an important shape feature, how can it be recognized, and what
form of representation is most suitable? At the simplest level, the problem could be thrown back
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Fig 1.6 Opitz code as applied to a typical machined part (from Opitz, 1969)
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on the designer. It would be quite feasible to ask designers to indicate on their completed designs
the main shape features possessed by each major component ("part XYZ1000 is cylindrical, with
a centre hole, and one longitudinal groove™); such text descriptions could readily be used as the
basis of a retrieval system. Without careful training, however, it is most unlikely that designers
even in a single location would agree on the naming of standard shape features. The chances of
such a system achieving any widespread application are minimal. Designers are far too proud of
their individuality.

A more feasible variant of this idea is the concept of feature-based design (Patel, 1985). Here,
the designer is provided with a "front-end" to a CAD system, which allows him to select desired
structural features from a menu. A design drawing or geometric model is then prepared,
incorporating the desired features. Details of the features chosen could readily be extracted from
such a system to provide the basis for feature retrieval, with the advantage that the "front-end"
imposes a large measure of standardization on the name and type of features chosen, thus
overcoming one of the main problems highlighted above. Unfortunately, such systems are still
experimental, and it is too early to tell whether they will achieve any widespread use among
designers. The choice of "standard” features and how they are defined is also likely to vary from
system to system. They are in any case designed for ease of use rather than with retrieval
usefulness in mind, so that it is generally possible to design the same resulting shape in more
than one way. This problem is discussed in more detail in the next chapter.

The two approaches outlined above are thus severely limited in their applicability. To provide a
shape retrieval system capable of widespread application, it is necessary to use the power of the
computer to seek out and identify features in each design object, using the only representation
that one can guarantee to be available - engineering drawings or geometric models from existing
CAD systems. Since these in general provide no means of identifying structural features, each
drawing requires a considerable amount of preprocessing by suitable shape recognition software.
The design of such software represents a considerable challenge.

Kyprianou (1980) has made a detailed study. of this problem. The aim of his investigation was to
devise an automatic parts classification system, free from subjective bias or error. To do this, he
needed an objective way of recognizing important morphological features, such as protrusions
and depressions. As his starting point, he took geometric models created using the Cambridge
University BUILD system referred to in Section 1.2. These were systematically analysed in
order to uncover major structural features. The structural primitives available in BUILD (the
loop, defining the boundaries of a surface, edge and vertex) defined too small a portion of an
object to denote structural features of any importance on their own. They could, however, be
used as the building-blocks of a feature language which did. Kyprianou was able to define this
language in terms of a regular shape grammar, which could be shown to belong to the general
class of context-free grammars, and could therefore be parsed without undue difficulty. For a
detailed discussion of the underlying theory and its application to picture parsing, see Fu (1982).

The fundamental building-blocks of Kyprianou's shape grammars were facesets, connected sets
of faces defining important morphological features, which could be recognized locally either as
protrusions or as depressions. He constructed a feature recognizer which systematically "parsed”
the BUILD boundary representation of each object, one face at a time, in order to identify all
facesets. The process of generating facesets involved two main stages. Firstly, each loop,
defining a face boundary, was marked as convex or concave. Then each loop was examined. in
turn, starting with the loop enclosing the largest number of interior loops, and faces aggregated
into facesets (Fig 1.7) according to criteria defined by the shape grammar. The overall structure
of the object could thus be represented as a graph (normally a tree), with nodes representing
facesets, and arcs the relations between facesets. The shape of the part itself could then be found
by matching each faceset in turn with a suitable template - planar parts against regular prisms,
rotational parts against cylinder, cone and sphere. Once the nature of each faceset was known,
the whole object could be recognized and classified.

Unfortunately the project never came completely to fruition. The shape recognizer was unable to
recognize facesets under all circumstances. The proposed classification method could be applied
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only to one small class of parts. The major importance of Kyprianou's work is probably the
concept of the faceset, an objective means of defining and representing shape features of
importance. Facesets do seem to coincide remarkably well with a subjective impression of
structural features - in the majority of cases. There are, however, important exceptions,
particularly where a depression or protrusion overlaps two or more faces (Fig 1.8). According to
Kyprianou's rules, a single faceset describes this object: the depression is not recognized as a
separate feature.

Further work on feature recognition has been reported by a number of groups. Staley et al (1983)
have taken the 2-D shapes resulting from manual cross-sectioning of holes of different types
from geometric models produced by ROMULUS, and developed a chain code representation
similar to that first described by Freeman (1974). They then devised separate shape grammars to
describe each of 13 possible classes of hole - flat, tapered, chamfered, and so on. A. string parser
was then used to classify "unknown" hole descriptions into one of the 13 classes. Choi et al
(1984) have developed a series of PASCAL programs to recognize instances of circular holes,
rectangular pockets and similar machined features in ROMULUS boundary representations of
simple parts. Although their method is not based formally on the use of a shape grammar, shape
features are defined according to a rigid syntax. Henderson and Anderson (1984) have used a
rule-based approach to feature recognition. Their FEATURES system, designed to generate
feature descriptions for process planning from ROMULUS part descriptions, represents shape
features such as holes and slots as Horn clauses in the artificial intelligence programming
language PROLOG. Lee and Fu (1987) have devised algorithms to transform CSG trees into a
standard form for feature recognition, and Dong and Wozny (1988) have described a frame-
based system, linked to the PADL solid modeller (Voelker et al, 1978), which will recognize and
characterize named features such as pockets, bosses or slots. While these systems have
automation of manufacturing process planning, not database construction, as their ultimate aim,
the techniques used are clearly of wider relevance. »

1.7 Graphical databases in other areas
1.7.1 What constitutes a graphical database?

Increasing interest has been shown over the last decade in what are variously called picrorial
information systems or image database systems. Such systems have in common that they hold
machine-readable representations of pictorial data of some kind, available for retrieval, display
or further processing. Unfortunately they have remarkably little else in common. Image records
may be large (over 20 MB for LANDSAT images) or small (a simple line drawing requiring
only 100 bytes or so of storage). The numbers of images held in such "databases” may range
from less than 10 to thousands (though large databases of this kind are extremely rare). Each
image may describe a single object, or hundreds of objects of different types. Data retrieval
facilities may range from the primitive (simple retrieval by name or record number) to the
sophisticated (use of relational query languages). While earlier reviews (e.g. Tamura, 1980)
attempted to create a taxonomy of such systems, more recent reviews have suggested that such
an exercise is not helpful, and in fact question whether more than a small fraction of so-called
"image databases" deserve the name:

"It does not seem that the significant concepts of IDB (image data base) have been
established yet, because there exist too few systems that we can call a true IDB"
(Tamura and Yokoya, 1984)

"Our own impression is that much of the work appearing under the heading 'image

database' describes either image nondatabase systems ... or nonimage database
systems" (Nagy, 1985)
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Fig 1.7 Three facesets (F1, F2, F3) generated from a simple shape by
Kyprianou's method, corresponding well to intuitively recognized features.
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Fig 1.8 A case where a morphological feature is not distinguished as a separate
faceset by Kyprianou's method. The faceset FI covers the entire surface of the

object.
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To attempt a strict definition of an image database system under such circumstances is clearly
pointless. It is, however, important to form some idea of the distinguishing characteristics of an
image database system. A true image database system can be regarded as a collection of images
together with descriptive data derived directly from those images, maintained in applications:
independent form, and organized for efficient storage and retrieval. This excludes specialized
collections of test images used in developing pattern-recognition algorithms, databases of
manually-assigned text descriptors of images, and data compression systems which provide
compact storage of large or complex images, but no retrieval facility.

Some examples of image database systems which meet at least some of these criteria are
described below. The review deliberately omits consideration of the many "image databases"
which retrieve images purely on identifier or manually-assigned key words.

1.7.2 Geographical information systems

Much of the pioneering work in image database development has been in the geographical area.
One early system of note was IBIS (Image-Based Information System), developed at California
Institute of Technology's Jet Propulsion Laboratory during the mid-1970's (Zobrist and Bryant,
1980). Its aim was to integrate data from satellite photographs with census and land use data,
generating a single spatially-oriented database which could handle a wide range of queries, such
as the likely health impact of a new chemical plant. All data were stored as two-dimensional
arrays of cells, each of which could contain image data (brightness, colour, etc. of a single image
pixel), physical variables (rainfall, population or pollution levels), or identifiers (codes for
geographic region or land use, or identifiers for the nearest of a set of specified points or lines -
which could be named cities or roads). Any individual cell could be directly addressed from its
spatial coordinates, and different categories of information coordinated. A command-based
query language was provided, allowing users to aggregate. or cross-tabulate different data types,
and report the results of such operations either in tabular or graphical form. Queries put to actual
IBIS databases have included correlating land use with highway provision, population density
with pollution levels, and even rooftop area with electric power consumption (part of a solar
power study). : .

Much of the development .effort in the IBIS project was directed towards automating data entry -
a major problem for any large database. The problems of aligning administrative boundaries with
LANDSAT satellite photographs were successfully overcome, though human intervention was
required with non-geometric information such as district names and highway numbers. The use
of a single grid format for referencing all types of data was a key feature of the system, ensuring
the compatibility needed to allow complex cross-tabulations. From the examples quoted, one
suspects that the system was somewhat cumbersome to use by present-day standards, and
required users to understand the structure of the database in considerable detail. However, the
general principle of reducing all data to a common grid-based format has clearly been found
useful by designers of later systems (e.g. Chock et al, 1984).

Another system dating from a similar period was GRAIN (Graphics-oriented Relational
Algebraic INterpreter), which aimed to separate out image features and the images themselves
into separate data stores (Chang et al, 1977). This was achieved by coupling together two -
systems: ISMS (Image Store Management System), which held digitized representations of the
images themselves, and RAIN (Relational Algebraic INterpreter), a relational database holding a
series of relations which together formed a logical description of each picture. In its original
version, RAIN held three types of relation - picture object tables, naming each significant object
in a picture and showing its relationships with other objects; picture contour tables, giving
coordinates of each object's bounding polygon; and picture page tables, indicating where in the
physical image file each object could be found. All queries were handled by RAIN; the resulting
pictures could then be displayed by ISMS. The system's query language (also called GRAIN)
provides the user with commands to display a named picture, sketch a line drawing or paint an
image of an object retrieved by name, spatial attribute or similarity with another picture object.
Some examples of GRAIN queries are shown in Fig 1.9.
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(i) draw a line diagram of all highways in the picture

sketch picture; name equal 'highway'

(ii) draw a line diagram of all railways with gauge
over 120 cm

sketch railroad; rgage greater than '120°'

(ii1) dlsplay a dlgltlzed image of all forests in a
given area

paint picture; name equal forest"
forest.x less than "40'
and forest.x greater than '20'
and forest.y less than '70°
and forest.y greater than '30’

(iv) display all citieé similar to a given city (according
to a set user-defined procedure)

paint city; similar (city.name equal 'Detroit')
using 'PROCL1'

Fig 1.9 Examples of pictorial queries in the GRAIN language
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While GRAIN - also known as DIMAP (Chang, 1980) - clearly embodied some sophisticated
ideas, it is far from clear whether any of the information in GRAIN was derived directly from the
pictures themselves. If the picture descriptions were indeed laboriously extracted by hand (and
eye!), and entered into RAIN just like text descriptors, one could argue that all that was
achieved, in Nagy's terms, was to link a nonimage database system to an image nondatabase
system.

One system which, according to its designers, did successfully extract semantic information from
satellite images into a data base was REDI (RElational Database for Images), also known as
IMAID (Chang and Fu, 1980). Like GRAIN, it incorporated a separate image store and
relational database; in addition, it contained powerful feature recognition software capable of
processing LANDSAT images using syntactic pattern recognition techniques. The software
identified specified objects in LANDSAT images, including roads, rivers, cities and meadows,
creating database entries showing the position and orientation of each instance of these objects
found, and producing line drawings showing the results of this operation in graphical form.
Human intervention was still necessary to add identifying names for cities, roads and rivers -
otherwise the degree of automation was almost complete.

Another striking feature of REDI was the query language chosen. Rather than use a conventional
command-based language, Chang and Fu used an extension of the menu-based QBE (Query-By-
Example) language (Zloof, 1975), which they designated QPE (Query-by-Pictorial-Example).
The reasoning behind this was that unskilled users would find this easier to use than a command-
based language, particularly for complex queries. Its mode of operation was very similar to
QBE; the user was presented with a screen displaying a blank table, on which the name of the
relation(s) likely to contain the answers to the query could be entered. The system then filled in
the column headings on the screen table(s) with domain names from the specified relations, and
the user typed in an example of the answer required (Fig 1.10). The system then responded by
displaying actual answers in the format specified by the user - a table of results, a sketch, or a
display of part of the original image. The range of queries handled was quite extensive: as well
as retrieving named entities such as cities, the availability of additional spatial operators (such as
DISTANCE, SLOPE, AREA, PERIMETER, and INTERSECTION) meant that questions such
as "find the length of highway 65 within Lafayette city” could easily be answered. As with
GRAIN, a similarity retrieval operator was provided, though nothing was reported about how (or
even whether) this feature had in fact been implemented.

While the ease of use of QPE cannot readily be assessed (from the examples given, complex
queries appear just as difficult to express in QPE as in any other command language), REDI was
definitely the most impressive of the early systems. It provided automated processing of image
data, generating a database capable of answering a wide range of queries. Clearly its feature-
recognition capabilities were limited to those few features for which recognition algorithms were
constructed. It remains, however, the closest approach to a true "image data base" of any of the
geographic information systems reviewed here.

Although not a geographic information system in the strict sense, the recently-reported
"intelligent image database system" of Chang et al (1988) falls into the same general category in
that it was designed primarily to answer spatial queries of the type "find me a picture with a car
to the east of a house". In the present version of the system, pictures are encoded (manually!) as
2-D character strings indicating the position and type of each significant picture object. The
resulting iconic index can be queried in a variety of ways, and pictorial representations of
retrieved scenes displayed on the screen. Future versions of the system are planned to have the
capability to extract 2-D indexing strings directly from the images themselves. Not until then
will this (admittedly ingenious) system qualify as a true image database.
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(i) print the names of roads
city of Lafayette

in the same frame as the

CITYNAME

NAME

FRAME CITY ID

10 Lafayette
ROADNAME FRAME ROAD ID NAME

10 P.X99

(ii) sketch the part of interstate highway 65 falling
within a given geographical area

ROADNAME FRAME ROAD ID NAME
4 17 H65
ROADSEG FRAME ROAD ID X1 X2 Yl Y2
S 4 17 22 32 41 49

Fig 1.10 Examples of queries formulated using QPE. The user enters search
terms in the appropriate columns of the query tables ("Lafayette” in the first
query, "H65" and (x,y) coordinate values in the second), and then gives dummy
examples (underlined) of the type of answer he requires, together with the
command "P" (print) or "S" (sketch), depending on the form of output required
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1.7.3 Medical image database systems

Recognition of abnormal features has always been a key aspect of medical diagnosis: this
century has seen rapid growth in _the importance of techniques such as radiology (the use of X-
ray photography and other scanning techniques) and cytopathology (identification of abnormal
cell types). The advent of techniques such as computerized tomography (CT), where a computer-
guided scanner produces a series of cross-sectional images of a patient's anatomy, has generated
large numbers of digitized images suitable for automatic processing. While many so-called
medical IDBs are really no more than collections of images retrievable by patient name and date
some of the systems described in the literature do automatically derive descriptive information
from the images themselves. Huang et al (1980) describe a system to extract geometric features
of body segments or internal organs from CT scans, and save these for future retrieval. Toriwaki
et al (1980) have presented details of a feature extraction system for chest X-rays, which derives
annotated sketches from each image, showing the rib cage, lung borders, and any suspicious
shadows (abnormal blood vessels or tumour fragments). Medical staff can use such sketches for
quick review, allowing them to select radiographs of interest. The system can also compute
certain information about the image, such as the size of the heart shadow, and select images on
that basis. Yokoya and Tamura (1982) describe a cytopathology database, where slides can be
retrieved by a combination of image and non-image features. It uses a relational approach similar
to that of GRAIN. Frasson and Er-Radi (1986) describe a partly-implemented icon-based query
system designed to identify and characterize examples of diseased organs. Like most of the
geographical systems described in the previous section, however, few of these systems can be
called true image databases, as their ability to derive indexing features directly from stored
images is in most cases very limited.

1.7.4 Other pictorial information systems

Some of the most sophisticated pictorial information systems described to date are the
fingerprint matching and retrieval systems developed for use by police forces in the UK and
America. Systems of this kind are among the very few that qualify unequivocally as image
databases, as retrieval features are extracted automatically from images without human
intervention. Though few details are available on the inner workings of such systems, a brief
description of one such system (IEEE, 1985) indicates that pattern recognition techniques are
used to identify the number, position and orientation of minutiae, parts of the fingerprint where
ridges begin and end. A similarity measure can then be computed between an "unknown" print
and each print in the database, and the ten most similar prints displayed for human examination.
The search process is slow, as the entire database is searched sequentially, though the use of
parallel processors is expected to improve system performance substantially.

A further example of what appears to be a true image database came to the author's attention
shortly before the completion of the present project. This is the GRIM_DBMS system reported
by Rabitti and Stanchev (1987b, 1989), which aims to provide retrieval of specific types of
diagram (such as charts and graphs in business reports, or office floor plans) on the basis of the
objects contained within it. Although the system is claimed to be of general applicability, any
given instance of the database can handle only a limited domain of drawings. Drawing elements
(lines, arcs, points, text strings) are analysed, and used to infer the probability that the drawing -
contains instances of certain specified objects, such as titles from bar charts in a business
graphics context, or desks and chairs from office floor plans. These probability values are then
used in two ways; firstly, the techniques of cluster analysis (Everitt, 1980) are used to group
together images with similar content, and secondly, indexes are created for each object type,
indicating the images in which they are most likely to be found. A relational-type text-based
query language is provided for retrieval. While no details of system effectiveness are provided,
the concepts involved seem sound, even if the system as described lacks flexibility in that the
data base designer would have to specify to the system in advance what types of object were of
interest, and provide the system with detailed inference rules for recognizing that object from
primitive picture elements.
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1.8 Scope of the present project

There appears to be evidence, both from the literature, and from discussions with designers and
users of CAD systems, that data management for CAD is likely to play an increasingly important
role in the future. The ability to retrieve by feature is at present in its infancy - yet there is a
growing body of evidence that it would prove a useful adjunct to future CAD/CAM systems
allowing designers and production engineers to recognize when a "new" design shared major,
structural features with existing parts without the need to resort to time-consuming manual parts
classification. In other fields where pictorial information is handled, especially in geography and
medicine, the feasibility of such systems has been demonstrated, though it has to be admitted
that few such systems are operational outside the research laboratory. The fact that several
systems have used pattemn recognition techniques for feature identification, and relational
database for data storage and retrieval, is noteworthy - though it is not immediately clear whether
this is because of the overwhelming superiority of such techniques, or is just a bandwagon effect.
The use of alternative data models deserves more investigation than it has so far received.

The design of an engineering database with shape feature retrieval capabilities is clearly a
feasible proposition. However, it requires careful investigation of a number of alternative
approaches before design decisions are made. The key issues to be faced in designing an
engineering database capable of feature retrieval can be grouped under the following headings:

(a) Scope of the database: what type of model should be included (2-D or 3-D), and what
should constitute a basic pictorial entity in such a database? In what input format(s)
should drawings or geometric models be accepted?

(b) Storage structures: is the entire object representation to be stored, or just a description of
its shape features? How exact a representation is required? To what extent is it
necessary to represent each object in a strict canonical form? How does one choose the
most suitable format to represent the geometry, topology and shape features of an
object? What is the most appropriate database model to support such representations?

(c) Feature extraction: what types of feature are likely to be most useful for retrieval? How
can they most effectively be extracted? »

(d) Retrieval capabilities: what level of retrieval should be provided? Is a simple indication
of part family sufficient, or are Boolean combinations of features or sophisticated
similarity matching required? What kind of matching algorithms are necessary, and to
what extent are they provided in existing database management or information retrieval
systems? How should retrieval by geometric feature be combined with retrieval of non-
geometric items such as text descriptors?

(e) Interface design: what kind of query language is most appropriate: something
completely novel, or an adaptation of existing languages, such as QPE? How should
graphical input of queries be managed? What level of interaction with the user is
required? What constitutes the answer to a query - listing of tabular information, display
of a drawing, highlighting key parts of a geometric model, or making available a copy
of the original design file? ' :

(f) Evaluation: what kinds of performance measure should be applied to a system such as
this, and how does one construct appropriate benchmarks?

Although listed separately, these design problems all interact. The form of object representation
chosen, the processes of feature extraction and similarity matching, the retrieval capabilities
offered, and the type of interface provided are all mutually dependent decisions which cannot be
taken in isolation from one another. The aim of this project is to investigate this complete range
of problems, by designing, implementing and evaluating a database of engineering drawings
capable of retrieving objects by shape feature, and allowing graphical formulation and
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refinement of queries. Later chapters of this thesis examine these design issues, their interaction,
and their influence on the eventual system design, in some detail.

As far as is known, this project, with its emphasis on the totality of the problem and the mutual
interaction of its sub-problems, is unique. Most other reports of graphics-oriented databases in
the literature have focussed on different issues. The engineering databases discussed in section
1.4 are generally aimed at improving security and integrity of data, not providing users with
additional retrieval capabilities. Indeed, the trend seems to be to pass semantic retrieval problems
back to the original designer, rather than to design systems capable of tackling them directly.
The geographical databases outlined in section 1.7 provide retrieval on the basis of an itein's
position and function, not its shape, and most still rely heavily on text-based query languages.
The question of generating canonical representations of stored objects has not been raised, and
may not even be relevant in this field. Medical image databases such as that described by
Toriwaki et al (1980) are closer in concept, in that graphical input and output are considered an
integral part of the overall design. However, little consideration seems yet to have been given to
shape retrieval, and none to the question of canonical shape representation (which one might
expect to be more relevant in this field). None of the systems described have been subjected to
any systematic evaluation, even the recent work of Rabitti and Stanchev (1987b, 1989), which is
probably closest in concept to the present study.

The remainder of this thesis describes in detail the development and evaluation of a prototype
shape retrieval system for engineering drawings, to be known as SAFARI (Shape Analysis For
Automatic Retrieval of Images). Chapter 2 discusses the problem of drawing representation for
shape retrieval, arriving at conclusions whose implementation is described in Chapter 3. Chapter
4 analyses the problems of feature selection and extraction, and chapter 5 discusses the
applicability of different data models to support the required drawing and feature rep-
resentations. Chapter 6 analyses the retrieval capabilities needed by any such system, and
describes the matching processes adopted for the prototype. Chapter 7 examines the question of
interface design. Chapter 8 presents an evaluation of the system's retrieval effectiveness; finally,
chapter 9 discusses the implications of the project's findings for 3-D shapes, and for pictorial
information systems in general. '
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CHAPTER 2. FORM AND SCOPE OF OBJECT REPRESENTATION

2.1 Introduction

This chapter explores two of the most fundamental issues in the design of a shape
databaseg what is the most appropriate scope for such a database, and how can objects
stored within the database best be represented? Like many design issues, these questions
are interrelated. A database of sculptured parts such as body panels for cars or aircraft
would require more powerful representation techniques than a database of simple
machined parts. Essentially 2-D objects such as sheet metal parts or VLSI designs could
be adequately handled by much simpler forms of representation. The scope most
appropriate for a prototype database used as a vehicle to explore design problems is in
any case unlikely to be appropriate for an operational database for use in a design office.

2.2 Scope of the database
2.2.1 Type of drawing

A fundamental - and universally relevant - distinction needs to be made at the outset
between drawings (or models) on which the designer is still working, and completed
drawings, describing objects which are past the design stage. (Libraries of standard parts
as described by Ketabchi and Berzins (1987) fall into the second category). The database
requirements of these two types of drawing are quite different. In the first, the designer's
prime requirement is to retrieve a specified drawing or model] in order to add, modify or
delete drawing elements. He or she therefore needs easy access to each individual
drawing or solid modelling primitive. Implicit shape features are of minimal importance
to the designer at this stage, so shape retrieval is unlikely to be a worthwhile facility to
offer. For such purposes, the database models outlined in Section 1.4 are likely to prove
perfectly satisfactory. The main function of a DBMS here is to maintain the security and
integrity of "live” design files, and aid in version control.

The second type of drawing (or, more properly, the second stage in the life of a drawing)
poses different requirements. It is not expected that further design work will be
necessary, so that rapid access to each individual line and point is of much less
importance. The main requirement here is that the drawing should be retrievable from the
archives (whether paper or computerized) whenever there is a need for a component with
specified design features. A design database set up for these purposes thus needs above
all to be able to provide retrieval by feature. Security is still important; completed
drawing files should normally have 'read-only’ status.

So far, most of the database development work reported (see Section 1.4) has been
concermed with "live" drawing files, with the prime aim of improving ease of access to
individual components in large drawings. The investigation of ways of meeting the
special requirements of databases suitable for completed drawings ("consolidated design
files" in IBM parlance) has received much less attention. This balance needs to be
redressed. ' ' :

There is an interesting parallel here between the needs of a design engineer and a
software designer using an integrated programming support environment (IPSE). IPSE's
have very similar requirements for access control and integrity maintenance for software
modules under development. Just as the design engineer requires access to each drawing
element in a "live” drawing file for modification, the software developer needs access to
programs under development at the level of the individual line of code, via a text editor.
If engineers feel a need for retrieval of completed drawings by feature, perhaps
programmers might be interested in retrieval of completed program modules by overall
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function. The question of how to define 'function' in this context is even harder than it is
for drawings.

2.2.2 Two or three dimensions?

To be of real usefulness to the majority of design engineers, a database offering retrieval
by feature needs to operate on 3-D models. Few, if any, genuine two-dimensional objects
exist (the closest approach, as observed above, being sheet metal parts or VLSI layouts)
though these are the only objects which can be directly represented in a single 2-D
drawing. For the vast majority of objects, key aspects of feature similarity are not
obv1-ous from a single drawing, becoming apparent only when 3-D models are compared.
Designers are clearly far more interested in similarity between two objects than between
the drawings that represent them. However, the use of 3-D geometric model ling is stiil
far from widespread; many engineering firms seem likely to continue using 2-D
draughting packages for perhaps years to come. This suggests that a storage and retrieval
system capable of handling input from both 2-D drawings and 3-D geometric models
would be desirable - though (as discussed below) the difficulties of interpreting 3-D
shapes from 2-D drawings are considerable.

For the present study, however, it was decided to restrict the database to 2-D drawings of
essentially two-dimensional objects. This was done for two reasons. Firstly, the IGES
standard (the only interchange format in which drawings were readily available at the
outset of the project) provides an adequate description only for 2-D drawings. Any 3-D
database would therefore have to be linked to a specific geometric modelling system such
as ROMULUS, reducing its general usefulness (see section 2.2.3, below). Secondly, the
complexities of casting 2-D object representations into standard form and devising
suitable forms of query input were felt to be sufficient to provide a more than adequate
vehicle for exploring the relevant design issues. The solution of the design problems for
2-D objects was felt to be a necessary precondition to tackling the more difficult case of
3-D objects.

The domain of objects to be included in the test database was thus limited to the simplest
class of genuine CAD drawings - 2-D objects that could potentially have been stamped
out of sheet metal. The set of picture processing algorithms developed to cast these into
unique form is valid only for such objects. Each drawing consists of a continuous outer
boundary made up of a sequence of one or more contiguous line segments. This boundary
may enclose zero or more internal shape features, voids defined by continuous inner
boundaries made up of one or more line segments. Each boundary line segment can be
either a straight line or a circular arc, and is contiguous with precisely one neighbouring
segment at each end. Voids cannot themselves enclose further shape features, and no two
boundary segments may touch (other than as specified above) or intersect. The
composition of such shapes can be defined in Backus-Naur form as follows:

<outer boundary> {<inner boundary>}
<boundary segment> {<boundary segment>}
<boundary segment> {<boundary segment>}
<straight line> | <circular arc>

<shape> ::

<outer boundary> ::
<inner boundary> ::
<boundary segment> ::

it

where { } indicates zero or more repetitions of the enclosed symbols, and | indicates a
choice between altematives. Typical shapes conforming to these rules are illustrated in
Fig 2.1.

Such shapes, while representing a very limited subset of those in engineering use, should
provide a sound basis for subsequent generalization to boundary representations of 3-D
objects. Generalization to "two-and-a-half"-dimensional (2.5-D) parts - objects where
every principal face is either parallel or perpendicular to every other (Fig 2.2) - is simply
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Fig 2.1 Examples of some of the 2-D shapes included in the scop

e of the

test database. Note the restriction to objects (such as sheet metal
stampings) that can be accurately represented by a single 2-D drawing

-

Fig 2.2 Examples of "two-and-a-half” dimensional objects
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a matter of indicating the height or depth of each interior feature, and relaxing the
restriction that inner boundaries cannot themselves enclose further shape features
Generalization to 3-D boundary representations can be achieved for most but not all trué
3-D objects by defining each face of the object in the manner shown above, and
indicating the topological relationships between faces. (The main exception to this is the
class of sculptured parts, where the geometry of a face cannot be specified completely by
defining its bounding edges). The validity of extending the approach developed here for
2-D shapes to 3-D objects is discussed further in section 9.3. :

Generalization of these restricted 2-D shapes to conventional engineering drawings (2-D
projections of 3-D objects), such as that shown in Fig 1.1, is simple at one level, but
much more difficult at another. The only difference between drawings of the restri,cted
set of shapes shown in Fig 2.1 and ordinary engineering drawings is that boundary lines
can toqch or intersect, and that inner boundaries can enclose further drawing features.
Extending processing algorithms to cope with such drawings - and therefore to assess
whether two drawings shared a given feature - would not be a difficult task (though the
computatipnal effort would be significantly greater). However, this would not necessarily
uncover similarity or common shape features in the objects themselves. Shape retrieval
of a 3-D object represented by 2-D orthographic projections is possible only if its 3-D
geometry can be reconstructed automatically from the drawings. As discussed later
(section 9.3), this is a major problem in itself.

2.2.3 Input format

The choice of input format for objects included in the database is also important,
irrespective of the scope and type of object representation chosen. Three main
alternatives are available: (a) input by scanning of existing (paper) drawings, (b) input
from drawing files of proprietary CAD systems such as DOGS or ROMULUS, or (c)
input in a standard exchange format such as IGES.

Input by scanning pen-on-paper drawings has the advantage that virtually all engineering
drawings are available in this format, whether computer-produced or drawn by hand. But
it hardly seems appropriate to make this the main form of input to a database of
computer-generated drawings, particularly when it renders direct input of 3-D models
impossible. (As indicated above, 3-D structures would have to be inferred from 2-D
projections - a process still not well understood). An additional input module to accept
pen-on-paper drawings could be of benefit to any operational system, but hardly warrants
study as a research topic, as the tasks involved in converting 2-D drawings to machine-
readable form are well-characterized, and several pieces of proprietary software capable
of digitizing engineering drawings (though not capable of recognizing shape features) are
already on the market.

Input from drawing files of a draughting or geometric modelling package has the
advantage that full advantage could be taken of any structure present in that system's
files. Thus a system taking its input from ROMULUS would have the advantage that all
models would have been checked for structural integrity, and that the topology of the
entire object was explicitly specified. This would make the identification of facesets or
other features of structural significance a relatively straightforward task. However, it
does limit the database to models generated on a single host system. There is also the
problem that details of the internal data structures of systems such as ROMULUS are not
fully-documented - and are in any case liable to change in the future.

To be of general usefulness, a computer-based drawing archive needs to be able to take
input from a variety of draughting and geometric modelling systems. It can in fact be
argued that the main justification for such a system lies in its ability to store and compare
designs that have been produced over a long period of time, perhaps on several different
CAD systems. This implies that it must accept input in a widely-used standard format.
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The only existing format in widespread enough use to meet these criteria is IGES
descnbc;d in detail in Section 1.3. Any system which accepts input in standard IGES
format is capable of incorporating drawings from a wide variety of CAD systems.

Using IGES as principal form of input has its disadvantages. Its major problems are (a)
lack. of consistency in representing geometric information (see section 1.3 above)
pamcularly where curved segments are concemned, and (b) failure to make the inclusion’
of topological information mandatory. Together, these mean that the receiving system
has to standardize line representation, and infer topology, before processing to uncover
shape features can begin. For future extensions to 3-D models, it needs to be remembered
that although more recent versions of IGES have been extended to cope with 3-D object
descriptions, its basic format was designed with 2-D drawings in mind, and has limited
capacity to handle topological information. In particular, it has no way of specifying
checks on the validity of the resulting object. As a standard, IGES is now obsolescent
though its influence can be clearly seen in some later standards proposals - for example’
the XBF standard for solid model exchange shares IGES' five-section structure, its
numeric identifiers for entity types, and its use of 80-character card image format
(Mason, 1985). For these reasons, it was felt that IGES represented a better choice than
any other alternative as the input medium to the prototype version of SAFARI. Adapting
input routines in the future to cope with IGES' successor standards should not pose any
major problems.

2.2.4 What constitutes a single object?

In the long run, a decision also has to be made on what constitutes a single retrievable
entity in a database of drawings. In most CAD systems, a drawing or geometric model
occupies an entire file, with a separate record for each drawing or modelling primitive.
Thus storage and retrieval facilities are geared to finding individual lines in a given
drawing. As discussed in Section 2.2.1, this meets the needs of the designer working on a
"live" drawing - but is much too low a level for completed drawing files. Here, the unit of
retrieval needs to be an entire drawing or geometric model; this implies that a drawing
should occupy a single record, and that files should in general contain a number of
drawings - though if a database management system is used, a wider range of structures
is possible, and the distinction is less important. Even here, as the previous discussion on
object-oriented database models makes clear, it is important for users of the system to
have a way of identifying an entire drawing as a single object, rather than having to
synthesize it afresh from its constituent lines, faces or shape features each time they wish
to retrieve it.

The situation is complicated by the fact that there is not necessarily a one-to-one
correspondence between drawings and the objects they represent. Two or more
orthographic views of an object may well be provided - possibly on different drawings.
The fine detail of part of a complex object may be shown separately on a larger scale.
Again, the presumption must be that designers are primarily interested in knowing about
objects themselves rather than their drawings. In a database of 2-D drawings of 3-D
objects, drawings representing different views of the same object would need to be linked
together, at least at the logical level, so that if a part has features of interest, all relevant
drawings can be displayed.

The problem can be avoided by choosing a representation appropriate to the objects in
the database. In collections of 2-D objects represented by 2-D drawings, and 3-D objects
represented by 3-D geometric models, there is always a one-to-one correspondence
between object and representation - one respect in which the restricted domain of 2-D
shapes chosen for the present study forms a good model for eventual 3-D database
design.
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2.3 General principles of shape representation

One fairly fundamental consideration concerns the amount of information from the
original drawing to include in the database. Is it necessary to store a representation of the
entire object (either in its original or a condensed form), or is it sufficient to store a set of
shape descriptors, together with a reference to the location of the original object or
drawing? This closely parallels the decision made in a text retrieval system on whether to
incorporate just the title of a document, an abstract summarizing its contents, or the entire
text. Storage of a representation of the complete object (rather than a set of shape
descriptors) could be valuable for two reasons. Firstly, it would allow an image of the
object to be displayed readily on demand, a useful feature during an interactive query
session. Secondly, it would allow the possibility of generating retrieval features at run
time if this were required. While it is not known at present how important such a facility
might be, the difficulty of anticipating all types of queries put to a pictorial retrieval
system suggests at the very least that the possibility of run-time feature generation
deserves investigation.

There is, of course, no compelling reason why the same form of representation should be
chosen for the object itself and its feature set. The GRAIN and REDI systems both use
two distinct data stores - a feature database and an image file, used respectively for query
handling and picture display. Such a solution clearly makes sense when one considers
that one is handling two quite distinct types of data, with different access requirements.
The feature database consists of (relatively) well-structured data, rich in semantic
information, with a requirement for access by a variety of routes. The image store
contains largely unstructured data, and requires only a single access path. The same
distinction can be applied to engineering drawings and their shape features, so a similar
solution could well be appropriate for an engineering design database. One could for
example retain IGES format files for display purposes, but link these to a shape feature
database that allowed users to search for objects with desired feature characteristics. In
practice, as shown below, far more compact representations than IGES exist; the general
principle of separating display images and shape features is still valid. (Note that it could
in any case be necessary to retain IGES-format files to allow regeneration of "working"
drawings to use as the starting-point for a modified design).

The choice of representation adopted for design objects is crucial, as it affects both the
processing required to extract shape information and the type of information that can be
derived. The question of computer representation of design objects has been discussed in
depth by Requicha (1980); while his discussion focuses on 3-D objects, much of it is also
relevant to representations of objects that are essentially 2-D in nature. Mathematically,
one can regard any representation scheme as the mapping from domain D, the set of
representable objects, to range V, the set of valid representations of objects in D. The
scheme is unambiguous or complete if each representation in V corresponds to a single
object in D; it is unique if each object in D has but a single representation in V. (Such a
unique representation is often referred to as canonical form). It is unique and
unambiguous if there is a one-to- one mapping between every object in D and every
representation in V.

Different representation schemes can be evaluated by these and other properties. The
domain of a scheme is a measure of its descriptive power, denoting the variety of objects
for which it can be used. The extent to which the validity of each representation can be
ensured, by syntax checking or other means, is important when considering database
integrity. Completeness or lack of ambiguity, at least within a restricted domain, is
essential if a representation is to be of practical use in communicating an engineer or
architect's ideas. Conciseness is clearly an important consideration if a large database is
to be maintained, as is the efficiency with which representations can be created and
manipulated.
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Uniqueness is a different matter. For most purposes, there is no advantage in ensuring
that a given object will always have an identical representation, as long as its different
representations (drawings at different scales or orientations, for example) can always be
recognized as referring to the same object. Most representation schemes in actual use are
not in fact unique.

There are, however, cases where uniqueness might be important, such as when a database
needs to be searched to identify whether two objects are identical. Only where it is
certain that an object's representation is unique is this a computationally simple task. If
multiple representations of the object are possible, such a question can in general be
answered only if all possible object representations can be generated and matched in tum
with the query representation. Similarly, the task of deciding whether two objects share a
specified shape feature can be made much simpler if both are known to be uniquely
represented. A database specifically designed to answer such queries might well depend
for efficient operation on a unique representation scheme for stored shapes. Since no
widely-used scheme has this property, this implies that a new form of representation may .
need to be developed. ‘

There is however one problem with this approach. While it is perfectly valid to use the
concept of canonical representation in the context of shapes that can be defined with
complete precision, actual engineering parts can only be defined within a specified range
of tolerances - for example, a given side may be 30 + 0.01 cm long, an angle 45 + 0.19,
This renders uniqueness a somewhat elusive concept, since each stored drawing in fact
represents the ser of all objects falling within the specified tolerances. In this context, a
truly unique object representation would imply that for every set of objects, identical
except that their dimensions could vary within specified tolerances {t,}, a corresponding
set of representations exists, identical except that their defining parameters fall within
correspondingly small tolerances {¢.}. This cannot in practice be fully achieved; some of
the inherent difficulties approach are discussed in chapter 3 below, though a full
treatment of the subject is beyond the scope of this thesis. (As indicated in Requicha &
Chan (1986) and Tumer & Wozny (1987), the question of tolerancing in CAD systems is
a major research topic in its own right). -

This does not however rule out the possibility that a more restricted definition of
uniqueness could have value in the situations described above. If it is known that shape
elements are always represented and stored in a standard order, the process of comparing
shapes to determine whether they are the same is in principle a simple matter of
sequentially comparing corresponding shape elements - an O(n) process. If no such
standard ordering exists, so that corresponding shape elements could appear anywhere
within their stored representations, each shape element in one representation has to be
compared with every corresponding element in the other, an O(n?) process at best. At the
very least, then, a scheme which attempts to. define a standard order for individual shape
elements should be able to reduce the complexity of the matching process - at the risk of
failing to match a certain (hopefully small) proportion of shapes for which the ordering
rules give anomalous results. It can thus be regarded as a heuristic whose usefulness can
be empirically tested.

2.4 Representation schemes for 2-D objects

As noted above, few, if any, genuine two-dimensional objects exist, though some have
virtually no 3-D component, and others (principally geographic features such as
coastlines, river basins, road and rail layouts) have a third dimension can safely be
ignored, and the 2-D image of the feature treated as the prime object of interest. Two
main representation schemes have been used for 2-D images: (a) line or vector format,
where each object is represented by a series of line segments (straight or curved) forming
its boundary, each line segment in turn being represented by the coordinates of its end-
points, its defining equation or by an appropriate code; and (b) raster format, where each
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display element or pixel forming the image is represented by an element of computer
storage indicating its brightness and possibly colour. Raster format is of prime use where
the main interest of the picture lies within each region of the image (for example, the
overall colour, texture or brightness of a region are important), and for this reason it’ has
been widely used' in geographical information systems, from IBIS (Section 1.7.2)
onwards. Its principal advantage is that it provides a simple means of representing
surface texture, co}our and §hadow, and also allows ready correlation of different types of
data (e.g. population density and land use) relating to a given point or area within a
region. Its main disadvantages are its verbosity (pixel values have to be listed for an
entire image, even for blank regions, though techniques such as run-length coding can
alleviate the problem), and the difficulty in recognizing object shapes. Even to identify a
straight line embedded in a raster image is far from simple; the identification of complex
shape features from such images is a task that has been occupying the computer vision
research community for many years. (It is interesting to note that the first step in picture
processing for computer vision applications often involves extracting all boundary lines
in the image, reducing it to a line diagram which can be more easily manipulated). An
interesting variant on raster format is quadtree representation (Klinger and Dyer, 1976),
which produces a hierarchical representation of an image by taking an n x n pixel array,
and dividing it progressively into quarters until leaf nodes contain pixels which are all of
the same colour or density. Such a format is generally much more compact than pixel
enumeration, and it is claimed that object boundaries can easily be identified. However,
neither this format nor its 3-D analogue, the octtree, have found any favour with
designers of CAD systems. Its strength lies in its ability to represent irregular shapes such
as those generated by computer vision systems. Faced with regular objects defined by
smooth curves and straight lines, it generates unnecessarily complex and inelegant
representations compared with those described below. ‘

Vector format is the most appropriate representation where objects' boundaries are the
main focus of interest - invariably the case with engineering drawings, where objects are
defined by the set of line segments making up their boundaries. All CAD systems, as far
as is known, use line format as the basis of their 2-D representations. Drawings in line
format provide an unambiguous, relatively compact representation for parts which are
essentially 2-D, though representations are not in general unique. (Coordinates of line
end-points and coefficients of defining equations are both sensitive to translation, rotation
and scaling). An ideal representation scheme for objects in a design database would
almost certainly be based on line format; considerations of efficiency dictate that it
should provide a unique representation for each object, and therefore for its constituent
line segments. This is in fact a crucial design issue for both 2-D and 3-D objects, as line
segments are key components of boundary representations of 3-D objects. It is therefore
necessary to examine methods for representing line segments in some detail.

2.5 Representation of line segments

2.5.1 What is an edge?

At first sight, this may seem a trivial question, at least for 2-D object representations; an
edge is a line segment forming a subset of the object's boundary. The union of all such
segments thus defines the object’s boundary. An edge may be a straight line, or an
analytic or parametric curve. Thus a rectangular object can be defined by four straight
lines, as in Fig 2.3. However, the same object could have been drawn using a CAD
system's "mirroring” facility, and hence represented by six (Fig 2.4) or eight (Fig 2.5) line
segments. Does each of these constitute an edge? Most observers would answer "no"; the
rectangular object is bounded by four edges, however its drawing may have been
constructed. It is not difficult to come up with an intuitively satisfactory definition of an
edge in this case; an edge is the union of one or more continuous line segments. Two
edges meet at a vertex, where there is always a discontinuity. Under this definition, it is

28



Fig 2.3 A rectangular shape, naturally segmented into four edges

Fig 2.4 The same shape, produced by mirroring, now represented as six edges

Fig 2.5 A rectangle produced by double mirroring, represented as eight edges. A unique
representation scheme has to recognize all three forms of the rectangle as equivalent
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immaterial how many line segments are used to construct the edges of the rectangle in
Fig 2.3; it will always have four edges and four vertices.

Less straightforward is the task of defining an edge which includes curved segments.
There are no discontinuities at all in the "canoe" shape of Fig 2.6, though most observers
of such a shape intuitively feel that (like the rectangular object of Fig 2.3) it is made up
from four edge segments (Fig 2.7). To cope with this situation, one has to narrow the
definition of continuity; an edge consists of the union of one or more line segments
which are continuous both in respect of direction and curvature. This would yield four
edges for the shape in Fig 2.6 even if it had been produced by mirroring as in Fig 2.8.

There remains the problem of smooth curves of varying curvature. While these are not
common in machined parts (as opposed to sculptured surfaces such as car body panels),
any representation scheme which claims to be generally applicable: must be able to
handle them. An example of such a part is the rocker arm shown in Fig 2.9. How, if at all,
should this boundary be segmented? Again following intuition, one might decide that the
boundary should be segmented where curvature changes sign (Fig 2.10), and possibly
where there are easily-observable step changes in curvature (Fig 2.11). In formulating a
definition of an edge, however, one needs to be able to distinguish between situations
where the designer has specified a step change in curvature and situations where a
complex surface has been approximated by a series of straight lines or circular arcs. This
is part of the wider issue of the extent to which curved segments can be represented in
canonical form, which will be discussed in detail below. An essential prerequisite for this
process is the need to ensure that a single edge is recognized as such, even though one
designer may have represented it as a single elliptical segment, another as a series of
circular arcs, and a third as a parametric spline. Changes of curvature that were clearly
intended by the designer must be distinguished from those that are merely artefacts of the
CAD system used. ,

The most straightforward way to achieve this is to establish a threshold value for
curvature change, and assume that changes below this value do not signify
discontinuities. The principle of a threshold accords well with empirical evidence that
human observers find it difficult to perceive small changes in curvature, though no
studies appear to have been carried out so far to establish the smallest change of
curvature that can be perceived (Asada and Brady, 1986). One would then define an edge
as the union of straight or curved line segments (whose curvature could be constant or
continuously varying), containing no angular discontinuity or significant change of
curvature. A significant change of curvature would be defined as either a change in the
sign of curvature, or a change in its magnitude greater than a given threshold value. This
issue is discussed in more detail in Chapter 3.

2.5.2 How should edges be represented?

No universally-accepted criteria exist for answering this question for any given
application. Given the system objectives discussed above, it is possible to derive a
reasonable set of criteria which any unique edge representation scheme should meet, as -

follows:

(a) It must faithfully preserve all information of interest; in particular, it should be
possible to reconstruct the original object from its representation to a given level.
of accuracy.

This is clearly necessary if the system is to be able to support exact shape matching,
display of retrieved structures, or reliable feature extraction.
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Fig 2.6 A "canoe” shape, containing no angular discontinuities

Fig 2.7 A "natural” segmentation of the shape in Fig 2.6
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Fig 2.8 Additional edges produced by mirroring. Again, a unique representation scheme
must recognize this as equivalent to the object in Fig 2.6
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Fig 2.9 Arocker arm, whose boundary consists entirely of curved segments

T

Fig. 2.10 Segmentation of the shape inF ig 2.9 at points where curvature changes sign

/’\
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Fig 2.11 Additional segmentation of the object in Fig 2.9 at points where there is a
significant step change in curvature. A unique representation scheme has to be able to
define such points unequivocally
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(b) It must generate a single canonical representation for all types of curve; such a
representation should be invariant under translation, rotation, and scaling, and
independent of the starting-point chosen. ’

This is essential for exact shape matching and highly desirable for similarity matching.

(¢) It should promote ease of processing, in construction, manipulation, and display;

in particular, it should be possible readily to derive local and. global shape
features from such representations.

Similarity matching, particularly of complex shapes, is likely to be a computationally
expensive process. Simple forms of representation, particularly those which allow non-
matching structures to be rejected quickly, are therefore at a premium. ‘

(d) It should provide reasonably compact storage; the complexity of the
representation should bear some relation to the complexity of the original object.

Not a crucial objective, except that compact representations can generally be retrieved
more quickly from backing storage, and should therefore enhance system performance.

(e) It should ideally give representations that are reasonably robust; small changes
to a machined object (addition or removal of a boss or keyway, for example)
should produce correspondingly small changes in its representation.

Again, efficient similarity matching is possible only if the representations of objects
sharing many common features are themselves very similar. '

Most, if not all, representation schemes are approximations of the original object (which

is in any case specified only within certain tolerances, as discussed above). The important

point is that their accuracy is sufficient for the domain of objects and the set of
applications in question. Most machined parts can in fact be represented by a small

number of primitives, corresponding to the capabilities of commonly-used machine tools.

In a survey carried out by the University of Rochester, as reported by Voelker &

Requicha (1977) and Pratt (1984), it was found that over 90% of parts could be built up
from just five solid primitives - rectangular blocks, cylinders, spheres, cones and tori.

Over 40% could be built up from blocks and cylinders alone. As might be expected,

workpieces made by forging, casting and moulding covered a much wider range of
shapes.

One can thus represent the faces of most machined parts by planar or quadric surfaces.
This implies that, at least when considering 2-D or 2.5-D objects, the vast majority of
edges can be represented by straight lines or circular arcs. There is clearly a strong need
for an edge representation scheme to provide essentially exact representations of straight
lines and circular arcs; what is less certain is the need for an exact representation for
edges in the form of conic arcs (which could naturally arise at the intersection of quadric
surfaces) or parametric splines (normally to be found only with "sculptured” surfaces).

If a unique representation of curved edges is required, it is essential that the range of
curve types permitted should be severely limited. While it is theoretically possible to
compare cubic splines with elliptical arcs, or circular and parabolic arcs, to establish
whether they represent the same curve within specified error limits, the task is
computationally expensive. The use of a single type of representation for all curves
provides a much more efficient solution to the problem. The questions to be resolved if
this approach is taken centre on the domain of curves to be represented exactly; the
method of approximation to be used for others; and the merits and disadvantages of
representation schemes meeting these criteria. The principal options are set out below.
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2.5.3 Representations based on straight-line segments

An obvious possibility is to choose the straight line as the sole curve primitive, and use
polygonal approximation for all other curve types. This method has the advantage of
simplicity; it is in fact one of the oldest methods of representing curves, and is still
widely used in display graphics. (The ISO graphics standard GKS provides no functions
for drawing circles or ellipses directly; they have to be approximated by user-specified
functions drawing appropriate sequences of straight-line segments). Because of this, a
wide selection of algorithms is available for generating and processing such displa;'s.v
One recently-reported algorithm, for example, claims to provide an optimal linear
approximation to any planar curve, in the sense of finding the minimal number of
ieg%;xg)ents necessary to approximate the curve within a specified error bound (Dunham,

Straight-line approximations can be information-preserving (it is possible to specify as
accurate an approximation as required by increasing the number of linear segments), and
canonical representations can be devised for any shape, though few representations
described in the literature are suitable as they stand. The main problem with
representations based purely on straight-line segments is that they are unnecessarily
verbose when used to describe engineering parts, unless very coarse approximations are
used. (Perkins (1978) cites a case where the outline of a steering knuckle could be
described adequately by 27 segments if both circular and straight-line segments were
permitted, but needed 260 segments if all were straight lines). Such verbosity is wasteful
both of storage space and processing time. It also seems inelegant to represent a
conceptually simple structure like a circular arc (as we have seen, a very common feature
of machined workpieces) in such a complex way. o :

It is worth noting that representations based on straight-line segments have been
extensively used in geographic information processing, where the objects to be -
represented (height contours, rivers, coastlines) are often jagged and have no regular
shape. The simplest way of representing such segments is to use their end-point
coordinates, though this has limited usefulness because of their sensitivity to translation,
rotation or scaling. One of the best-known schemes is Freeman's chain code (Freeman,
1974), which uses a grid of arbitrary fineness to quantize the contour to be represented
into segments of unit length and restricted direction (Fig 2.12). Such a representation is’
insensitive to translation, and to some extent to scaling, though it remains sensitive to
rotation (not a major problem in geographic information processing where the orientation
of map features is normally known). Published algorithms are available for deriving
shape features from chain-coded contours, matching segments of chain code, and
computing properties such as chain length and moment of inertia.

More recent representation schemes have concentrated on providing hierarchical
descriptions of contours (logical when one remembers that most objects of geographic
mterest, such as coastlines, are in fact fractals, and can therefore by definition be
represented only to a specified level of approximation). These have included Burton's
Binary Searchable Polygonal Representation (Burton, 1977), which constructs a binary
tree to "index" a set of curve segments, based on recognizing local x and y minima and .
maxima, and Ballard's Strip trees (Ballard, 1981), overlapping rectangles which bound
segments of a curve at progressively finer levels of detail. These representation schemes
are of peripheral interest in the present context because of their sensitivity to
transformation, rotation, scaling, and choice of starting point - and because their principal
advantage, the ability to apply processes such as curve-matching at varying levels of
detail, is of limited usefulness here. The only truly invariant representation scheme of this
kind is that of Mokhtarian and Mackworth (1986), which derives a measure of curvature
at each point on a polygonal curve, and transforms this by convolution with a one-
dimensional Gaussian kernel. From this an invariant scale space image can be derived,
which can be used for curve matching. The method is unsuitable for most machined parts
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as it depends on identifying points where curvature changes sign - a concept of d
validity in objects with long straight edges. ¢ & ept of doubrful
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Fig 2.12 An example of the Freeman chain code (from Freeman, 1974),
which quantizes all curves into unit segments which can take one of eight
directions, as shown in the bottom right of the picture. Any curve can thus
be approximated by a string of numbers indicating the direction of each
unit segment in turn. The grid size can be chosen to give any required
degree of accuracy.

2.5.4 Circular arc representations

Another option is to use circular arcs (with straight lines regarded as arcs of zero
curvature) as a basis for describing edges. This has the advantage that an "exact”
representation can be provided for the vast majority of edges found on simple
workpieces; approximations will be needed only for more complex "sculptured” parts.
Representations based on circular arcs are thus information-preserving to at least the
same degree as those based on straight lines; in the majority of cases they will provide a
more exact representation. It is not difficult to generate invariant representations both for
simple arcs and (through approximation) segments of varying curvature. For most
workpieces it is possible to generate extremely compact representations (each segment
needs only three parameters, such as length, curvature, and angle made with next
segment), and readily extract local and global shape features. As a method of
representing simple workpieces it shows considerable promise. .

An example of the use of this kind of representation is provided by Perkins (1978),
whose recognition system for industrial parts analysed digitized images of workpiece
outlines, identifying boundaries and fitting them to straight-line or circular segments
which he named concurves. He was then able to match concurves derived from images
with concurves for known objects.
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2.5.5 Spline representations

A third option is to use spline representations for all curves. This has the advantage of
permitting exact representations of all kinds of curves, though at some cost in
complexity. Spline functions normally provide approximations to curves by dividing
them at appropriate knor points into segments, which can be represented to any specified
accuracy by polynomials or basis functions of any required degree (cubic polynomials
are frequently used). Rational B-splines, curves C(¢) defined by the equation

n

2 , Bi, k(E)hiPy

1

c(t) =
n

E Bi,k(t)hi

1

where P; are points known as control points, t is a parameter whose value lies between
fixed limits a and b, and B;,(¢) are the basis functions, have a number of useful properties
not shared by polynomial B-splines, including the ability to provide "exact”
representations of circles and conics (Tiller, 1983). In many ways, this provides the ideal
form for curve representation, as all types of curve can readily be cast into a single
canonical form (for this reason, it has been adopted as the sole form of curve
representation in the GEOMOD geometric modelling system from Structural Dynamics).
Its disadvantages are its mathematical complexity, making it difficult to develop
algorithms for feature extraction, and its lack of conciseness when compared to circular
arc representations, at least for the majority of workpieces. Its high degree of generality
make it a scheme worth exploring for families of parts where "sculptured” surfaces are
common. : ‘

2.5.6 Boundary transformations

The final option is to use some transformation of the object boundary, taken as a whole.
The best-known of these is the Fourier transformation (Zahn and Roskies, 1972). This
defines the cumulative curvature around the object boundary as a function of curve
length, and proceeds to expand this function as a Fourier series

O(t) = Ko + E Aycos (kt-ay)

in which the coefficients A, and g,, the kth harmonic amplitude and phase angle
respectively, are known as the Fourier descriptors of the curve. This form of
representation is information-preserving up to a point: if an infinite Fourier expansion. is
used, the curve can be reconstructed exactly; a truncated Fourier series will generate an
approximation to the original curve. Fourier descriptors can provide an invariant
description of the curve, and do appear to reflect the overall shape of the object fairly
consistently - lower-order Fourier descriptors from similar objects are generally of
similar magnitude, and can be used to provide an objective index of similarity between
two shapes. The underlying theory has been well researched, and numerous algorithms
have been developed for generating and processing Fourier descriptors. Fourier
descriptors also have a number of useful properties - for example, they can be used
directly to find axial or rotational symmetry in the object boundary. Storage requirements
depend on the number of terms retained from the expansion; in many cases, adequate
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representations can be achieved with a dozen terms or less; if S0, representations can be
very compact. The insuperable objection to their use in the present context is that they are
properties of the boundary taken as a whole; there is no known way in which information
about local shape features can be extracted (Pavlidis, 1980).

A similar objection rules out another recently-described method of shape description, the
autoregressive model approach of Dubois and Glanz (1986). This takes the object radius
at points where the boundary intersects a number of equispaced radius vectors, and forms
a regression equation for the radius at the kth point in terms of the radius at the previous j
points. The coefficients of this equation can again be used as invariant descriptors of the
overall boundary shape - but are of no use in describing local shape features.

One feature common to nearly all applications using complex transformations appears to
be the need to recognize shape features in object representations generated from
inherently noisy digitized images. One of the principal reasons for using such
transformations is clearly the need to distinguish between genuine shape features and
noise, and the need to take account of the effects of digitization at different scales. The
present study takes drawings generated on a CAD system as its starting point; such
drawings should be (relatively) noise-free, and digitization errors should not affect
measures of curvature to any marked extent. It is not therefore expected that complex
transformation techniques will prove particularly useful. The only transformation which
has been used, as it provides invariance to translation, rotation and scaling, is to represent
all boundary lines in intrinsic coordinates, by plotting ©, the cumulative curvature,
against s, the cumulative arc length. An advantage of this transformation is that circular
arcs become straight lines, making the task of processing representations based on
circular arcs much easier. ’ '

2.6 Representation schemes for 3-D objects

As discussed above, one of the aims of the present study is to lay the groundwork for the
development of databases of 3-D objects. A brief examination of representation schemes
for 3-D objects is thus in order. Numerous schemes have been proposed, including
primitive instancing, where objects are classified as "cube"”, "prism", "cylinder", etc. and
further specified by appropriate parameters; spatial occupancy, the 3-D equivalent of
raster format, in which space is divided into unit cubes (sometimes known as voxels),
each of which carries an indication of whether it is "inside" or "outside" a given object;
and cell decomposition, where objects are divided up into tetrahedra by a solid
triangulation process. Such schemes all have severe drawbacks (Requicha, 1980), and in
practice only two methods have been used to any significant extent. These are the
boundary and constructive solid geometry (CSG) representations referred to in Section

1.2.

CSG is on the face of it a promising form of representation for 3-D solids. The CSG trees
representing how solid objects were built up from their constituent primitives provide
unambiguous representations of the original object, and can be very concise. They are not
unique, in that (a) even starting with a single set of primitives, an object could be built up
in many different ways by varying the order in which operators were applied; (b) two
CSG schemes based on different sets of primitives would inevitably generate a given
object in different ways. '

The first problem can in fact be successfully overcome in the majority of cases. Woo
(1982) has shown that any CSG representation of a rigid solid can be transformed into a
canonical form termed ASV (Altemating Sum of Volumes), by forming its convex hull
(the smallest convex solid into which the object can be completely fitted), subtracting it
from that convex hull to generate a new solid (representing the difference between the
original solid and its convex hull), and repeating this pair of operations on the resultant
solid until this difference becomes zero. The only limitation is that the process does not
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terminate in all cases. For such solids, Woo's method cannot generate a unique
representation.

The second problem above could be overcome in two ways. One way would be to adopt
an agreed set of standard primitives out of which all systems could build geometric
models. Such a set would need to be limited in such a way that a geometric model could
be built only from a single set of primitives (so that, for example, cubes and cuboids
would not be permissible as separate primitives because one designer might use cubes to
build up a given part, while another used cuboids). Such standardization flies in the face
of the current trend to provide designers with as wide a range of primitives as possible in
order to make the design process easier, and cannot therefore be considered a practical
proposition. Another way would be to adopt a small set of standard primitives into which
all modelling systems could transform their models, possibly as the basis for an exchange
format. Although such a possibility has been mentioned in connection with the
development of standards for data exchange between solid modelling systems, no
generally accepted set of primitives exists at present. The existing IGES standard is
unable to handle CSG specifications, and extensions to the standard to enable it to do so
are still the subject of debate. For these reasons, CSG seems an inappropriate
representation method at present. Its many advantages suggest that it may prove a fruitful
basis for future studies.

Fig 2.13 An example of the difficulty in defining a face. The shaded area
could logically be partitioned in any of the alternative ways shown.
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Boundary representation of solid objects is almost certainly the most common form
encountered in practice, if only because of its use in computer graphics as well as
geometric modelling. Solid objects are represented as a finite number of bounding faces
which between them enclose the entire solid. In tum, each face is represented by its
bounding loop of edges and vertices. To represent a solid unambiguously, both its
topology and the geometry of each constituent face must be represented unambiguously -
though, as shown by the investigations carried out by Weiler (1985), a number of
altemapve representations are topologically sufficient. Planar faces may be represented
by their bounding edges, but curved faces require additional information (such as their
surface equation) before they can be unambiguously specified.

To construct a boundary representation scheme which is also ‘unique raises additional
problems, as objects' bounding faces need to be uniquely defined, and their topological
relationships uniquely represented. Intuitively, it is not always obvious what should
constitute a face, particularly where planar and curved surfaces meet. The object in Fig
2.13, for example, contains a large smooth area which could be regarded as one, two,
three or even more faces. The design of a unique boundary representation scheme
therefore involves a number of far from trivial decisions.

2.7 Conclusions

Several possible methods of representing line segments have been outlined above. When
judged against the criteria set out in paragraph 2.4.2, their merits and disadvantages can
be summed up as follows: - :

(1) IGES parameters could in theory be used directly to specify line segments. They
would certainly be information-preserving, but would fail on virtually every other -
count. There is no simple way in which they could be made invariant to scaling,
translation or rotation; they are far from compact; and similar lines could have totally
different IGES representations.

(2) Straight-line approximations can provide an invariant representation provided lines
are expressed as normalized length and direction. But they cannot simultaneously
provide information preservation and compact storage for curved segments (use of
short straight-line approximations to prevent information loss inevitably increases
the number of segments).

(3) Circular arcs can provide compact information-preserving representations for
machined shapes, the vast majority of which are made up of straight lines and
circular arcs. If expressed in intrinsic coordinates, they are invariant to translation,
rotation and scaling, and relatively easy to process for feature extraction or similarity
matching.

(4) Rational B-splines can provide information-preserving representations for all shapes,
and can be cast into invariant form. Their large number of parameters makes.
compact storage difficult, and processing algorithms are necessarily complex.

(5) Fourier and similar transformations fail to preserve local shape information, even
though they can represent an object's global shape accurately (in invariant form)
provided enough terms are included. In this respect, they resemble the straight-line
representations in that they force a "trade-off" between accuracy and compactness.
Processing of such representations can be complex.

From the above discussion, it seems clear that the only two representations worth serious
consideration are circular arcs and rational B-splines. Since the vast majority of
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engineering parts are in fact machined shapes, circular arc representations seem
preferable, as they provide much more compact storage and ease of processing at the
expense of a very slight loss of generality. An exploration of the use of spline
representations, particularly for sculptured parts, could form a useful extension of the
present research.
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CHAPTER 3. SHAPE REPRESENTATION FOR RETRIEVAL

3.1 Introduction

As discussed in section 2.3, the need for efficient shape matching and retrieval implies
that all drawing features likely to be used in retrieval should be represented in as
invariant a form as possible. While detailed discussion of the question of feature
extraction for retrieval is deferred until chapter 4, it must be noted here that if there is to
be any possibility of retrieving shapes by matching sequences of boundary segments
themselves, some attempt has to be made to represent these in a unique standard form.
Objects with the same shape should have identical representations, however they were
originally drawn. Given the domain of objects selected (2-D objects defined by
boundaries represented as straight lines or circular arcs), this implies that representations
of the object's outer boundary, all inner boundaries, and the relative positions of all inner
and outer boundaries must all be in a form invariant to translation, rotation and scaling.
Furthermore, there is a need to define a standard ordering for each shape element if one
wishes to limit the complexity of the matching process. This requires that rules must be
defined both to select a start segment and traversal direction for each shape boundary,
both outer and inner, and also to order all inner shape boundaries.

3.2 Choice of shape representation
3.2.1 Outer boundary representation

As discussed in section 2.7 above, the most appropriate representation for shape
boundaries was considered to be a set of line segments, each defined by its length and
curvature. If these segments make up an ordered list in such a way that following the list
corresponds to traversing the boundary in a given direction until the starting-point is
reached, a very compact representation of the boundary can result, as angular changes in
direction can be included as parameters of the preceding line segment (Fig 3.1). This
form of boundary representation can easily be rendered unique provided length and
curvature parameters are normalized, a standard direction of boundary traversal
(clockwise or anticlockwise) is chosen, and a procedure exists for choosing a unique
starting-point for boundary traversal.

3.2.2 Initial representation chosen
Initially, each boundary was to be represented by a list of 3- tuples
(L,C, D}

each representing a single line segment, where L is the segment length, C its curvature
(reciprocal of radius for circular arc segments, zero for straight-line segments), and D the
discontinuity angle between the current segment and the next (Fig 3.1). The ordering
chosen for outer boundary segments corresponds to anticlockwise boundary traversal,
consistent with programming conventions for numerically-controlled machine tools.
Segment representations could readily be transformed into a form invariant to scaling,
rotation and translation by normalization using a standard length L, yielding the form:

{L/LOI C*LID}
L, can conveniently be taken to be the boundary perimeter, so that each segment is
represented by three parameters: its length (as a fraction of the entire boundary), its

arcangle A, equal to the product of its curvature C and its length L, and D, the
discontinuity angle with the next segment (Fig 3.2).
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N Segment L C D

N no.
1 4.53 0 1.12
2 4.81 0 -1.38

3 3.90 0.27

Fig 3.1 Three line segments, each represented by its length L, curvature C (zero for
straight lines, positive for anticlockwise arcs, negative for clockwise arcs), and
discontinuity angle D (again, positive for anticlockwise changes in direction, negative for
clockwise).

\Dl Segment L/Lg A D
N no
N
N
1 0.15 0 1.12
2 0.16 0 -1.38
3 0.13 1.61

Fig 3.2 The same three line segments, represented by normalized length L/L,, arc angle
A ( = C/L ) and discontinuity angle D.
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Although the line segments conceptually form a closed ring, they have to be stored and
processed as a linear sequence. To generate a canonical representation of the boundary, a
unique start segment must therefore be defined, otherwise as many representations are
possible as there are segments (Fig 3.3). To define a unique start point purely in terms of
boundary shape, it is necessary to select a start line on the basis of invariant parameters
such as those set out above. The most straightforward way to do this is to select as start
line (a) the line segment with greatest length; if more than one line fulfils this criterion
select (b) the candidate with the greatest curvature; if this does not resolve the matter’
select (c) the candidate with the largest angle of discontinuity between it and the next,
segment. If more than one candidate still remains, apply criteria (a) - (c) in tum to the
line segment following each candidate, and if necessary to subsequent line segments,
until either (i) a unique start line emerges, or (ii) the entire boundary has been traversed.
In the latter case, the boundary is completely symmetrical, and a start line can be selected
from the remaining candidates at random. See Fig 3.4 for examples of this process. '

It is of course perfectly possible to choose any combination of extreme values for the
parameters defining line segments in order to specify canonical form - for example, one
might have chosen as start point the line with smallest curvature, smallest discontinuity
angle, and smallest length, in that order. There appears to be no clear-cut reason for
preferring any one combination of parameters to any other. The choice of starting- point
has in any case no structural significance.

3.2.3 Final representation chosen

The above representation meets the first four criteria presented in section 2.5.2 above, but
fails on the fifth. The method of boundary start line selection described in the previous
section always yields the same result with identical shapes. However, small changes such
as the addition of a notch in one side of an object can lead to a totally different start line
being chosen (Fig 3.5). Hence quite large degrees of similarity between shapes could go
unrecognized because their representations would be markedly different.

While this problem can never be completely overcome (see section 3.3.5 below), it can
be alleviated in a large number of cases if object representations are preprocessed to
remove local features, revealing their underlying shape (Fig 3.6). As observed in section
3.2.4, this approach has a number of additional useful aspects. The method involved is |
similar to that of Kyprianou (1980), though here the process is easier because it involves
only two dimensions, and only two basic classes of local shape feature, midline features,
sequences of short line segments interrupting an otherwise continuous long edge (Fig
3.7), and corner features, line sequences contained as it were in the jaws of a comer (Fig
3.8). The process can be regarded as the repeated application of the shape rewriting rules.
illustrated graphically. in Figs 3.9 and 3.10. Definitions of line sequences making up
midline and comer features are not lost, but absorbed into the definitions of the
"skeleton" lines enclosing them (see section 3.3.3 below for a detailed discussion of the
process of generating such descriptions). .

Such shape feature definitions are essentially recursive, since a line enclosing a shape
feature at one level can itself form part of a shape feature at a higher level. Repeated .
application of the rewriting rulés to a complex shape will thus lead to a progressive
simplification as local features are removed one by one, eventually leaving an irreducible
"skeleton" shape (Fig 3.6). As discussed below, it is possible to regulate this process to
allow a shape to be described hierarchically, each level of description including an extra
level of local features (Fig 3.11). The boundary can be traversed at any of these levels; its
representation then becomes a sequence of 4-tuples:

{L/LOIAIDIE}
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Start point 2
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Start point |
Segment L/Lg A D Segment L/Lg A D -

1 0.045 0 1.57 1 0.045 0 0

2 0.072 0 -1.57 2 0.070 1.57 0

3 0.063 0 1.57 3 0.251 0] 0

4 0.054 0 1.57 4 0.070 1.57 0
5 0.141 -3.14 1.57 5 0.045 0 .57
6 0.054 0 1.57 6 0.072 0 -1.57
7 0.063 0 -1.57 7 0.063 0 1.57
8 0.072 0 1.57 8 0.054 0 1.57
9 0.045 0 0 9 0.141 -3.14 1.57
10 0.070 1.57 0 10 0.054 0 1.57
11 0.251 0 . 0 11 0.063 0 -1.57
12 0.070 1.57 0 12 0.072 0 1.57

Fig 3.3 Two alternative representations of a simple shape, using different starting points
(boundary traversal anticlockwise in both cases).



Start line

2
Start line ‘/ //
Start line”

Fig 3.4 Three examples of start segment selection, shoWing selection of (a) the longest
segment, (b) the segment with the greater discontinuity angle, and (c) the segment with
the longer following segment.

g _ Start line
_\-/__' L//
=7
Start lne —
Start line \ / |
1 :
R\
N Start line

Fig 3.5 Lack of robustness of start segment selection procedure. Small changes in
structure can alter start point, giving completely different representation.
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Fig 3.6 Underlying object shapes uncovered by removing local shape features.



Fig 3.8 Examples of corner shape features.
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Fig 39 Corner feature rewriting rules. Assuming boundary traversal to be in the
direction L,, C,, ... , L,, new lines H, and H, inherit properties as follows: H, - length:
distance AC measured along H,;; curvature: curvature of L,; discontinuity angle: angle
between tangents to H, and H, at C. H, - length: distance CE measured along H,;
curvature: curvature of L,; discontinuity angle: discontinuity angle of L,.

Fig 3.10 Midline feature rewriting rules. Again assuming boundary traversal to be in the
direction L;, M,, ... , L,, new line H inherits properties as follows - length: distance AD
measured along H, curvature: curvamre of L, (which must be equal to the curvature of
L, within a very fine tolerance); discontinuity angle: discontinuity angle of L,.
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Segment  L/L, . D

Lowest level:
N 1 0.292 0o 0
| 2 0.082 1.57 0
: 3 0.052 0 1.57
4 0.083 0 -1.57
5 0.073 0 1.57
6 0.063 0  1.57
7 0.164 -3.14 1.57
8 0.063 0 1.57
9 0.073 0 -1.57
10 0.083 0 1.57
/ 11 0.052 0 0
12 0.082 1.57 0
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Intermediate level:

—\ Segment. L/Ly A D
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.083 -1.57
.073 1.57
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Top level:

Segment L/Lg A D

.396 1.57
.104 1.57
.396 1.57
.104 1.57
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Fig 3.11 Representation of the shape from Fig. 3.3 at three levels of detail
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where E represents the level at which boundary traversal takes place. L, here could be the
boundary length at the relevant level, though it is normally simpler to take it as the top-
level boundary length in each case.

In practice, this form of representation is wasteful of space. Since many line segments

remain unchanged by the rewriting process and therefore form part of the structure at

more than one level. The information about such lines would need to be duplicated at

each level if the above form of representation were used direct. The modified form of

gepreTentatlon shown in Fig 3.12 was therefore used, with each segment represented as a
-tuple:

{ L/Lg » A, D, E. , E }

where E; represents the level of the current line counting downwards from the top, and
Ey, represents its level counting upwards from the bottom. Again, L, represents the top-
level boundary length. It is then easy to construct an algorithm to traverse the structure at
any desired level V, for example by successively taking all line segments for which E, =
V,or E < Vand Ep, = 1. '

Such a hierarchical representation can be cast into canonical form by choosing a unique
start line from the top-level line segments, using the procedure described in the previous
section, with one addition. If traversal of the boundary at top level fails to identify a
unique start line, the boundary is traversed at successively lower levels (Fig 3.13), until
either a unique start line emerges, or the entire boundary has been traversed at the lowest
level. As before, this indicates that the entire shape is symmetrical, and a start line can be
chosen at random from the remaining candidate lines - unless there is an unsymmetrical
configuration of inner boundaries. One further modification can be made to improve
robustness - the use of a measure involving chord length rather than arc length when
comparing candidate start lines. This makes no difference to the vast majority of shapes,
but yields a more consistent start line in the cases shown in Fig 3.14.

Given two identical shapes of different size and orientation, it can be shown that this
modified procedure (like the original) always yields the same start point. While no proof
can be offered that such a hierarchical representation is always more robust to small
changes of shape than the 3-tuple representation described above, the examples shown in
Fig 3.15 give a clear indication of the potential advantages of this representation, which
clearly meets criterion 5 better than its predecessor. However, the examples illustrated in
Fig 3.16 show clearly the limitations of the method, and why it is inherently unable to
generate robust representations in all circumstances.

3.2.4 The concept of the boundary level

A further important advantage of the type of hierarchical representation described above
is the additional flexibility of shape matching it can provide, by allowing shape
boundaries to be traversed at different levels. Each level of boundary traversal (from now
on referred to as a boundary level) can be treated as a legitimate view of its parent
boundary, and used to represent that boundary anywhere in the shape matching process.
One might expect the ability to match query and stored drawing boundaries at any level
to be a powerful aid to retrieval performance, as it allows inherent similarities to be
recognized even where one object has a much more complex outline than another (as in
Fig 3.17). The boundary level is thus regarded within the system as an important entity in

its own right.

It can further be hypothesized that feature extraction should be based on separate
processing of each boundary level, rather than the boundary as a whole, yielding a series
of feature sets, each characterizing the boundary at a different level of detail. Identifying
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| 1 0.396 0 1.57 2 1
| 2 0.292 0 0 1 2
3 0.082 1.57 0 1 2
4 0.104 0 1.57 2 1
5 0.052 0 1.57 1 2
! 6 0.396 0 1.57 2 1
! 7 0.083 0 =-1.57 1 2
] 8 0.073 0 1.57 1 2
i 9 0.229 0 1.57 2 2
10 0.063 0  1.57 1 3
11 0.164 -3.14 -1.57 1 3
12 0.063 0 1.57 1 3
13 0.083 0 =-1.57 1 2
| 14 0.396 0 1.57 2 1
l ;j 15 0.104 0 1.57 2 1
R 16 0.052 0 0 1 2
17 0.082 1.57 0 1 2

Fig 3.12 Representation of all drawing levels in single table.

Top level: , Intermediate level:

L 3’
]
A L[_ A

Internmediate level:

]

Top level:

Fig 3.13 Two examples where boundary traversal is needed at more than one level to
resolve otherwise identical starting points. In the top example, line A is favoured as
starting-point over B because its lower-level analogue A’ is longer than B’. In the bottom
example, A and C remain as possible starting points after second-level traversal since A
and C’ are longer than B’ or D’. Further traversal at lower levels, and possibly
involvement of inner boundaries, would be necessary to resolve between A and C.
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Choice of start line based on line length
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Start line

Start line
e

Choice of start line based on chord length
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/ /7
Start line Start line

Fig 3.14 An example where use of chord. length (the straight-line distance between start
and end points) rather than segment length as prime discriminator between possible start
lines makes choice of start line and start direction less sensitive to small changes in
object shape. : '

Y
' \m\

\

Fig 3.15 Examples of improved robustness in choice of canonical start line by use of
multi-level shape description. The three low-level descriptions above have their longest
lines in different relative positions. Using the higher-level descriptions below, the major
semicircle becomes the start line in all cases, forcing the same choice of start point on all
three shapes.
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Fig 3.16 Examples of shapes where completely robust unique representations cannot be
generated. While most observers would agree that the left-hand shape in both series is
basically straight-edged, the position gradually changes as the relative length of the
curved segments is increased, until the essentially circular right-hand shape is reached.

At some point, therefore, a small change in segment length will inevitably result in a
major change in shape representation.

N — N
I N

O

Fig 3.17 Examples of pairs of shapes where clear elements of similarity are present, but
where direct comparisons of segment length, curvature or discontinuity angle would be
unlikely to discover those similarities. The first pair of shapes, for example, shares only
one common segment, the second pair none at all.
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all shapes with specific features in common (such as the (+90° -90° .9g© +900)
discontinuity angle sequence characterizing rectangular depressions) is relatively easy
with shapes such as that shown in Fig 3.17 if feature sets for intermediate levels are
extracted and stored separately. Faced only with discontinuity angle sequences from the
most detailed level of shape description, it would be much more difficult to recognize
this type of feature. Hence the majority of extracted retrieval features (see chapter 4) in
the prototype version of SAFARI are in fact associated with a specific boundary level
rather than the boundary in general. '

3.2.5 Inner boundaries

Since inner boundaries are defined in an identical fashion to outer boundaries. an
identical method was used for representing them, with two exceptions. Firstly,’ the
segments making up an inner boundary were traversed in clockwise order; secondly, the
length L, used to normalize segment length was chosen to be the outer boundary
perimeter rather than the inner boundary's own perimeter. These decisions were taken to
differentiate inner and outer boundaries. The first is consistent with the principle of NC
machine tool operation (metal on the left of the cutting tool); the second permits the
database to represent the relative size of inner and outer boundaries - essential for
unambiguous representation of complete objects with inner boundaries.

As discussed later, the choice of start point in otherwise symmetrical inner boundaries is
determined by the relative positioning of inner and outer boundaries.

3.2.6 Relative positions of inner and outer boundaries

To complete an unambiguous description of 2-D objects, it is necessary to specify in an
invariant form: '

(a) the start point and start direction of each inner boundary;
(b) the ordering of internal boundaries.

Start point and start direction. In view of the need to identify symmetry at a later stage
of the shape-matching process, it was in fact decided first to calculate and store the
position of each boundary centroid. The position of each inner boundary centroid is then
defined in terms of the vector joining it to the outer boundary centroid; in tum, the start
point of each inner boundary (the start point of the start line selected by the procedure
described above) is defined by the vector joining it to its centroid (Fig 3.18). The lengths
of these vectors are rendered invariant to translation, rotation and scaling by dividing
them by the outer boundary perimeter L, their angles by relating them to a standard
direction characteristic of the shape itself, such as the shape's major axis, or the start
direction of the outer boundary start line. Similarly, inner boundary start directions are
rendered invariant by relating them to the outer boundary start direction.

Ordering of inner boundaries. The final step. in generating a standard ordering of all
shape elements is clearly the specification of a standard inner-boundary ordering - though
it should be noted that the problems of defining a robust ordering in all cases are as
intractable here as in the case of outer boundary segments (section 3.2.3). This implies
that an ordering of inner boundaries must be defined purely in terms of intrinsic shape
parameters. It is valid to order inner boundaries purely in terms of parameters such as
number of segments, relative distance from outer boundary centroid, relative length of
perimeter and so on. Such an ordering is not however very useful because of the high
degree of symmetry in many engineering shapes. The most appropriate ordering of inner
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Fig 3.18 Invariant representation of inner boundaries in-terms of centroid vectors GG,
~and GyG,, linking inner and outer boundary centroids, and start point vectors G S, and
G,S,, linking inner boundary centroids and start points.

O O

O O

Fig 3.19 Highly symmetrical objects where the most logical inner boundary ordering is
angular, as all have centroids virtually the same distance from the outer boundary
centroid. The central inner boundary in the right-hand object would come at the end of

the ordering sequence.
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boundaries in shapes such as those shown in Fig. 3.19 is clearly by angle. All inner
boundaries are of essentially equal size, shape and distance from the outer boundary
centroid; any attempt to order them by the minute differences that might exist in these
parameters would be totally counter-productive, as small changes in position - well
within engineering tolerances - could lead to radical differences in ordering.

This leads to an apparent paradox. One can easily specify an orderin i i
(clockwise or anticlockwise) for boundaries which Zre 1;thle:fr};vise idcntica%, ?)ltite Cttxlc?\:vl
should the start boundary be specified? The problem can in theory be solved in the same
way as for inner boundqry positions, by choosing a standard direction (such as the shape's
major axis, or start direction of the outer boundary start line), and ordering inner
boundaries on the basis of the relative angle between this and the vector joining each
inner boundary centroid to the outer boundary centroid. (Fig 3:20). Unfortunately, this
procedure does not work for objects whose outer boundary is a complete circle, as no
outer boundary direction can be defined. Nor does it work for the class of otherwise
symmetrical shapes where the relative positioning of inner boundaries creates a clear
distinction between otherwise equivalent start lines (Fig 3.21). For these shapes, the
standard direction defining the relative ordering of inner boundaries cannot be
determined without reference to the positions of those inner boundaries.

There are two possible ways out of this paradox. Firstly, one could define a measure of
inner boundary configuration which is independent of the ordering of individual
boundaries, such as the sum S of (length x angle) for all vectors joining inner and
outer boundary centroids. This could be used to distinguish directly between alternative
outer boundary start lines, by determining S independently for each candidate start line,
and then choosing the start line giving the greatest value for this measure. Shapes whose
outer boundary is a complete circle have to be treated as a special case:

Alternatively, one could select each inner boundary in turn as candidate start boundary.
This would then allow the remaining boundaries to be ordered by distance and angle with
respect to the candidate inner boundary direction. Alternative inner boundary orderings
could be compared, and a unique ordering- selected, by successively comparing relative
centroid distance, centroid angle, perimeter, start angle, etc of each boundary in the list
until a difference emerges (Fig 3.22). If two or more orderings prove identical, the inner
boundary configuration is symmetrical, and more than one candidate inner boundary
direction has to be retained at this stage.

If no outer boundary start direction can be defined, this inner boundary standard direction
becomes the standard direction for the entire shape. (If the inner boundary configuration
is symmetrical, an arbitrary candidate direction can be selected). Otherwise, inner and
outer boundaries are then oriented by recording the angle between outer boundary and
inner boundary standard directions. If there is symmetry in either the outer boundary or
inner boundary configuration of the object, each possible pair of alternative inner and
outer boundary standard. directions has to be compared to select a definitive
representation (Fig 3.23).

3.3 Converting shapes to invariant form

3.3.1 Overview

To be of any real use, a shape retrieval system needs to be able to accept input from a
wide variety of CAD systems. For reasons discussed in section 1.3, the most reliable way
to ensure this is to base input to the system on a standard inter change format such as
IGES. The problem of generating invariant shape descriptions of the kind described

above can then be resolved into the following stages:

(a) extracting geometric information from IGES-format files;
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Fig 3.20 For unsymmetrical shapes, a logzcal start direction for inner boundary
ordering is provided by the outer boundary start direction. Here, inner boundary 1 has

its centroid vector most nearly parallel to the start lzne subsequent boundaries are then
ordered as shown.

51 O
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Fig 3.21 For shapes with symmetrical outer boundaries, no obvious start direction for
ordering inner boundaries exists. Some alternative means is needed to select this start
direction and hence the first inner boundary in sequence.
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Fig 322 Resolution of inner boundary ordering problem by selecting each inner
boundary in turn as candidate head of inner boundary list, and comparing alternative
orderings of inner boundaries in terms of relative centroid distances and angles, and, if
necessary, boundary size and shape. In case (a), inner boundary I takes precedence as
distance G,G, is greater than G,G,, in case (b), boundary 1 takes precedence because
the angle G,G /G, is less than any of the other angles between centroid vectors; in case
(c), all centroid distances and angles are equal, but boundary 1’s start angle is greater
relative to its centroid vector than the other boundaries.

Fig 323 Comparison of candidate outer boundary start lines and inner boundary
standard directions to yield canonical shape representation. The three possible inner
boundary directions and four possible outer boundary directions are compared to find
the pair giving the smallest difference in angles (in this case inner boundary I and outer
boundary start line C).
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(b) joining lines characterized in step (a) into connected boundaries;

(¢) generating a hierarchical description of each shape boundary using the rewriting
rules described above;

(d) converting these representations into invariant form.

Each .of these steps was implemented as a separate program, as illustratéd in Fig 3.24 and
described below. All programs were written in VAX PASCAL, running under VMS on
Newcastle Polytechnic's VAX 8700. Note that a further step:

(e) generating feature descriptions and loading complete shape descriptions into the
shape database; .

is described in detail in chapter 4.

3.3.2 Extraction of geometric information from IGES file

Program IGESTRAN takes a standard IGES file as input, identifies all drawing lines of
suitable type, and stores their end-points and other defining parameters in an intermediate
line file (file extension .LIN) for use by subsequent programs. It ignores dimension lines,
text, and most non-geometric data such as associativity or property definitions.

The program reads the five sections of the IGES file in sequence:
Start section - ignored.

Global section - drawing filename, name of CAD system generating the drawing,
drawing scale and resolution are extracted from input parameters for transfer to th
output line file. _ '

Directory section - each pair of directory entity (DE) records defining a drawing object is
scanned. If the object is denoted "geometric" and "visible" on the input record, and is of
acceptable type, a temporary record is created in main storage. The following IGES
entity types are currently accepted - 100 (circular arc), 102 (composite data), 106
(copious data), 110 (straight line), 124 (transformation matrix), and - for input from the
DOGS system only - one subclass of 406 (property). All other entity types are ignored.

Parameter section - each entity. defined by a DE record pair will have one or more
corresponding parameter entity (PE) records in this section. All PE records are read in
sequence; where they match with the temporary records for accepted entities created
above, appropriate line records are created, specifying both line type and defining
coordinates.

Terminator section - Counts of accepted and rejected drawing entities are displayed, and
"expected” and "recorded" record counts compared. If the input file is valid, appropriate
header and line records are written to the line file.

3.3.3 Joining boundary lines

Program LINEJOIN takes as input the line file created by IGESTRAN, rejecting any
lines shorter than a specified threshold and merging any overlapping lines, and groups ail
contiguous lines into boundaries. Sequences of line segments forming closed boundaries
are written to a boundary file (extension .BND).
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Segmented file (SEG)

Canonical shape File (CAN)

Fig 3.24 Data flow diagram showing the four stages in converting IGES format input
drawings into invariant shape representations.



The program first reads in the entire line file, building up a two-way linked list of
qualifying line records. A line record qualifies for inclusion if (a) its length is greater than
a pre-set threshold tolerance (currently taken as 1000 x drawing resolution), and
(b) it does not touch or overlap any existing lines following paths defined by the same
equation. Lines below threshold length (which are usually remnants of deleted drawing
features) are simply rejected. Contiguous or overlapping lines following identical paths
(common in drawings constructed by copying or mirroring, as discussed in section 2.5.1)
are merged, as illustrated in Fig 3.25. For all accepted lines, maximum and minimum x-
and y-coordinate values are calculated.

When all valid lines have been read in, the program attempts to group as many as

possible into complete boundaries, on the basis of the following algorithm:

Find the ungrouped line record with the lowest minimum X-coordinate
value (resolving ties using the lower minimum Y-coordinate). Denote
this the boundary start line;
While a start line can be found do
Begin
Create a new boundary header record, detach the start line
record from the "ungrouped” list and link it to the boundary

header;

Record start and finish coordinates of boundary, and success at
finding matching line;

While the boundary list is incomplete (i.e. start and finish
coordinates unequal) and matching line successfully found do

Begin

Search the list of ungrouped line records for lines whose
start or finish coordinates match those of the ends of the
growing boundary;

If a matching line can be found then

Detach this line. from the ungrouped list and link it to the
appropriate end of the growing boundary list

else
Record failure to find a matching line
End;

Find a new boundary start line as before

End

To allow for errors in drawing, end-coordinate matching criteria are progressively
relaxed if no exact match is found; if an approximate match is found, line and boundary
end-points are adjusted accordingly.
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Fig 3.25 Merging of contiguous or overlapping lines from the original drawing to
generate single line segments - each represented by a single record. Line segments were
considered for merger only if both were straight lines with identical angle and distance
from the origin, or both were circular arcs with identical radius and arc centre
coordinates - within specified tolerances.
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When all available lines have been grouped into boundaries, all complete boundaries are
written to the boundary file, in the order in which they were created. With the given
domain of shapes, this means that the outer boundary is always stored first, followed by
inner boundaries in order of increasing minimum x-, then y-coordinates. Within each
boundary, the header record is always written first, followed by the line records for the
starting segment (the segment with minimum x-, then y-coordinates), then all remaining
segments in order of boundary traversal in the appropriate direction (anticlockwise for
outer boundary, clockwise for inner boundaries). The primary defining parameters for
each line segment (length, curvature and discontinuity angle) are calculated and stored at
this stage.

3.3.4 Uncovering underlying shape

Program SKELETON takes as input the boundary file created by LINEJOIN, applying
the rewriting rules described in Section 3.2.3 to reduce lines defining comer and midline
features to subordinate status, generating a hierarchical representation of each boundary
which can be traversed at different levels. This representation is stored in a segment file
(extension .SEQG).

The program operates on each boundary in turn. Firstly, it builds up a two-way linked list
of all boundary segments in order, and then scans the boundary to ensure that no line
segments remain fragmented. It is important that this step precedes shape hierarchy
generation, because preconditions for recognizing shape features all involve comparing
the relative lengths of lines forming and enclosing potential shape features. The boundary
is scanned once; if any neighbouring line segments are found to have discontinuity angles
and normalized differences in curvature less than a specified threshold, a new parent
record is created for the merged line, and linked into the boundary segment list (Fig.
3.26). Records for individual line fragments are retained as child records to the new
parent. This ensures that the representation remains information-preserving.

The program then builds up a hierarchical description of the boundary shape. It creates
new header records, as shown in Figs. 3.27 and 3.28, to represent the extended lines
generated by the shape rewriting rules illustrated in Figs 3.9 and 3.10, and links them to
existing records with parent and child pointers. All drawing lines are examined in turn,
starting with the shortest, according to the following algorithm (NB - the term shortest
here has the obvious meaning only if one line is shorter than all others by more than a
specified tolerance. If two lines of essentially equal length are found, the shorter is
defined by examining each candidate's successor lines (found by following the chain of
next pointers from each line) until a difference in length is found, or the entire boundary
has been traversed):

Mark all boundary segments 'unexamined', with level no = 1. Find
the shortest unexamined line (if any) and mark it 'examined';

While a new 'shortest' line can be found do
Begin

Attempt to process shortest line as (part of) a potential corner
feature;

If no shape feature discovered then

Attempt to process shortest line as (part of) a potential
midline feature;
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Fig 3.26 Replacement of contiguous lines of similar curvature with single "parent”
record, a symmetric circular arc inheriting start and finish coordinates and start
direction from "child” segments (which then determine parent segment’s length,
curvature and discontinuiry angle).
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Fig 327 Creation of additional "parent” records to implement corner shape rewriting
rules illustrated in Fig. 3.9. Parent records Hy and H, are linked into the Next and

Previous pointer chains in place of L and L3.
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Fig 3.28 Creation of additional "parent” record to implement midline shape rewriting
rules illustrated in Fig 3.10. Again, parent record H is linked into the Next and Previous
pointer chains in place of L} and L.
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Find the next shortest unexamined line (if any) and mark it
'examined’'

End

An example of the type of hierarchy produced is shown in Fig 3.29. The process of
building up the hierarchy is complicated by the need to ensure that the final structure
produced is as far as possible independent of the order in which segments are processed.
Even though a strict "shortest first" order is specified, similar but not identical shapes
such as those shown in Fig. 3.30 need to yield similar-shaped hierarchies of header lines.
The most effective way to achieve this was found to be to limit the creation of new
records to cases where positional information would otherwise be lost.

Consider the case shown in Fig. 3.31. Because the header record created at one step
encloses a corner or midline feature at the next, automatic creation of new header records -
every time a rewriting rule is invoked can lead to an unwieldy pyramid of header records.
Worse still, the resulting structure is completely dependent on the order in which
segments are processed. : :

If the creation of new header records is limited to cases where the coordinates of an
intermediate point would otherwise disappear (Fig 3.32), a much more manageable
structure results. First, such a structure is the minimum required to allow traversal of a
shape boundary at any desired level. Since a new header record is created only where a
point coordinate would otherwise be lost, one of its end-points must always contain
unique information. Removal of any header record from the structure would therefore
prevent traversal of the boundary at one or more levels. Secondly, such a structure is
much less sensitive to the actual order in which line segments are processed - as shown in
the example in Fig 3.33. An algorithm reliably yielding the minimum set of header
records should generate this same set, whichever order of processing is chosen for the
line segments.

The following algorithm was therefore devised to process corner features. It tests whether
the shortest currently unexamined line, indicated by the pointer Shortest, enclosed by
lines First and Last, is a potential comer feature. If so, it creates new header records
Headl and Head2, which are added to the hierarchy if First and Last contain unique
coordinate information, but which replace First or Last otherwise. LenRatio is a constant
normally set equal to 1.

Set First to indicate the line preceding Shortest, Last the line
following it, and indicate no shape feature discovered;

While no shape feature discovered and number of lines separating
First and Last is less than 3 do

Begin
Repeat

If First and Last would meet at a suitable angle when extended
(e.g. between 30° and 150°), and appropriate gqualifying
conditions are met, e.g: Headl must be longer than First *
LenRatio, HeadZ must be longer than Last * LenRatio, total
length of line segments between First and Last must be less
than LenRatio * (Headl + Head2) then

Indicate shape feature discovered;
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Fig 329 Hierarchy of line levels produced by repeated application of the shape
rewriting rules described above. In theory, it should be possible to traverse such a
structure at any given level - though in practice this is possible only where the
application of the rules is strictly controlled. See Figs 3.31 and 3.33 below.
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Fig 3.30 Need for similar shapes to generate similar hierarchies of intermediate level
lines. In both cases, processing needs to yield two top-level lines (1’ and 10°), irrespective
of whether construction of the hierarchy begins between lines 1 & 5,5 & 9, or 10 & 12.
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Fig 3.31 Unrestricted creation of header records when applying rewriting rules can lead
to problems. Two alternative sequences of rewriting can yield markedly different
hierarchies of inter mediate level lines, even though the top-level structure is the same in
each case. In neither hierarchy is it obvious how traversal at intermediate line levels (see

Figs 3.11 and 3.12) is supposed to be achieved.
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Fig 3.32 Illustration of rules for limiting the creation of new header records. In cases (a)
and (b), new header records are created at each stage to prevent loss of information on
the position of line segment end-points. In case (a), new header records H, and H, are
created because extending L, and L. till they met would lose the original end coordinates
of L, and the original start coordinates of L;. A similar argument applies to both steps of
case (b) - information on the position of line end-points is lost unless two levels of header

record are created.

In cases (¢) and (d), existing header records can be extended without loss of information.
In both cases. header H; can safely be extended at step 2 without losing information on
its original end coordinates, as these are identical with those of line L,.
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Fig 3.33 Limiting creation of header records as specified above yields a hierarchy which
is both more compact and less sensitive to the order in which rules are applied. Here.
sequences A and B both vield the same hierarchy, which can clearly be traversed ar just
two levels, 1'-3’-9" and 1-2-3-4-5-6-7-8-9.
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Create new line records Headl and Head.Z,
and Last respectively, such “hat starz ~=--
coincide with those of Headl, finish
with those of Headl2, and finish ccordin
start coordinates of HeadZ2;

4 ol
ates of Headl wwzrh

a z
ing HeadI as

Mark Headl as the parent of First and all

records, and HeadZ as the parent of Last:
If finish coordinates <f First are identical to finish
coordinates of its last child reccrd then

give Headl the same level no as First and re
by Headl in the line segment hierarchy, mark
the parent of all First's child records

'

else

give Headl a level number 1 higher than First, and reta:in
both Headl and First in the line segment hierarchy;

If start coordinates of Last are identical to start
coordinates of its first child record then

give HeadZ the same level no as Last and replace Last by
HeadZ2 in the line segment hierarchy, marking Headl as the
parent of all Last's child records

else

give Head2 a level number 1 higher than Last, and re-airn
both Head? and Last in the line segment hierarchy

else
Replace First and Last by their predecessors

Until shape feature discovered or Last = Shortest;

Replace Last with its successor

End
Similarly, the following algorithm was devised to process midline features. testing
whether the shortest currently unexamined line is a potential midline feature. If so. it
creates a new header record Head, which is added to the hierarchy if First and Lasr both

contain unique coordinate information. but which replaces First or Last (or both)
otherwise:

Set First to indicate the line preceding Shortest, Last the lire
following it, and indicate nc shape feature idiscovere

First and Last is less than 5 do

Begin

~1
‘s



Repeat

If First and Last can be described by the same equation, and
the total length of all line segments between First and Last
is less than LenRatio * (the length of Head) then

Indicate shape feature discovered;

Create new line record Head, such that start coordinates of
First coincide with those of Head and finish coordinates of
Last with those of Head;

Mark Head as parent of First, Last and all intermediate line
records; '

If start coordinates of Last are identical to start
coordinates of its first child record then

give Head the same level no as Last and replace Last by
Head in the line segment hierarchy, marking Head as the
parent of all Last's child records;

If finish coordinates of First are identical to finish
coordinates of its last child record then

give Head the same level no as First and replace First by
Head in the line segment hierarchy, marking Head as the
parent of all First's child records;

If neither of these conditions holds then

give Head a level number 1 higher than First and retain
Head, First and Last in the line segment hierarchy

else
Replace First and Last by their predecessors
Until shape feature discovered or Last = Shortest;
Replace Last with its sﬁccessor

End

Some results of these algorithms are shown in Figs 3.34 and 3.35. Note that additional -
qualifying restrictions on comer features have been added to produce an intuitively more

"natural” performance with a wide range of shapes, and to reduce dependence on order of

processing. For example, comer features which would spoil later discovery of midline

features are inhibited, and comner features bounded by curved lines or acute-angled

straight lines are inhibited if they would spoil features bounded by right-angled straight

lines.

Finally, the entire sequence of line records is written to file, using a recursive procedure

which stores each line segment record at a given level, followed immediately by its child
records, to whatever depth is required. The procedure records and stores the depth of
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Fig 334 Multi-level representations of some test shapes, illustrating line segment
hierarchies. The hierarchy can be traversed atr any given level using the algorithm
outlined in Section 3.2.3.
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Fig 3.35 Cases illustrating need for additional restrictions on rewriting rules - (a) where
line segment could either form part of a corner feature or a midline feature, midline
feature is preferred; (b) where diagonal segment between perpendicular line segments
could yield either triangular or rectangular overall shape, rectangular is preferred.

Fig 3.36 Triangulation of a boundary to calculate the position of its centroid. The
centroid coordinates and area of each triangle or circular arc segment making up part of
the shape enclosed by the boundary are calculated by appropriate formulae; moments
are then taken to find coordinates of overall boundary centroid G, Point G’ can be

selected arbitrarily, as its position has no effect on the final result.



nesting, so that each stored line record contains two level numbers, as discussed in
section 3.2.3; Ey, the (bottom up) level number assigned during construction of the
feature hierarchy, and E;, the (top-down) level number assigned at storage time
Together, these level numbers permit easy traversal of the shape boundary at any level. .

3.3.5 Generating canonical representation

Program CANONGEN takes the segmented boundary representations from the segment
file created by SKELETON, converts each boundary representation into canonical form
calculates the relative positions of inner and outer boundary centroids, sorts inner
boundaries into a standard ordering, transforms the spatial relationship of inner
boundaries into invariant form, and normalizes all lengths and directions in terms of outer
boundary perimeter and major axis. : '

3.3.6 Outer boundary representation

The program first processes each boundary in sequence, reading the line segments
making up each boundary into a two-way linked list, and validating each list by checking
that it forms a closed boundary at whichever level it is traversed. The x- and y-
coordinates of each boundary centroid are calculated as shown in Fig 3.36. The first step
in converting each boundary into canonical form is then taken, by selecting a definitive
start line, using the following algorithm:

Choose an arbitrary top-level line segment, denote it StartLine,
and mark it as a potential start segment. Find the next top-level
line in the list and denote it CurrentLine;

While a new CurrentLine can be found do
Begin
Set SL = StartLine, CL = CurrentLine, current level to 1, and
action required to "unknown” {other legal values are "replace
start line", which marks CurrentlLine instead of StartLine as

start segment, "add start line", which marks CurrentLine as well
as StartLine as start segment, and "no action required"};

While action required unknown do
Begin
Repeat
Case of chord length of line CL
> SL: replace start line
< SL: no action required
= SL:
Case of length of line CL
> SL: replace start line
< SL: no action required

= SL:

Case of arc angle of line CL
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> SL: replace start line
< SL: no action required
= SL:

Case of discontinuity angle following line CL
> SL: replace start line
< SL: no action required
= SL: replace CL and SL by their successor lines
at current level;

Until current action known or boundary completely traversed at
current level;

Increment current level;

If no more levels to traverse and action required not yet
known then

add start line
End;
Replace CurrentLine by its successor

End

This procedure always yields a unique start line unless the boundary possesses rotational
symmetry - a boundary with n-fold symmetry will yield n potential start lines. If the
shape as a whole contains unsymmetric features, the position and orientation of other
boundaries is used to choose between candidate start lines, as outlined below. If not,
choosing any of the candidate start lines will yield an identical representation of the
boundary; the program therefore selects the first candidate start line it encounters.

3.3.7 Inner boundary representation

When all individual boundaries have been cast into canonical form (individual inner
boundaries are processed in exactly the same way as the outer boundary), the program
attempts to define an inner boundary standard direction, and canonical ordering of inner
boundaries. The length and direction of each inner boundary's centroid vector (Fig. 3.18)
are first calculated and stored. The inner boundaries are then sorted into a provisional
order, by decreasing centroid vector length.

Drawings with zero or one inner boundaries are treated as special cases. Otherwise, the
program then attempts to create one or more (if symmetric) canonical boundary
orderings, as follows:

Choose the first boundary on the provisional boundary list, and
define UnitDir as the direction of this boundary's centroid vector;

Create a new temporary listing of the remaining inner boundaries,
following the provisional ordering except that a group of
boundaries whose centroid distances differ by less than a given
tolerance are instead sorted by (CentroidAngle - UnitDir). Adjust
inner boundary start lines/start directions where necessary to
minimize angle between UnitDir and start direction;
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Denote this listing the 'current candidate list';

Attempt to find another candidate boundary to head the inner

boundary list (i.e. another boundary with centroid distance within
the given tolerance);

While another candidate boundary can be found do
Begin

Create a temporary listing headed by the new candidate boundary
as specified above; .

Compare each boundary in the new listing with thé corresponding
boundary in the current candidate list, using the following
parameters in turn until a difference emerges or all parameters
have been compared: centroid angle, centroid distance,
perimeter, no of segments, max no of levels, start angle, then
chord length, arc length, arc angle and discontinuity angle of
each line segment at each level;

Case of the value of the discriminating parameter in the new
list relative to that in the current list (with the exception of
centroid angle, where actions are reversed):

Greater: Replace the current list with the new list
Less: Discard the new list
Equal: Retain both old and new lists;

Attempt to find another candidate boundary to head inner
boundary list

End

The procedure terminates yielding one or more (equivalent) orderings of inner boundary
records. In the first of the three examples shown in Fig. 3.22, it creates one list headed by
boundary 1, adds boundary 2.to that list, then terminates. The final inner boundary
direction is thus that of the vector GyG,. In the second example, three candidate lists
would be generated (1-2-3, 2-3-1, and 3-1-2); list 2-3-1 would then be compared
boundary by boundary with list 1-2-3, and the second list rejected because boundary 3
has a larger centroid angle (relative to the list header, boundary 2) than boundary 2
(relative to its list header, boundary 1). Similar considerations cause rejection of the third
list. :

Once definitive ordering(s) of inner boundaries have been generated, the final resolution
of inner and outer boundary directions becomes possible. Again, a number of special
cases need to be treated - where no inner boundary is present, or there is a single inner
boundary with zero centroid distance, inner boundary standard direction is set equal to
the start direction of the outer boundary start line. Conversely, if no outer boundary start
direction can be defined (because the outer boundary is a complete circle), outer
boundary start direction is set equal to inner boundary standard direction. If both inner
and outer boundaries are unsymmetric, the outer boundary direction is uniquely defined
by the start direction of its start line, and inner boundary direction by the centroid vector
of the first inner boundary. Otherwise, each candidate (outer boundary startline)/(inner
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boundary list header) pair has to be compared to find the combination giving the smallest
difference between inner and outer boundary directions. In the example from Fig. 3.23
combinations Al, A2, A3, B1, B2, B3, etc are successively tested to find the one wheré
directions are most nearly parallel.

Once final inner and outer boundary directions are established, the chosen inner
boundary ordering is made permanent, and inner boundary start angles/start lines
adjusted where necessary to reflect the final direction chosen. All lengths and angles are
normalized with reference to outer boundary perimeter and standard direction
respectively. |

3.4 Efficiency considerations

All the algorithms described here appear to be polynomial-bounded. IGESTRAN
performs a sequential read of all DE records from the input IGES file, creating temporary
records in main storage, then reads all PE records in sequence, matching them with the
corresponding temporary records and creating new combined records. Provided DE and
PE records are sorted in the same way in the input file (as they should be), this is a purely
linear process, i.e. O(n), where » is the number of records in the input IGES file.

The most processor-intensive routine within LINEJOIN is probably that of growing new
boundaries. Each time a new segment is added to a boundary, a search has to be made
through all unattached segments to identify the correct line to add to the growing
boundary. In the worst case, this would involve n(n-1)/2 comparisons, where r is the total
number of line segment records input - an O(n2) process. '

SKELETON builds up its shape feature hierarchy by successively examining each
boundary segment in order of increasing length. The process of comparing line pairs
surrounding the current shortest segment, and generating one or more header records
where appropriate, is lengthy, but independent of the number of boundary segments n
except for very small values of n, since an upper bound is set on the number of candidate
header pairs examined in each case. Each time a new header record is created, these
comparisons have to be repeated at the next higher level. The total number of
comparisons performed for any given boundary is thus a function not only of the number
of segments it contains, but also of its shape feature content, in terms of the number of
header records generated.

In the "best" case, where no shape features are detected, analysis is simple - precisely n
comparisons are made. In the "worst” case, every segment in the original boundary
becomes subsidiary to a higher-level segment, every segment at this level becomes
subsidiary to a yet higher level, and so on. Since in this case each level can never contain
more than half the number of segments of the level below, the total number of segments -
and hence comparisons - cannot be greater than 2n. In intermediate cases, the situation is
harder to determine, though it would appear reasonable to regard the algorithm as O(n),
where n is the total number of line segment records input. (One could argue that since the
boundary is first searched to find the shortest segment, it is strictly an O(n?) process.
However, the amount of processing required to find the shortest line is trivial compared
with that required for examining candidate header segments for the size of drawing
handled here).

Finally, CANONGEN identifies unique boundary start lines by comparing segment
sequences starting from each pair of candidate start lines in turn. In the worst case, this
could involve comparing »n segment pairs in each of N candidate sequences, where n 1s
the total number of segments making up all levels, and N the number of top-level
segments. This is essentially an O(n2) process. Generating a standard ordering of inner
boundaries involves setting up and comparing a number of provisional orderings, each
starting with a different candidate start boundary. In the worst case (n inner boundaries,
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all the same distance from the outer boundary centroid), this would involve setting up
and comparing n candldate. ordered boundary lists, each generated using a simple
exchange sort (an O(?) algorithm). The overall process here is thus O(n3).

Typical cpu usage figures for each of these programs as implem

presented m table 3.4.1 below. To obtajxf th%:rse ﬁgures,peacgnlt)iggc;gxi \\:v%rsuzlogviﬁ
representative "simple”, "average" and "complex" drawings, identified by ranking input
files by the number of relevant input components, and selecting input drawings w%th
percentile ranks of 10, 50 and 90 respectively. The figures, produced by accessing the
processor's real-time clock from within the program, should be treated with some caution
since they represent total cpu usage for the current process, including all transfer of data
between main storage and backing store, whether requested by the application program
or caused by the operating system paging out blocks of memory to allocate to another
process. Thls latter effect was minimised by running all jobs in batch mode at times when
the machine was known to be lightly loaded, but could not be totally eliminated. -

Table 3.4.1 - cpu usage for translation programs

Drawing No of CPU usage (s)
Program name comp- input N
lexity records processing+ total
IGESTRAN Simple 74 0.15 0.25
Average 135 0.28 0.38
Complex 331 0.66 0.80
LINEJOIN Simple 11 0.01 0.08
Average 25 0.04 0.15
Complex 64 0.10 0.20
SKELETON Simple ‘ 8 0.02 0.12
Average : 17 0.04 0.13
Complex 44 0.09 0.18
CANONGEN Simple 11 0.02 0.10
Average 24 0.03 0.13
Complex 52 0.04 0.15

*parameter has slightly different meaning for each program; for
IGESTRAN, it represents no. of fixed-length 80-character records in
IGES transfer file; for remaining programs, it represents no. of line
segment records in intermediate .LIN, .BND, or .SEG transfer files
1Lexcluding cpu time for opening and closing data files

Program IGESTRAN was on average the greatest user of cpu time, largely because of the
sheer volume of data forming the average IGES-format transfer file. CPU usage figures
for all programs appear consistent with predicted overall complexities.

3.5 Concluding remarks

This chapter has described in detail the shape representation methods adopted for the
prototype version of SAFARI, and the processing required to generate such
representations from drawings input in standard IGES format. The method can be
distinguished from those adopted by other authors in two main respects: (a) the use of the
concept of the boundary level, allowing each boundary to be viewed at differing levels of
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de@ail, (b) the spegification of a standard ordering for shape components, to generate a
unique representation for each shape.

There are however a number of limitations on the extent to which such system objectives
can be achieved in practice. The most important of these are as follows:

(a) Drawings must be expressed in IGES format, using only the limited domain of
geometric entity types specified in section 3.3.2. This is not an inherent limitation of
the method and could readily be overcome by enhancements to the initial translation
module IGESTRAN.

(b) Some limited drawing inaccuracy can be tolerated - the boundary segment joining
module LINEJOIN can recognize lines as contiguous if their end-points lie within a
specified tolerance, and the hierarchy builder SKELETON similarly allows line -
segments to be recognized as collinear or concyclic within specified tolerances. The
default tolerances used (0.01 drawing units with LINEJOIN, 0.01% of the outer .
boundary perimeter with SKELETON) are more than ample to cope with any’
possible inaccuracies in a professionally-produced drawing. However, they cannot
be relaxed indefinitely without producing spurious effects, and the method may fail
on drawings produced by untrained draughtsmen.

(c) The hierarchy builder SKELETON fails to yield satisfactory results with some types
of highly-recursive shape such as that shown in Fig 3.37, where some parts of the
boundary generate four or more levels of description, and others only one or two. A
valid hierarchy is built, but cannot be traversed at all levels by the simple algorithm
outlined in section 3.2.3. ‘ : -

(d) As discussed in sections 2.3 and 3.2 above, the canonicalization module
CANONGEN cannot generate a unique shape representation which is completely
robust to an arbitrary small change in shape parameters in all cases.

While such limitations may restrict the system's scope, it is not considered that they
invalidate its overall approach in any way. The ultimate test of the usefulness of these
shape representation techniques is the retrieval effectiveness of the entire SAFARI
system, which can be empirically measured - a subject developed in more detail in
chapter 8.
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Fig 3.37 An example of the type of highly-recursive shape where the hierarchy
generated by SKELETON cannot reliably be traversed with the standard algorithm used
by later program modules.
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CHAPTER 4. RETRIEVAL FEATURES

4.1 Introduction

To provide an engineering database with the capability of retrieving objects on the basis
of shape, it is clearly necessary to identify a set of shape features whose presence or
absence in stored drawings can be used as a basis for retrieval. Selection of such a feature
set is one of the most difficult tasks in the design of any retrieval system, and is doubly
difficult here because of the lack of any body of past queries to provide possible clues.
The overall aim of the process can easily be formulated - to define a set of features which
allows optimum system performance, in terms of ability to provide relevant answers to
all possible user queries to any given collection of stored data. This aim is unfortunately
of limited usefulness, as it requires a detailed analysis both of the structure of every
collection of data to be housed, and of the queries to be put to the database. Since this is -
impossible to establish in advance, one has in practice to be content with the lesser aim of
identifying features of use in answering a finite set of queries put to a finite set of stored
data. This does however raise important questions about the degree to which it is possible
to generalize from the results of a study such as this - see Chapter 8, below.

In one sense, the procedures outlined in chapter 3 have already yielded a useful set of
retrieval features - the boundary segments themselves. Each of these represents part of
the total structure in a form invariant to translation or rotation, and invariant to scaling if
a suitable reference length (such as boundary perimeter) is available. Some retrieval
capability is possible even if no further feature extraction is performed: when objects are
represented in canonical form as an ordered list of segments, the use of suitable matching
algorithms allows the user to search for objects which exactly match query objects in
whole or in part. As the following section's discussion will show, however, users'
retrieval needs are likely to be much wider than this. There needs, for example, to be a
facility to recognize a slot whatever its dimensions, and also to identify a part as
rotational or non-rotational. Simple segment matching cannot provide this. Some feature
extraction method needs to be devised which can extract a range of shape features of use
in retrieval from 2-D (and preferably 3-D) object representations, reliably and reasonably
efficiently. This problem is unlikely to be solved within the compass of a single project,
as it is essentially iterative. Only when a workable shape retrieval system has been
developed it is possible to build up and analyze a representative body of queries from
which future shape features can be derived.

4.2 Possible sources of shape features
4.2.1 Manual parts classification codes

Parts classification codes such as the Opitz code are at present the only practical means
of providing shape retrieval for engineering drawings, and as such deserve close study as
indicators of the types of shape feature that are considered important by design engineers
and process planners. The Opitz code, for example, characterizes parts .pnn_c1pally by -
overall shape, classing them either as rotational (derived from a basic cylindrical shape)
or non-rotational (derived from a cuboid). It then subdivides rotational parts into three
groups on the basis of length/diameter ratios, and non-rotational parts on the basis of
length/width/depth ratios, with additional classes for shapes that are neither cylindrical
nor cuboidal in origin. Whatever the overall shape, the code also indicates the presence of
detailed shape features, including major internal machined features such as principal
bores, internal grooves or screwthreads, and external machined features such as external

grooves and slots.

One problem from the point of view of automatic shape analysis 1s that the Opitz code
clearly distinguishes between functional and auxiliary machined features - the former
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being an essential determinant of the component's fitness for its intended purpose. While
an experienced engineer would have little difficulty in distinguishing between the two
types of feature, he would in practice be using (implied) information about a part's
function as well as its shape to assign its classification code. Such information would not
be readily available to an automatic shape analysis program, suggesting that the task of
emulating the manual classification process could prove difficult.

While alternative coding systems such as Brisch or MICLASS differ in some important
respects from Opitz, their selection of shape features for classification is remarkably
similar. The implication for the present study would thus seem to be that it is important
both to characterize an object's overall shape (rotational or non-rotational, plus ratios of
major dimensions), and to specify the nature and shape of machined features such as
grooves, slots or auxiliary holes. Because of the difficulty of distinguishing between
functional and non-functional shape features, there would seem to be little advantage in
trying to incorporate any of the more detailed aspects of such classification systems.

4.2.2 Feature names

A study of the names that engineers use to identify machined features could in principle
identify additional retrieval features. As discussed in Section 1.5 above, language can be
a useful pointer to the way engineers think about design and manufacture. Although few
such terms have rigid definitions, and (as observed above) there is little control over
synonyms, such terms might provide an additional indication of features considered
important for retrieval. Unfortunately, glossaries of such terms are not readily available -
a problem already encountered by Patel (1985), who devised his own list of terms (shaft,
flange, bush, slot, groove, etc), most of which could be associated with particular
manufacturing processes. This approach was therefore not considered sufficiently fruitful
to be worth pursuing further in the present project. .

4.2.3 Automatic pattern recognition

Industrial machine vision systems, which aim to recognize components on conveyor belts
or in storage bins, have many parallels with the present project. They need to be able to
identify the type and possibly orientation of all components present in a given digitized
2-D image, even where some of the components are partially occluded by other objects.
This is normally achieved by extracting suitable features from each object detected in the
image, and comparing extracted feature values with reference values for each component,
a process very similar to shape retrieval. Such systems are therefore a potentially
valuable source of possible features.

Chin and Dyer (1986), reviewing the whole field of pattemn recognition for robot vision,
distinguish three types of feature:

1. Global features, characteristic of the shape as a whole, such as area, perimeter or
moments of inertia. These can typically be used to generate a feature vector which
can readily be matched with reference values for known objects to generate overall
similarity measures - or to classify the object using statistical pattemn recognition
techniques (Duda and Hart, 1973). Their advantages include simplicity (both feature
extraction and matching are rapid and straightforward processes in most cases) and
invariance to scaling, translation and rotation. Their disadvantages are susceptibility
to noise (not a problem in the present context) and inability to handle partial

structures or occluded images.

2. Local (or structural) features, characteristic of individual parts of the shape (normally
its boundary), such as individual lines, arcs or comers. These are normally used to
form an ordered list (such as a sequence of alternating line segments anq corners)
which can then be matched with reference objects - typically using syntactic pattem
recognition techniques (Fu, 1974). Chin and Dyer claim that both local feature
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extraction and matching are computationally more expensive than global feature
matching, since these normally involve some kind of parsing, a process that
inevitably requires a certain amount of back-tracking. They also point out that not all
local features are invariant to translation, rotation, and scaling, thus limiting their
usefulness still more. They are however usable with partially occluded images.

3. Relational features, characterizing the relative size, position or orientation of groups
of local features. These features are normally used to generate graphs relating key
local features of the image to each other; again, these graphs can be matched with
comparable graphs for reference objects. Relational features are thus the most

computationally expensive of all to use, though again they can be used with partially
occluded images.

These different kinds of feature can be combined. For example, Yachida and Tsuji (1977)
descn'be. a hierarchical system based on initial matching on global features (area,
area/perimeter? ratio), followed by similarity matching between object and reference
boundaries (expressed as polar coordinate values) and searches for circles, lines, and -
small holes at specified locations. Stockman et al (1982) used boundary edge elements
(real nges) angl vectors linking the centres of internal holes (abstract edges) for
similarity matching. Umetani and Taguchi (1982) defined a wide variety of what they
described as global, local and concavity properties (though their definitions of these
differ considerably from those of Chin and Dyer) in experiments on random shape
discrimination. Their global properties included various vertex angle, symmetry,
complexity, and compactness measures; local properties comprised straightness and
sharpness; and concavity properties included the number, length, depth and size of
concave features. Some of their feature definitions are unfortunately not very clear.

These studies are obviously of value as sources of specific feature types. Many, if not all,
of these features could be directly useful in shape retrieval. The major difficulty could in
fact lie in choosing between the wide variety of available features. Possibly of greater
value is the concept of tripartite division of features into global, local and relational, with
each type of feature useful in a different context. One can immediately see how global
features could be of most use in matching complete shape queries, and local features for
partial shapes, with relational features of possible use in matching inner boundary
patterns.

4.2.4 Human visual perception

Another possible source of retrieval features could be studies of the psychology of vision,
though this concentrates on how humans see pictures or images, rather than on the
objects themselves. The insights of the Gestalt school of psychology suggest that groups
of drawing elements can be identified on the basis of their proximity, similarity of size
and shape, continuity of line and closure - formation of complete or nearly complete
geometric patterns (Zakia, 1975). Studies of how architects visualize drawings (Akin,
1978) have also suggested that, when asked to memorize drawings for later recall, they
identified chunks of lines associated through geometry (adjacent or parallel lines often -
formed chunks), or' similarity of function (load-bearing walls, external qQors). ’I.'he
experiments of Fischler and Bolles (1986) on the way human subjects partitioned line
drawings for later recognition or reconstruction appear to confirm that the process is
highly subjective, and not based purely on the geometry of the drawing. Recognition of a
drawing appears to depend on cues based on a combination of local shape features
(individual sides and angles) and global features such as symmetry, repeated groups, and
parallel segments. This again implies that recognition and extraction of features of use in
retrieval may require situational knowledge not present in the drawing itself, reinforcing
the message from section 4.2.1 above.
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4.2.5 Information theory

A further factor in the choice of shape features comes from information th
Shannon's theory, the information conveyed by a message symbol i is 1 theory. From

= Pj logy(p;)

where p; is the probability of occurrence of the symbol i in the messa

assumed to have independent probability distribtiions). This peaks atg;- (;11{).85}’11;1;%118 iz;re
that retrieval features have maximal information content if they are all lindep<=,’ndemy,gm(§gi
occur in 50% of the file - an ideal recognized for many years by designers of retrieval
systems. This principle has been used to guide the selection of indexing fragments in
both chemical (Adamspn et al, 1973) and text (Lynch, 1977) retrieval systems. In both
cases, naturally-occurring fragments (atoms or text words) were shown to have highly
skewed frequency distributions, and the studies aimed to improve retrieval performance:
by finding sets of indexing fragments with much flatter frequency distributions. The
problem with applying this approach to the present project is that representative
collections of data are needed to calculate meaningful frequency distributions. Such
'standard’ collections of drawings simply do not exist; the few surveys that have been
carried out on shape feature distribution (e.g. Pratt, 1984) have been very selective. As
implied in section 4.1 above, there are considerable difficulties in generalizing from
results obtained using artificial test collections.

4.3 Criteria for feature selection

It is now possible to propose a reasonable list of criteria which a set of features for shape
retrieval should meet, as follows: .

1. The features should cover as wide a range of types as possible. In particular, the
feature set should include examples of all three types distinguished by Chin and Dyer.

The range of queries to be handled by a system cannot easily be predicted in advance. It
is, however, reasonable to assume that queries will include both complete and partial
shape matching, and that they may well specify relative positions of key shape features
such as inner boundaries. There is of course a risk of degrading performance if too large
a feature set is specified.

2. Extracted features should be invariant to translation, rotation and scaling - and
independent of choice of boundary start segment.

This should be obvious from the preceding discussion.

3. Features should be reasonably easy and economical to extract, and tolerably compact
to store.

While machine efficiency is not a major criterion in a shape retrieval system, and feature -
extraction would normally be performed only once for each new shape added to the
database, space considerations could be relevant in a large database. Rapid feature
extraction from query shapes might be an important factor in ensuring user acceptability -
it is doubtful whether any user would be. prepared to wait for more than a minute or so
while a query shape was being processed. Rapid feature extraction would become crucial
for any feature which was generated at run time rather than stored in the database. There
is of course an implied constraint that all features must be directly derivable from the
representation chosen for each stored shape.

4. If a system is directed at a specific domain of shapes (such as engineering drawings),
the feature set should take this into consideration.
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For example, the features to be stored in a database of engineering parts should include
each part's overall shape class and an indication of machined features.

4.4 Features chosen for prototype system
4.4.1 Introduction

Three main categories of features were identified, though Chin and Dyer's categorization
was adapted slightly to emphasize the distinction between inner and outer shape
boundaries:

1. Global bound'fuy fee}tures (correspongiing almost exactly to Chin and Dyer's global
features, but including both Umetani and Taguchi's global and concavity features),
reflecting the overall shape of a given boundary;

2. Local boundary features (inclugiing Chin and Dyer's local and some relational
features), computed either from individual boundary segments or short sequences of
contiguous boundary segments, reflecting specific features within a given boundary;

3. Positional features (mostly a subset of Chin and Dyer's relational features),
specifically representing the number, type and pattern of inner boundaries within a
given shape.

As discussed in section 3.2.4 above, it can be hypothesized that the chances of matching
query and stored shapes are likely to be greatest if features are calculated and stored
separately for each level of traversal of each boundary - in effect treating each boundary
level as a separate boundary in its own right. This effectively allows the system to select
the closest-matching views of both query and stored boundaries for similarity estimation.
This approach was thus adopted for SAFARI; although a few parameters (such as
boundary class or length/width ratio) were considered to be characteristic of the boundary
as a whole, however it was viewed, the vast majority (such as mean segment length or arc
angle variance) were associated with a specific boundary level. '

4.4.2 Global boundary features chosen

The features below were therefore computed and stored for each level of each boundary.
The rationale for selecting these features comes largely from the work of Umetani and
Taguchi, and to a lesser extent the other authors cited above. They represent parameters
analogous to those used by Umetani and Taguchi, modified to take account of the fact
that the shapes used in the present study are made up of circular arcs as well as straight

lines. The restricted measures of symmetry were necessary because curved objects can
have an infinite degree of symmetry.

1. Mean segment length ML =Z (Ly/n

where L; is the (normalized) length of boundary segment i, and » the number of .
segments in the current boundary level.

2. Segment length variance LV = X (L;-ML)¥/n
3. Mean segment arc angle MA= X (Ap/n
where 4; is the arc angle of boundary segment ..

4. Segment arc angle variance AV = X (A-MA)Yn
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5. Mean discontinuity angle between segments MD = X (Di)/”

where D; is the discontinuity angle between segments i and i+1 (i < n), and
between segments i and 1 (i = n). ’

6. Discontinuity angle variance DV = X (D;-MD)%/n

7. Concavity index CT= (X (A;: 4;<0)/2m) + T (L;: A; < 0)/ Z (L) /2
a measure of the overall concavity of the shape, obtained by (separately)
summing the arcangle and length of each concave arc, normalizing each sum by
dividing by the total arcangle and perimeter of the shape boundary, and then
taking the mean. .

8. Degree of rotational symmetry RS
a lower bound for the number of axes of rotational symmetry, calculated as
indicated in section 4.5.3 below. The method of calculation allows no more than
one attempt at calculating symmetry per segment; hence RS <= n.

9. Degree of planar symmetry PS
a lower bound for the number of planes of axial (mirror-image) symmetry,
calculated in a similar way to RS.

In addition, the following features, considered characteristic of the boundary as an entity

rather than of any individual level, were computed and stored once for each boundary:

10. Boundary arc/line ratio AL =X (L;: A; <> 0)/ Z (L;)
the ratio of curved segment length to total boundary length, computed for the

boundary at the highest possible level of traversal to minimize the effect of
minor shape features such as chamfers and fillets.

11. Boundary length/width ratio LW

calculated as indicated in section 4.5.2 below, again using boundary traversal at
the highest possible level to minimize the effect of minor shape features.

12. Boundary perimeter?/area ratio PA = X (L;)/(Boundary area)

calculated using boundary traversal at the lowest possible level, to preserve the
value of this parameter as a measure of a shape's overall thickness.

13. No of rotational axes NR

calculated as the number of distinct centres of convex arcs in the top level of the
boundary.

14. Boundary shape class SC
calculated as indicated below (section 4.5.2); can take the values Rectangular,

Other right-angled, Other straight-edged, Irregular, Circular or Multi-curved.
Examples of boundaries from each of these classes are shown in Fig 4.1.
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Fig 4.1 Grouping of shapes into families on the basis of top-level outer boundary

segment traversal. Classification is performed firstly on the basis of straight-line to
circular arc length, and subsequently on the presence of angles other than right angles
Jor "straight-line” shapes and the number of centres of rotation for curved shapes. The
resulting classification mirrors that of many manual parts classification schemes.
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4.4.3 Local boundary features

Although individual segment parameters were not used directly for feature matching
they are listed here for the sake of completeness. They can be regarded as speciﬁcall);
local features, even though segment length needs to be normalized by dividing by a
global feature, total boundary length, to render it invariant. It should be noted that the
global and local features listed above and later in this section have all been derived from
these four parameters.

1. Segment length L;

the length of segment i, normalized by dividing by the outer boundary perimeter.
2. Segment arc angle A; |

the arc angle subtended by segment i.
3. Discontinuity angle between segments D;

the angle between segments i and i+1 (i < n), and between segments i and 1 (i = n).
4. Segment parent feature P;

the type of shape feature (if any) to which segment i belongs, computed as
outlined below; can take the values Protrusion, Depression, Corner or Absent.

Two kinds of derived local feature were extracted for each level of each boundary - the
first making use of data from individual boundary segments, the second from sequences
of connected segments. A range of feature types of differing complexity was deliberately
chosen to investigate whether increasing fragment complexity could be associated in any
way with increased retrieval performance. Analyses of the distribution of each of these
feature types in the test database suggested that the more complex feature types did
exhibit a more even distribution than the simple feature types - though it would be
dangerous to conclude too much from this (see section 4.2.5 above). In each case, the
feature distribution is characterized by storing counts of the frequency of occurrence of
each feature value present. The advantage of generating shape features of this kind lies in
their flexibility. Unlike the local features described by Chin and Dyer, they do not have
to be processed by parsing algorithms. They can be used to generate feature vectors for
use in similarity matching in the same way as global features - or used as "index terms"
in an inverted file to provide rapid retrieval of all shapes containing a given feature. They
still retain the advantage of being usable with either complete or incomplete boundaries,
though segment length distribution again has somewhat limited validity in the latter case.
These local features are listed below.

5. Segment length distribution LD

a vector indicating the number of boundary segments (if any) for which relative
length L, = log, (L; / ML ) falls into each of the following ranges:

L. < -3.0 -0.9 <= L, < -0.7 0.7 <= L, < 0.8
-3.0 <= L, < -2.5 -0.7 <= Lr < -0.5 0.9 <= L. < 1.1
~2.5 <= L, < =-2.0 -0.5 <= Lr < -0.3 1.1 <= L. < 1.3
-2.0 <= L, < -1.5 -0.3 <= L, < -0.1 1.3 <=L, < 1.5
=-1.5 <= L, < -1.3 -0.1 <= L, < +0.1 1.5 <=L, < 2.0
-1.3 <= L, < -1.1 +0.1 <= L. < +0.3 2.0 <= L, < 2.5
-1.1 <= L. < -0.9 +0.3 <= L. < +0.5 2.5 <= L,

+0.5 <= L. < +0.7
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The length ranges were chosen to give a reasonably large number of categories
and 'lz;llso as even a distribution of segment lengths between categories as
possible. '

6. Arc angle distribution AD

a vector indicating the number of boundary segments (if any) for whi
angle A; falls into each of the following categories: Y). which are

A4 < A; = 0 +0.01
A; = -m + 0.01 0 < Ay <m/2 ™
“m < Ay < -m/2 A = m/2 + 0.01
A; = -m/2 + 0.01 n/2 < Ay < ®m
-r/2 < Ay < 0 A; = m + 0.01
Tt<Ai ' -

The angle ranges were chosen to reflect the fact that most machined parts have
edges that are straight lines (zero arc angle), or form complete circles (arc angle
2m), semicircles (arc angle ) or quadrants (arc angle 7/2).

7. Discontinuity angle distribution DD

a vector indicating the number of boundary segments (if any) for which
discontinuity angle D; falls into each of the following categories:

D; < -m/2 D; = 0 + 0.01
D; = -m/2 + 0.01 0 < D; <m/2
-n/2 < D; < O Dy = ®/2 + 0.01

/2 < Di

The angle ranges were chosen to reflect the fact that the overwhelming majority
of machined parts have edges that meet at right angles or zero.

8. Parent featur_e distribution FD

a vector indicating the number of instances (if any) of each type of parent
feature (Protrusion, Depression or Corner) in the given boundary level. This
type of feature (relatively simple to extract as a by-product of the process of
building up a hierarchical description of the shape) was included to give some
indication of the presence of machined features.

9. Segment length/arcangle distribution SL

a frequency count of fragments representing both segment length and arc angle
type; each fragment represents one of the segment length ranges enumerated
under (5) above, and one of the arc angle categories enumerated under (6)
above. The entire set of such fragments can be regarded as a two-dimensional
feature vector, and could in theory categorize each line segment much more.
accurately than the use of separate length and arc angle distribution counts.

10. Arc angle triplet AT

a frequency count of fragments based on the properties of each line segment and
its preceding and succeeding vertices; each fragment represents the categories
(as defined under (6) and (7) above) into which the arc angle A,, the preceding
discontinuity angle D; | and the succeeding discontinuity angle D; respectively
fall. The complete fragment set can be regarded as a three-dimensional feature
vector. The potential advantage of this and the following type of feature is the
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ability to characterize a sbape using the relationship between one segment or
vertex and the next - which might be important in the light of the studies
dlscusseq in section 4.2.4. This feature could also have relevance as an indicator
of an object's angular shape, of potential importance in searching for classes of
object which match on angles but not linear dimensions. Examples of these
triplet features are shown in Fig 4.2.

11. Discontinuity angle triplet DT

a frequency count based on the properties of each vertex and its preceding and
succeeding line segments; each fragment represents the categories into which
the discontinuity angle D;, the line classes of the preceding and succeeding line
segment pair L; and L;,,, and the length ratio R, = log,(L/L;,,) respectively fall.
In this case, the discontinuity angle categories are as defined in(7) above, the
line class categories are

LL  (both segments straight lines)
LA  (segment i a straight line, segment i+1 a circular arc)
AL  (segment i a circular arc, segment i+1 a straight line)
AA (both segments circular arcs)

and the length ratio categories are

Ry < -3.5 -1.5 <= R} < -0.5 1.5 <= R; < 2.5
-3.5 «= Rl < -2.5 -0.5 <= Rl < +0.5 2.5 <= Rl < 3.5
-2.5 <= Rl < -1.5 +0.5 <= Rl < +1.5 3.5<= Rl

Again, the complete fragment set can be regarded as a three-dimensional feature
vector. This feature, emphasizing the relative length and type of adjacent
segments, was intended to complement the angle-based feature described in (10)
above. Examples of these triplet features are shown in Fig 4.2.

12. Parent feature composition PF

a frequency count of fragments based on the properties of each type of parent
feature and its composition; each fragment represents the overall feature type (as
defined under (8) above), together with the numbers of straight-line and circular
arc segments making up the feature, thus providing a measure of the feature's
complexity. Again, the complete fragment set can be regarded as a three-
dimensional feature vector. Examples of these features are shown in Fig 4.2.

4.4.4 Inner boundary position features

The final kind of feature aimed to provide an indication of the type, number, and relative
position of inner boundaries. Enumeration and classification of these boundaries can
yield useful features, but the question of how to recognize and represent pattems of holes -
must also be addressed. Ample evidence exists, both from informal conversations and
from examination of the structure of parts classification systems, that this is an important
area.

The problem was tackled by grouping all inner boundaries into specified families on the
basis of shape, size and proximity - criteria suggested by Zakia (1975) as having deep
roots in the way humans perceive objects. The spatial distribution of each family of inner
boundaries could then be examined for the presence of one or more specified regular
patterns, which could then be used as features characterizing the entire set of inner
boundaries. The feature set used was as follows:
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Fig 4.2 Hlustrations of some local boundary features. Discontinuity angle triplet features
indicate the environment of each boundary angle, showing successively the angle type,
the types of line enclosing the angle, and the relative lengths of these two lines. Arc angle
triplet features illustrate the angular environment of each line (arc angle class plus
discontinuity angle with each adjoining line). Parent feature composition fragments
indicate the presence of local shape features (protrusions, depressions, corner features,
erc), together with their composition in terms of numbers of straight lines and circular
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1. Number of inner boundaries NB
a simple count of inner boundaries in the drawing
2. No of distinct inner boundary families BF
a count of distinct inner boundary families identified
3. No of curved inner boundaries CB
number of inner boundaries falling into shape classes Circular or Multi-curved
4. No of straight inner boundaries SB

number of inner boundaries falling into shape classes Rectangular, Other right-
angled or Other straight-edged

5. No of irregular inner boundaries /B
number of inner boundaries in shape class Irregular
6. Boundary family characteristics BC

a frequency count of each boundary family, characterized by shape class,
number of segments in top level of boundary, and mean length-width ratio and
perimeter for all boundaries included in class.

7. Boundary pattern features BP

a frequency count of each type of pattern feature identified by examining
relative positions of inner boundary centroids both within each inner boundary
family and within the drawing as a whole. The rationale for feature selection
was the provision of a wide variety of pattern types, guided both by studies of
human perception and examination both of parts classification schemes and
actual examples of machined parts. The feature types recognized by the
prototype system include the following patterns based on line continuity (see
examples in Fig 4.3):

Collinear boundaries - maximum number of inner boundary centroids lying
on a straight line

Concyclic boundaries - maximum number of inner boundary centroids lying
on a circular arc

the following patterns based on closure (formation of regular or other
recognizable polygonal shapes - the set of shapes included most common
triangular and quadrilateral combinations recognizable as regular shapes, plus a
limited selection of many-sided polygons):

Equilateral triangles - number of distinct equilateral triangles formed by
inner boundary centroids

Right-angled triangles - as above, for right-angled triangles

Isosceles triangles - etc.

Squares

Rectangles

Rhombi

Parallelograms

Trapezoids
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Regular pentagons
Regular hexagons
Regular octagons
Other regular polygons
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Fig 4.3 Examples of inner boundary pattern features based on continuity.
In the first shape, three groups of boundaries can be recognized as
forming a pattern through collinearity; in the second, a single group of
inner boundaries can be recognized because they all lie on the same
circular arc. Note that boundaries also need to be similar in size and
shape in order to belong to the same family.

and the following patterns (see examples in Figs 4.4 and 4.5) based on
symmetry (arrangement of inner boundaries in patterns around the overall shape
centroid, an important consideration in the machining of rotational parts in
particular):

Boundary at centroid - number of inner boundaries (0 or 1) with centroid
coincident with outer boundary centroid

Boundaries round centroid - maximum number of inner boundaries on arc
centred on outer boundary centroid

I-stars - pairs of inner boundaries equidistant from and collinear with outer
boundary centroid

V-stars - pairs of inner boundaries equidistant from outer boundary centroid
and making an angle of 120°

L-stars - pairs of inner boundaries equidistant from outer boundary centroid
and making an angle of 90°

T-stars - sets of three inner boundaries equidistant from outer boundary
centroid, making one angle of 180° and two of 90°

E-stars - sets of three inner boundaries equidistant from outer boundary
centroid, making three angles of 120°),

Y-stars - sets of three inner boundaries equidistant from outer boundary
centroid, making one angle less than 180° (but not equal to 120° within
the specified tolerance), and two equal angles greater than 90°
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Boundary at centroid No boundary at centroid
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Boundaries round centroid = 3 Boundaries round centroid = 8

Y-star (A=B>90°%; (<180 M-stor (A=B(90% C>180°

Fig 4.4 Examples of inner boundary pattern features based on symmetry about the outer
boundary centroid. Boundary at centroid indicates the presence of an inner boundary
centred on the outer boundary centroid; boundaries round centroid indicates the
maximum number of boundaries in any circular arc centred on the outer boundary
centroid; T-, B-, Y-, and M-stars indicate the presence of three concyclic inner
bloundaries arranged around the outer boundary centroid in the specific configurations
illustrated.
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L-star (A=270°, C=90°) R-star (A=B=C=D=90°)

X-star(A=C; B=D) K-star (A=180°% B=D)

Fig 4.5 Further examples of inner boundary pattern features based on symmetry about
the outer boundary centroid. 1-, V-, and L-stars indicate the presence of two concyclic
inner boundaries arranged around the outer boundary centroid in the specific config-
urations illustrated; R-, X-, and K-stars indicate similar combinations of four concyclic
inner boundaries.
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M-stars - sets of three inner boundaries equidistant from outer boundary
centroid, making one angle greater than 180° and two equal angles less
than 90°

R-stars - sets of four inner boundaries equidistant from outer boundary
centroid, making four angles of 90°

X-stars - sets of four inner boundaries equidistant from outer boundary
centroid, making two opposite equal angles greater than 90° and two
equal angles less than 90°

K-stars - sets of four inner boundaries equidistant from outer boundary
centroid, making one angle of 180 and two opposite equal angles less
than 909; the magnitude of the fourth angle is immaterial.

4.5 Method of feature extraction
4.5.1 Introduction

The bulk of feature extraction is performed by program DATALOAD, which takes as
input the canonical shape description generated by program CANONGEN (chapter 3) -
though the basic local boundary features L;, A;, D;, and P; are generated at an earlier
stage, by program SKELETON. (In the current prototype of SAFARI, some global
boundary features, such as LW and PA, are generated by programs SKELETON or
CANONGEN for ease of computation).

The program reads in the canonical shape description one boundary at a time, traversing
each boundary at progressively lower levels, and extracting relevant feature values. At
present this requires several passes through each set of boundary segments, though there
is no inherent reason why all global and local features for a given level could not be
extracted in a single pass. Once all boundaries have been processed, the shape's inner
boundaries (if any) are grouped into families on the basis of similarity of size, shape and
position, and inner boundaries searched for the presence of the position features referred
to above.

More detailed descriptions of the derivation of each type of feature are presented below.

4.5.2 Global boundary features

1. Boundary arc/line ratio AL, no of rotational axes NR and boundary shape class SC are
calculated in a single top-level traversal of the boundary (presently within program
SKELETON), during which counts are accumulated of the number of both positive
(R,) and negative (R,) right-angled vertices, the total length of all curved segments,
and the number of distinct axes of rotation (arc centres not coinciding within a
specified tolerance). Total boundary length and n, the number of boundary segments,
are already avail able. AL and NR are readily computed when boundary traversal is
complete, and SC is then assigned a value as follows:

If AL < 0.1 then

{shape is predominantly straight-edged, so classify on basis of
number of positive and negative right angles}

If Rp = n then

SC = Rectangular
else if (Rp+Rn) = n then
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SC = Other right-angled
else
SC = Other straight-edged

else if AL > 0.9 then

{shape is predominantly curved, so classify on basis of number of
axes of rotation}

If NR = 1 then
SC = Circular
else
SC = Multi-curved
else

SC = Irregular;

2. Boundary length/width ratio LW is computed in a single traversal of the top boundary
level. All segment coordinates are transformed so that the boundary centroid ljes at the
origin, and the shape's major axis becomes the x-axis. As the boundary is traversed,
tallies are kept of maximum and minimum x and y values. LW is then given by
Max ( (Xmux - Xmin)/(Ymax - min) ’ (Ymax - Ymin)/(Xmax - min) )

3. Boundary perimeter?/area ratio PA is computed (presently within CANONGEN) in a
single traversal of the bottom boundary level, using triangulation to calculate its area
as outlined in section 3.3.6. - : S

4.5.3 Global level features

1. Mean segment length ML, segment length variance LV, mean segment arc angle MA,
segment arc angle variance AV, mean discontinuity angle between segments MD, and
discontinuity angle variance DV are all calculated for each boundary level in a single
pass which accumulates totals of each of these parameters and their squares, and then
uses conventional formulae to calculate means and variances. Concavity index CI is
calculated in a similar fashion.

2. Degree of rotational symmetry RS and degree of planar symmetry PS are calculated
together, separately from the other level features. This cannot be achieved in a single-
pass through each boundary level. Indeed, the construction of efficient algorithms for
determining shape symmetry is still a research issue in its own right (e.g. Leou and
Tsai, 1987). As noted above, some limitation on the symmetry calculation process is
necessary to restrict answers to a finite number. The algorithm used generates
approximate symmetry measures by comparing cumulative distance and angle
traversed at the end of each line segment when boundary traversal is initiated from
two vertices i and j (where i is the canonical boundary start point, and j is successively
set to every (other) vertex in the current boundary level), and incrementing symmetry
counts if cumulative distance and angle from these two starting-points remain
identical (within specified tolerances) the whole way round the boundary. Rotational
symmetry is calculated by traversing the boundary from the two starting-points in the
same direction, planar (mirror-image) symmetry by traversing in opposite directions.
Repeating the process in each direction for all j yields the two symmetry measures RS
and PS for that level. While these measures are in no sense rigourous, they have the
benefit of simplicity and consistency, and can be computed reasonably efficiently - an
important design criterion. They do in practice yield intuitively sensible results if
appropriate tolerances are set.
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4.5.4 Local boundary features

1. Segment length distribution LD, arc angle distribution AD, discontinuity angle
distribution DD, parent feature distribution FD, segment length/arcangle distribution
SL, arc angle triplet AT, discontinuity angle triplet DT, and parent feature composition
PF are again all computed in a single pass through each boundary level. The single-
element parameters can all be calculated by incrementing the appropriate element of
an accumulator array; the more complex parameters require comparisons with
previous values stored in temporary records.

4.5.5 Inner boundary position features

1. Number of inner boundaries NB, no of curved inner boundaries CB, no of straight
inner boundaries SB, and no of irregular inner boundaries /B can readily be derived
from data stored in each boundary header record.

2. No of distinct inner boundary families BF and boundary family characteristics BC
cannot be computed until inner boundaries have been grouped into families. In the
interests of economy, a full clustering approach was rejected in favour of a (single-
pass) grouping of boundaries on the basis of class, size (perimeter) and shape
(length/width ratio), followed by a check on the cohesiveness of any family containing
more than two boundaries. This is done by rearranging the boundaries within each
family into nearest-neighbour order, starting with the two closest (not a
computationally expensive task since very few families contained more than 4 or 5
boundaries), and splitting any families with an inter-boundary distance of more than
twice the minimum distance. The process is illustrated in Fig 4.6.

3. Boundary pattern features BP are computed by successively applying a series of
feature recognizers, firstly to the entire set of inner boundaries, then to each individual
inner boundary family in turn.

Where five or more inner boundaries are present (a rare event), the entire boundary set
is first examined to identify whether their centroids form a regular polygon, by
invoking procedure TestForPolygons. This first sorts all boundaries into order on the
basis of the angle of the vector joining their centroids to that of the (arbitrary) first
boundary in each family, to ensure that the polygon formed by linking each of the n
boundaries present to its neighbour contains no intersecting sides (see Fig 4.7). It then
tests this polygon for the presence of identical sides and angles. setting the count of
Regular pentagons, Regular hexagons, Regular octagons or Other regular polygons to
1 if appropriate.

Where four or more inner boundaries are present, procedure TestForQuadrilaterals is
invoked to detect and count pattems of inner boundaries in the shape of squares,
rectangles, rhombi, parallelograms, or trapezoids. This procedure systematically
searches every possible unique combination of four boundaries to establish whether
their centroids form a square (all four sides equal, all four angles equal), a rhombus
(all four sides equal), a rectangle (all four angles equal), a parallelogram (opposite
angles equal), or a trapezoid (adjacent angles equal), incrementing counts of Squares,
Rectangles, Rhombi, Parallelograms and Trapezoids as appropriate. A given
quadrilateral is counted only under one heading - e.g four boundaries forming a square
are counted just as a square, not as a thombus or rectangle as well.

Procedure TestForConcylicity is also invoked if four or more inner boundaries are

present, to identify the maximum number of boundary centroids lying on any given
circular arc. Each unique combination of three boundaries is examined, and the
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Fig 4.6 The process of generating inner boundary families. In the illustration shown, two
separate families are genera{ed on the basis of similarity of size and shape; family (2) is
then split into two on the basis of proximity.
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position of the centre of the circle (if any) passing though the three b i
established. All remaining boundaries are thengexamigned to c:stabli',:li1 (zvall;};t(l:lirxl‘trt?xleq;
centroid lies on this circle. If so, a temporary count of concyclic boundaries j
incremented, and an attempt made to find further boundaries lying on the same circl;s
When all boundaries have been examined, the maximum value of this count is stored
as Concyclic boundaries, provided it exceeds three. et

Where three or more inner boundaries are present, procedure TestF orTriangles is
invoked to detect and count patterns of inner boundaries in the shape of equilateral

right-angled or isosceles triangles. This procedure systematically searches ever):
possible unique combination of three boundaries to establish whether their centroids
form an equilateral triangle (all three angles equal), an isosceles triangle (any two
angles equal), or a right-angled triangle (one angle equal to 1/2), incrementing counts
of Equilateral triangles, Right-angled triangles, and Isosceles triangles as appropriate,
A given triangle cannot be counted as both equilateral and isosceles, but can be’
counted as both right-angled and isosceles. :

Fig 4.7 Sorting inner boundaries by the direction of the vector linking
their centroids with that of the first boundary in the family, in order to
prevent the sides of the resultant polygon from intersecting. The procedure
produces a valid ordering for all non-degenerate n-sided polygons,
though it yields a consistent and intuitively sensible ordering only for
convex polygons. Since the polygon detector rejects all non-convex
polygons, this limitation does not affect the validity of the polygon
detection process.

Procedure TestForCollinearity is also invoked here to identify the maximum number
of boundary centroids lying on any given straight line. Each unique pair of boundaries
is examined, and the direction of the line passing though their centroids established.
All remaining boundaries are then examined to establish whether their centroid lies on
this line. If so, a temporary count of collinear boundaries is incremented, and an
attempt made to find further boundaries lying on the same line. When all boundaries
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have been examined, the maximum value of this count is stored as Collinear
boundaries, provided it exceeds two.

Finally, procedure TestForCentroidFeatures is invoked provided two or more inner
boundaries are present. This categorizes all inner boundaries within a given famil

according to their distance from the outer boundary centroid - effectively groupiny
them into concentric rings (Fig 4.8). Each ring containing two or more boundaries ig
then examined for the presence of star features (Figs 4.4 and 4.5). If four or more
boundaries are found within a given ring, each possible combination is searched for
the presence of R-swars, X-stars, or K-stars, as defined in section 4.4.4 above. If

- B

Pd 90
H R GG b

\
N ~

A - s

Fig 4.8 Grouping inner boundaries into concentric rings centred on the
outer boundary centroid, as a prelude to generating the symmetry features
shown in Figs 4.4 and 4.5.

found, counts for these features are incremented. If none of the above features are
detected, each combination of three boundaries within a ring is examined for the
presence of E-stars, Y-stars, or M-stars, and counts incremented as appropriate.
Failing this, each combination of two boundaries is examined for the presence of /-
stars, V-stars, and L-stars. Finally, counts are stored of the maximum number of inner
boundaries in any ring (if greater than 1), and the number of inner boundaries (0 or 1)
coincident with the outer boundary centroid. '

4.6 Efficiency considerations

As indicated in section 4.3, the computational efficiency of feature extraction is a

significant though not overriding consideration. Extraction of most of the global and

local features described above can in fact be achieved in a single pass though the

segments forming one boundary level, hence qualifying as an O(n) process, n being the

number of segments in a given boundary level. The exception is the symmetry
calculation, which requires complete traversal of the current boundary level starting from
each vertex in turn, and is hence an O(n?2) process in the worst case.
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The only processes giving cause for concem are the inner boundary pattem detectors
described in section 4.5.5, though even this is polynomial-bounded. The quadrilateral
detector examines every possible combination of four inner boundaries in tumn requiring
n(n-1)(n-2)(n-3) comparisons, and hence an overall complexity of O(n4). Sirr;ilarly the
triangle and concyclicity detectors examine every possible combination of three inner
boundaries, requiring n(n-1)(n-2) comparisons and hence a complexity of O(n3). The
polygon detector is less expensive, as it makes only one attempt to match inner boundéry
patterns to a regular polygonal shape. The situation is in practice manageable because
inner boundary pattern detection is carried out only once for each complete family of
inner boundaries (and hence seldom more than twice for any given drawing) - as opposed
to global and local boundary feature extraction, which have to be performed once for
each level of each individual boundary. It is very rare for an inner boundary family to
contain more than 5 or 6 individual boundaries, thus setting a manageable upper limit to
computation times for most drawings. However, it must be recognized that computation
times for complex shapes with 20 or more inner boundaries could become excessive.

In practice, the vast bulk of cpu usage for program DATALOAD was concemed with |

database access, with feature extraction proving a relatively economical process. Table
4.6.1 illustrates some representative results, obtained on Newcastle Polytechnic's VAX
8700 in the same way as those presented in Section 3.4 above.

Table 4.6.1 - cpu usage for program DATALOAD

Drawing complexity - CPU usage (s)
No of No of local/global inner bound- data
bound- 1line seg- feature ary feature base total
aries ments generation generation loading )

1 15 0.01 * 0.42 0.60
1 37 0.04 * 0.56 0.79
1 73 . 0.10 C ok 0.70 0.98
4 12 0.02 * 0.45 0.59
4 21 0.03 * 0.52 0.85
4 56 0.06 * 0.81 1.34
7 18 0.03 0.02 0.60 0.84
10 24 0.05 0.18 0.54 1.13
15 76 0.12 0.81 1.12 2.77

*
cpu usage too small to measure
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CHAPTER 5. DATABASE DESIGN

5.1 Database requirements for CAD systems

As noted in section 1.4 above, the value of database support for engineering applications
is increasingly being realized - as are some of the essential differences between
commercial and engineering applications. In their review of database requirements for
CAD, Staley and Anderson (1986) list a number of these differences:

Business applications Engineering applications
Few record types: many instances Many record types: many instances
Simple relationships between data Complex relationships between data
items items
Static database structures Dynamic database structures
Many short transactions Fewer but much longer transactions
Transactions generally simple, Transactions may be complex, and
involving few records involve large numbers of records

which they then use to derive a comprehensive list of criteria that any CAD database
system should meet. Although a list of this kind inevitably presents an over-simplified
view of the situation, it does usefully bring out the fact that DBMS developed for
commercial applications are not necessarily applicable to engineering data. Their views
are echoed by many other authors, e.g. Kemper and Wallrath (1987a), who survey the
adequacy of existing database models as vehicles to support geometric modelling, and
suggest possible alternatives. '

Staley and Anderson's most important design criteria included:

- ability to support multiple engineering applications

- support for dynamic schema modification and extension

- support for embedding semantic information in the database

- ability to handle lengthy transactions in a multi-user environment
- support for multiple versions of a design.

Not all of these are relevant to the present project. As discussed in section 2.2.1, there is a
fundamental difference (which too few database designers seem to appreciate) between
active and completed drawings. Support for schema modification and control of lengthy
update transactions are clearly of crucial importance for the former, but virtually
irrelevant for the latter. It could be argued that the reverse is true for the ability to embed
semantic information in a database - though devotees of feature-based design (section 1.6
above) would dispute this.

Some authors (e.g. Howard and Rehak, 1986) would go further than this, and argue that
conventional databases alone are inadequate to support the design process. Since the
process of creating a new design generally involves the exercise of judgement rather than
simply following instructions, the designer needs to draw not just on stored facts, but on a
variety of situational knowledge requiring inferences to be drawn from those facts. This
is the kind of support offered by knowledge-based or expert systems (Hayes-Roth et al,
1983), which apply inferential knowledge stored in the form of rules or frames to provide
solutions to specific problems within their domain of expertise. Howard and Rehak's
KADBASE system shows how knowledge bases and databases can be integrated in an
intelligent CAD system, and points the way to some potentially exciting research. Again,
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however, it must be stressed that their system is aimed at managing the process of
creating or modifying an active drawing. While the long-term implications of such
systems for drawing archive management (like those of feature-based design) could be
considerable, their immediate relevance to the SAFARI project is limited.

5.2 Adequacy of existing database models
5.2.1 General observations

The most widespread DBMS in current use (the vast majority of which is for commercial
applications) are based either on the CODASYL (CODASYL, 1971) or relational (Codd
1970) model of data - though relational DBMS are increasing in popularity to such an
extent that they seem likely to replace virtually all existing CODASYL DBMS
applications before the end of the decade. Both types of system are firmly based on the
concept of data independence - the ability to define logical data structures independently
of the way they are physically implemented, allowing the process of modelling the
natural structure of the data for a particular application to be separated from that of
choosing the most efficient storage structures and access paths. The essential differences
between the two models lie in the way they represent data at the logical level, and in the
tools they offer for data manipulation.

5.2.2 The CODASYL model

If, following Chen (1976), one models data in terms of entities (concrete or abstract
objects), attributes (characteristics or properties of entities), and relationships (links
showing an association between two or more entities), then a CODASYL database will
represent each entity as a database record of appropriate type, and each of its attributes as
a field within the appropriate record. Relationships between entities are represented as
CODASYL sets (which, it should be noted, do not conform to the mathematical
definition of a set, as member records within a set must have a defined sequence), each of
which links one owner record to zero or more member records of a different type - for
example, a personnel database might contain a set linking together all employees
(member records) belonging to a given department (owner record). A given record may
participate as either owner or member in any number of different set types, allowing
quite complex relationship networks to be built up.

An example of part of a hypothetical CODASYL schema for a geometric modelling
database is shown in Fig 5.1, and a sample instance in Fig 5.2. Here, the basic entities are
considered to be the faces, edges, and vertices of each shape, and the geometric
coordinates or parameters of defining equations their attributes. These therefore comprise
the three record types shown. Topological information such as face-vertex and edge-
vertex connections can usefully be regarded as relationships, and thus represented as
CODASYL sets. Note that the need to use two different constructs (records and sets),
often cited as a disadvantage of the CODASYL system, is actually quite useful here, as it
emphasizes the difference between geometry and topology.

5.2.3 The relational model

By contrast, a relational database supports only one construct: the relation or table. Each
table (which can be regarded as a set in mathematical terms) represents a complete set of
data on all entities of a given type. Each row (or tuple) of the table represents a single
instance of an entity, and each column a single attribute. Note that each attribute must be
atomic; repeating groups of values are not allowed. Any such attribute must be removed
to a new relation - part of the data analysis technique known as normalization (Codd,
1972).
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SCHEMA NAME GEOMODEL

{Definition of FACE record, specifying its identifying
FACE NO, and the coefficients a, b, ¢ and d of its
defining equation}

RECORD NAME FACE

ITEM FACE NO TYPE INTEGER
ITEM A COEFF TYPE FLOATING
ITEM B_COEFF TYPE FLOATING
ITEM C_COEFF TYPE FLOATING
ITEM D_COEFF TYPE FLOATING

{Definition of EDGE record, specifying its identifying
EDGE NO, and its defining coefficients f and g}

RECORD NAME EDGE

ITEM EDGE_NO TYPE INTEGER
ITEM F_COEFF TYPE FLOATING
ITEM G_COEFF TYPE FLOATING

{Definition of VERTEX record, specifying its identifying
VERTEX NO, and its x, y and z coordinates}

RECORD NAME VERTEX ,
ITEM VERTEX NO TYPE INTEGER

ITEM X COORD TYPE FLOATING
ITEM Y COORD TYPE FLOATING
ITEM Z COORD TYPE FLOATING

{Definition of FACE VERTEX set, indicating the sequence of
vertices bounding each face} ‘

SET NAME FACE VERTEX
OWNER FACE
MEMBER VERTEX
INSERTION AUTOMATIC
RETENTION MANDATORY
ORDER NEXT

{Definition of EDGE_VERTEX set, indicating the vertices
bounding each face}

SET NAME EDGE VERTEX
OWNER EDGE
MEMBER VERTEX
INSERTION AUTOMATIC
RETENTION MANDATORY
ORDER NEXT

Fig 5.1 CODASYL schema defining part of geometric modelling database. The geometry
of faces, edges, and vertices is described by appropriate records, topology is represented
by CODASYL sets showing face-vertex and edge-vertex links.
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a, b, ¢, d : coefficients of equations of planar surfaces
f, 9 coefficients of equations of linear edges

X, Yy, Z : coordinates of vertices

— —— — : links for face-vertex set
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Fig 5.2 Representation of part of the structure of a cube by the CODASYL database
defined in Fig 5.1

109



Each row has to be uniquely identified by one or more primar i
Relationships between entities are representeyd by foreign ke)es, addyiti(l)c;zl aattttrrlg)l::f:s.
whose values can be matched with primary key values in” other tables, Thus an
EMPLOYEES relation in a personnel database would contain a foreign key attribute
EMP-DEPT to indicate the department to which each employee belonged. The greater
flexibility of this approach (connections do not have to be established until run time) is
undoubtedly a major factor in the popularity of relational systems - though it can brin
problems of data integrity. g

The relational schema corregpon_ding to the CODASYL example above is shown in Fig
5.3, and a sample instance in Fig 5.4. Here, one set of relations is used to define the
geometry of faces, edges, and vertices, and a second set defines the object's topology in
terms of face-vertex and edge-vertex connections. :

Another major difference between CODASYL and relational systems lies in their query.
languages. CODASYL's founding fathers expected the prime route of database access to
be from application programs written in third-generation languages such as COBOL or
FORTRAN, and devised a set of data manipulation commands to be used as extensions to
these languages. These imply that data should be processed one record at a time, and that
it is up to the application programmer to specify the correct access path to the desired
record. Codd, on the other hand, recognized the power of the set theory approach, and
argued for data manipulation operators which operated on a complete data set, simply
specifying what data were required and leaving it to the DBMS to devise appropriate
access paths. The availability of (relatively) user-friendly query languages such as SQL -
a direct development of his approach - has probably been the biggest single factor in
ensuring the widespread adoption of relational systems. :

Both models of data have their critics, both in the commercial and engineering field.
Rigidity is perhaps the worst problem, and one which can be levelled with more justice
at CODASYL than relational DBMS. CODASYL schemas have to be precompiled
before any database creation can take place, and all but the most minor changes in
database structure involve unloading the database, recompiling schemas and then
reloading the database in its new format. Even in commercial database applications this
can be a major problem; in the kind of engineering environment envisaged by Staley and
Anderson it would be totally unacceptable. Most relational DBMS are more flexible than
this, allowing relations to be added, modified or deleted on-line without affecting the
operation of other parts of the database. Even here, though, the degree of flexibility
offered falls far short of the ideal.

Data fragmentation is a problem inherent in the relational approach, since it is a side-
effect of the normalization process. In the commercial field it is often an advantage to
separate out data items that are sometimes but not always linked, such as parts and
suppliers. It is of no obvious advantage to separate out items which are always linked
(since the existence of the latter is dependent on the former, like invoice headers and
invoice detail lines), though the penalty of having to store these two data types separately
is not usually too great. It becomes a serious disadvantage when items that form a natural
hierarchy, like the faces, edges and vertices of each component in a large engineering
assembly, have to be separated out and each stored in a different relation, only to be
reassembled (often at inordinate computational expense) whenever the assembly needs to
be manipulated. The CODASYL approach is at less of a disadvantage here; repeating
groups can be accommodated if required, and even where subordinate items are hived off
into separate records, the CODASYL set structure keeps all relationships explicit.

Other problems with the relational approach include the inherent lack of ordering of rows
in a relational table, and the limited range of data types supported. Many types of
engineering data (such as the sequence of edges bounding a face) are inherently ordered,
and such ordering has to be explicitly indicated in a relational database as an extra
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CREATE SCHEMA "GEOMODEL" ;

{Definition of FACE table, specifying FACE NO and defining coefficients
as before. NOT NULL & UNIQUE are entity integrity constraints
r

ensuring that FACE_NO is a unique identifier)

CREATE TABLE FACE

(FACE_NO INTEGER NOT NULL UNIQUE,
A_COEFF FLOAT,
B_COEFF FLOAT,
C_COEFF FLOAT,
D_COEFF FLOAT)

{Corresponding definition of EDGE table}

CREATE TABLE EDGE

(EDGE_NO INTEGER NOT NULL UNIQUE,
F_COEFF FLOAT,

G_COEFF FLOAT)

{and VERTEX table}
CREATE TABLE VERTEX

(VERTEX_NO INTEGER NOT NULL UNIQUE,
X_COORD FLOAT,

Y COORD FLOAT,

Z_COORD FLOAT)

{Link between face and its corresponding vertices now indicated by

another table. Note that if vertex ordering needs to be specified,

it

must be indicated explicitly within each row of the table. The CHECK

clauses are referential integrity constraints, to ensure that the face
and vertex numbers specified in this table match with those in the

defining FACE and VERTEX tables}

CREATE TABLE FACE VERTEX

(SEQUENCE_NO  INTEGER
FACE_NO INTEGER
CHECK (FACE_NO 1IN
VERTEX_NO INTEGER

NOT
NOT
(SELECT
NOT

NULL UNIQUE,

NULL,

FACE_NO FROM FACE)),
NULL

CEECK(VERTEX_NO IN (SELECT VERTEX NO FROM VERTEX)))

{Similarly, edge~vertex links now indicated by a table}

CREATE TABLE EDGE_VERTEX

(SEQUENCE_NO INTEGER
EDGE_NO INTEGER

CHECK (EDGE_NO IN
VERTEX_NO INTEGER

NOT NULL UNIQUE,
NOT NULL,

(SELECT EDGE_NO FROM EDGE)),
NOT NULL

CHECK (VERTEX NO IN (SELECT VERTEX NO FROM VERTEX)));

Fig 5.3 A relational schema defining the same geometric modelling database as in Fig
5.1. Here, both geometry (face and edge equations, and vertex coordinates) and topology
(face-vertex and edge-vertex links) are represented by relations holding foreign key

values.

111



Face relation

Face no Surface equation coefficients
F1 al bl cl di
F2 a2 b2 c2 d2
Edge relation Vertex relation
Edge Equation Vertex Point
no coefficients no coordinates
E12 £l gl V1 x1 yl =zl
E34 £f2 g2 v2 x2 y2 z2
Face-vertex relation Edge-vertex relation
Sequence Face Vertex Sequence Edge Vertex
no no no no no no
1 Fl V1 1 El2 vi
2 Fl V2 2 E12 v2
3 F1l V3 3 E23 v2
4 Fl V4 4. E23 v3
5 F2 V1 5 E34 V3

Fig 5.4 Representation of the cube in Fig 5.2 in relational form.
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attribute value - with the (erroneous) implication that it is an inheren i
element itself. Similarly, engineering data often form natural arraeyst I-)rz;f; rgr:;sthgelﬁg
repeated groups, are anathema to a relational database. Again, CODASYL dat,abases
suffer fewer problems here, as they can (indeed must) specify record ordering within
each set, and do generally have the facility to handle at least one-dimensional arrays.

5.3 Alternative database models

The problem with the relational database approach can be simply stated. The validity of
the approach rests on the (normally implied) assumption that each row of a relation can
stand alone as representing a meaningful entity in its own right (e. g. a part, or supplier, or
employee). The further we depart from this situation, the less viable the approach
becomes. Hence in the extreme case where one relation holds definitions of all straight
lines from all components of all drawings in the database, another holds all circular arc
definitions, and so on, we have a situation where the relational approach is totally
inappropriate.

How can this situation be resolved? Two basic approaches are currently receiving
attention. The first is to modify the relational approach to attempt to overcome the
problems outlined above. The second is to attempt to develop new database models from
scratch. (The third possible approach, trying to modify the CODASYL model to
overcome its limitations, does not appear to have been considered). Rather confusingly,
workers in both areas claim to be developing what they describe as object-oriented
databases.

The object-oriented approach was first developed as a programming paradigm, its best-
known implementation being the Smalltalk language (Goldberg and Robson, 1983).
Essentially, it regards all computations as involving a set of objects whose identity
persists over time even though their state (or value) may change. Objects may be simple
(containing a single scalar variable) or arbitrarily complex. However, all objects must
conform to two constraints: objects can communicate with each other only via messages
exchanged though a public interface; and an object's state may be changed only by a
method (or procedure) specified for that class of object. Object classes typically form
hierarchies, with subclasses inheriting properties, methods or both from the classes above
them. The advantages claimed for the approach are that object encapsulation (predefining
both properties and methods, and pemmitting data exchange only via external messages)
provides a useful discipline, and hides irrelevant implementation details from the user.
Inheritance of properties from classes higher up the hierarchy can also be valuable.

The idea of representing each real-world entity by just one object is clearly an attractive
one, particularly for engineering applications. It is therefore not surprising that there has
been an enormous upsurge of interest in applying the object-oriented approach to the
database field (e.g. Dittrich and Dayal, 1986). Many prototype object-oriented database
systems have been described in the literature, and a few (such as Vbase and GemStone)
have reached the marketplace. Unfortunately there is no clear-cut definition of what is or
is not an object-oriented DBMS; there is no body of underlying theory as with relational
database, and no defining standards committee as with CODASYL.

So far at least, the greatest progress in applying the object-oriented approach to
engineering databases seems to have come from extending the relational model - in
particular the work on NF2 (non-first normal form) databases reported by Dadam et al
(1986) and Kemper and Wallrath (1987b) as part of the AIM (advanced information
management) project, a joint venture between IBM and the University of Karlsruhe.
These workers have extended the conventional relational model by relaxing the condition
that all attribute types should be atomic. Instead, attribute types may include arrays,
ordered lists - and other relations, allowing the construction of nested relations of the
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Face-edge-~vertex relation

Face Surface equation

no coefficients Edges
Edge Equation
no coefficients Vertices
Vertex Point
no coordinates
F1 al bl cl di El2 fl1 gl vl x1 yl =zl
V2 X2 y2 z2
E23 £2 g2 V2 x2  y2  z2
V3 x3 y3 z3
E34 £3 g3 V3  x3 y3 23
V4 x4 v4 z4
F2 a2 b2 c2 d2 E15 f£5 g5 Vi x1 yl ozl
V5 x5 y5 z5
E56 f6 g6 v5 x5 y5 z5
vé x6 y6 z6

Fig 5.5 Example of nested relation representing a geometric structure. Note the
repetition of data at the lowest level, an inevitable consequence of the hierarchy imposed

by such nesting.
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type shown in Fig 5.5. The advantage of this approach is that arbitrarily complex
relations can be built up, exactly mirroring the structure of hierarchically-structured
database objects, however complex - hence overcoming the fragmentation problem
Since arrays and ordered lists are also allowable data types, it is possible to model the
natural structure of the underlying data without undue difficulty. The authors propose a
query language based on extended SQL, permitting data description and manipulation
They also address the vexed question of performance, ignored by most workers in the
object-oriented field at present, showing how such complex objects might be indexed
how hierarchical queries might be optimized, and how clustering might hnprové
performance. The major drawback of this approach - a problem shared by all object-
oriented approaches to date - is that objects whose natural structure is a network, not a
hierarchy, are still poorly modelled. An example of this can be seen in Fig 5.5, where
vertex descriptions have to be repeated for each edge using them. However, the NF2
approach is clearly a promising one.

5.4 File organization for information retrieval

One type of information system has remained outside the mainstream of database
development - the bibliographic information retrieval system, which aims to locate
documents relevant to a given enquiry. Such retrieval systems, which allow users to
search text files of journal articles or abstracts for the presence of suitable keywords, are
now a well-established tool of the reference librarian's trade. Although individual systems
differ to some extent, the majority accept queries interactively from a terminal in the
form of complete or truncated keywords, and identify any documents containing those
keywords for display or further searching. Few, if any, have made use of database
management software, for the following reasons: :

- many such systems pre-date the widespread use of DBMS;

- the type of data stored (mainly free text) is not inherently suitable for storing in
the short fixed-length fields for which the majority of DBMS were designed;

- there is little need for data independence;

- only a small range of transaction types needs to be supported, characterized by a
high (but predictable) rate of retrieval transactions, a low rate of insertions, and
the virtual absence of updates;

- the need to provide short response times in a busy multi-user environment.

The most common form of organization used (which can be regarded to a limited extent

as logical rather than physical, since it can be implemented in more than one way) is the

inverted file. Here, the documents themselves are stored as ordinary text files, but an

additional index or directory file is set up, with an entry for every key word appearing in

any document on file, listing the address of each document containing that key word.

When the system is queried, the inverted file is searched to yield the list of documents -
containing the specified keyword. If desired, the documents on this list can be fetched

and displayed one by one. Alternatively, the search can be refined by selecting more

keywords and combining the document lists associated with each keyword according to

the rules of Boolean algebra. Given suitable access paths to the inverted file, and methods-
for combining document lists, the technique can prove highly efficient for retrieval,

hence its widespread use. It is much less efficient when new documents are added, as the

inverted file has to be separately updated for every keyword in every new document.

Many variants on the inverted file concept have been proposed (see van Rijsbergen

(1979), chapter 4), though few have been adopted in operational systems.

A radically different method of data organization is the clustering technique described
by Salton and co-workers, and implemented in their experimental SMART system
(Salton et al, 1971). This can certainly be regarded as a logical rather than physical
technique, as it can be implemented in a variety of ways, including physical contiguity,
pointers, or indexes. A similarity measure is calculated for every pair of documents in the
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collection, on the basis of the number of keywords they share. Using th i
cluster analysis (Everitt, 1980), the entire collection isy then groupegd ixstotegﬁ?slt%:: 81{
similar documents. Each cluster can then be represented in the retrieval system by its
centroid in k-dimensional document space, where k is the total number of distinct
keywords present 1n the document collection (effectively a single dummy document
representing the entire cluster). An incoming query is first matched against each cluster
centroid to find the most similar cluster(s), and then against individual documents in the
cluster. Judging by the SMART experience, the technique works well for relatively small
static document collections, and could in principle be extended to larger collections by
including more than two levels in the clustering hierarchy. However, the difficulty of
adapting the technique to dynamically-growing collections (when should a new
document be added to an existing cluster, and when should it trigger off the creation of a
new cluster which could necessitate substantial reorganization of the entire database?)
has prevented any widespread adoption of the technique.

5.5 Database requirements of present project

The database requirements of a retrieval system for completed drawings are fortunately
less stringent than those of a comprehensive drawing management system which has to
support the creation, modification and storage of active drawings. For the present project,
flexibility and ease of schema alteration were minor considerations - the structure of
completed drawings is by definition stable. The availability of a high-level query
language like SQL was of no importance at all, since its expressive power is far too
limited to be of effective use in graphical query formulation (see chapter 7 below).
Similarly, facilities for integrity and concurrency control were not of major importance.
The main criteria were therefore considered to be:

1. Ability to model the natural structure of the data without distortion. This is an obvious
but crucial test for any DBMS.

2. Ability to provide access to each stored data item via any of its attributes, not just via
designated keys. Data access paths for experimental systems are impossible to predict
with certainty.

3. Availability of reliable programming language interfaces. Much of the programming
for the prototype system has inevitably to be done at a relatively low level; different
parts of the system might require development in different languages.

4. Ability to deliver reasonable performance. Shape matching is known to be a
computationally expensive process, and any prototype system would probably have
to be developed on a busy multi-access machine where economy of resource
utilization was essential.

A final constraint was that any database software used would have to be already available
on existing hardware, since no funds were available for hardware or software purchase.
This effectively narrowed the choice to Rdb/VMS, a relational system, or VAX/DBMS, a
CODASYL system. The third option, not to use general-purpose database software at all,
but to create the set of interlinked files required to implement one of the types of
specialist file organization discused in section 5.4, was rejected early on because of the
volume of essentially unproductive work involved in writing file handling routines.
(However, an investigation of the applicability of clustering shapes on the basis of
features such as those described in chapter 4 remains an interesting possibility for the
future).

1. Both DBMS were capable of modelling all the data structures required for the
prototype database; however, the CODASYL database was marginally more suitable
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for modg:lling the drawing-boundary-line segment hiérarchy, and coped much more
easily with array-type extracted features and inherently ordered line segments.

2. Both DBMS provided a variety of access paths, allowing any record to be retrieved via
any of its attributes.

3. Both DBMS had adequate interfaces to conventional programming langua h s
COBOL, FORTRAN and PASCAL., programming languages such as

4. Preliminary investigations suggested that the CODASYL DBMS would give better
performance than the relational, for two reasons - both inherent in the underlying data
model.

Firstly, as discussed in section 5.2, the relational DBMS would fragment the natural
drawing-boundary-line segment hierarchy, storing all drawing records in one relation,
all boundary records in another, and all line segment records in a third. The
reconstruction of the complete group of records making up a single drawing would
thus be a significant retrieval task in itself. Rdb/VMS does allow a limited amount of
physical record clustering, allowing (for example) all segment records belonging to a
given boundary to be housed on the same physical database page as the boundary
record, thus reducing the computational overhead to some extent. Unfortunately this
mechanism cannot cope with more than one level of hierarchy. The CODASYL
database VAX/DBMS, by contrast, allows the database designer to specify two or
more levels of physical record clustering via set membership, effectively allowing the
entire group of records to be read into main storage in a single operation.

Secondly, line segments are invariably processed.in a fixed order, which can be
readily implemented in the CODASYL DBMS by set ordering. Traversing a drawing
boundary thus becomes a simple matter of following a pointer chain in main storage.
By contrast, the relational DBMS has to retrieve the complete set of boundary
segments and then sort them into order every time it requires access.

Perhaps surprisingly, then, the CODASYL database management system VAX/DBMS
was chosen in favour of its relational rival as the development vehicle for the prototype
database. It should be noted that this does not imply that it is an ideal platform for a
shape database system. In the long run, DBMS based on the NF2 model would probably
prove superior - though the possibility of adapting the CODASYL model to overcome the
limitations discussed above should not be ruled out.

5.6 Implementation of the prot‘otype database
5.6.1 Logical data modelling

Data modelling for this application is a relatively straightforward process. Three
geometric entities can readily be identified, forming a natural hierarchy - the drawing
itself, its constituent boundaries, and their constituent segments. To these must be added
two entities derived from the feature extraction process described in chapters 3 and 4; the
boundary level, representing a specific route of traversal of the line segment tree making
up a boundary, and the family, a group of associated inner boundaries. It could be argued
that these derived items (particularly boundary level) are merely views of other types of
data rather than entities in their own right. However, the large number of feature values
(mean and variance of segment length, arc angle, etc) which are clearly associated with
the boundary level suggests strongly that this should be classed as an entity in its own
right. Most relationships between entities are obvious except for the position of the
segment entity, which could logically be linked either to the boundary or to the boundary
level entity. As discussed below, this is effectively an implementation decision. The
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limi Lo . . .
grgnmnary entity-relationship diagram for the prototype database is thus as shown in Fig

Assignment of attributes to the appropriate enti i i i
fssie PpProp:. tity type is also straightforward in most

- drawing: identifying inft i ing i . .
bound%ry P mli}; s;g ormation about the drawmg itself, plus some derived inner
- boundary: identificati ition i ion. i . ' .
?::mzrig; identification and position information, together with some derived shape
- boundary level: the majority of derived shape features;
il iment: length, darc & glscominlﬂty angles, and parent features;
y y: type and number of constituent boundari rived i
position features. artes, plus derived inner boundary

Drawing

Family

AN

Boundary

AN

Segment  >—-----  Level

Fig 5.6 Preliminary entity-relationship diagram for prototype database.
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The decision to assign properties such as arc/line ratio, length/width ratio and shape class
to the boundary rather than the boundary level entity was taken because these were taken
as overall indicators of boundary shape (and in fact used mainly as preliminary indicators
that a boundary shape looked promising) rather than detailed descriptions of shape
characteristics. Hence there was little point in computing and storing them separately for
each boundary level. ,

5.6.2 Physical implementation

Mapping these structures on to a VAX/DBMS conceptual schema is again a
straightforward task, except for the extracted features (arc and discontinuity angle
triplets, segment length/arc angle distribution, and parent feature composition) which
form multi-dimensional arrays. While it would have been possible to hold these as
repeating groups within boundary level records, the arrays would have been very sparsely
populated (for example, the discontinuity angle triplet feature can take 252 possible
values, only 4 or 5 of which are present in most boundaries). It was therefore decided that
further normalization was justified in the interests of economy of storage (particularly as
this also has implications for speed of processing); additional entities were thus created
both for these and the inner boundary position features, for which the same arguments
applied. '

For similar reasons, it was decided to link all line segments directly to their parent -
boundary record rather than via boundary level records. This means that each segment
needs to be stored once only. All segments making up a given boundary are linked into a
single CODASYL set; this can then readily be traversed at any given level using the
procedure outlined in section 3.2.3. The alternative, separately storing the sequence of
segments making up each boundary level, was rejected because this would have meant
storing many of the segments several times over, once for each level in which they
participated. This would have virtually doubled the size of the database.

One final addition was caused by the desire to allow a search to be restricted to a single
shape class if required. This could most easily be achieved by creating a shape class
record for each of the classes identified in section 4.4.2, and using this as set owner to
link all drawing records within its shape class. The final entity-relationship diagram for
the database is thus as shown in Fig 5.7.

The physical layout of a database on disk is often a crucial factor in determining its
performance in use. Unfortunately, a great deal of information is needed about database
usage before reliable decisions can be made about record placement or access method -
specification. In the absence of such information, the decision was taken to use system
defaults for record placing and access methods for the prototype database, with two
exceptions:
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1. Two separate database areas have been defined, one to hold geometric information
(drawing, boundary and segment records), and one to hold derived feature information
(boundary level, family and feature records). Drawing, boundary and segment records
are then clustered as a two-level hierarchy, on the basis that most segment matching
requires sequential segment traversal for each drawing boundary in turn. This can be
achieved with a single disc read provided all such clustered records can be contained
on a single database page. For similar reasons, boundary level and associated
boundary feature records are clustered, as are family and associated drawing feature
records.

2. In order to maximize the chances of accommodating a complete drawing hierarchy on
one database page, the database page size has been increased from its default of 1 Kb
to 4 Kb. Given record sizes of 84 bytes for drawing records, 44 for boundary records,
and 28 for segment records, this allows drawings of up to (say) 6 boundaries and 120
line segments to be accommodated on a single page. Over 90% of the drawings in the
test database fall into this category.
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CHAPTER 6. RETRIEVAL CAPABILITIES

6.1 Introduction

For a database to be of use in locating existing designs possessing desired shape
characteristics, a variety of retrieval capabilities is almost certainly needed. While a
design engineer may be interested in the overall shape of a part, a production engineer
wishing to.ic.lcntify a part famil}{ vyith group technology in mind may wish to identify all
parts requiring a particular drilling pattem, or all parts which can be tumed on a
particular machine. In a field where information needs are so ill-defined, flexibility is
clearly an important requirement of any retrieval system.

Many useful parallels can be drawn between a shape retrieval system and bibliographic
information retrieval systems of the type discussed in section 5.4. Such systems, though
in widespread use, do in fact have a number of significant limitations, largely springing
from the fact that both the writer of an article and its would-be reader deal in abstract
concepts, while the retrieval system can handle nothing but character strings representing
words or perhaps classification codes. The mapping of one on to the other is a chancy
process, and one that can in some ways be compared to the process of feature extraction
in a shape retrieval system. The text strings used to characterize a document, whether
taken from a controlled vocabulary (where index terms must be chosen from a restricted
list) or free text, are effectively the features by which a document is characterized. The
process of information retrieval is thus one of translating an information need into a set
of desired features, followed by a search of a suitable collection to identify documents
possessing those features. Despite obvious differences, shape retrieval is an analogous
process, and both types of system share a number of common problems, particularly the
difficulty of specifying a user's information needs, and of determining whether an item is
actually relevant to a given query. This theme will be taken up again in chapter 8.

6.2 Types of Shape Retrieval

In order to develop any worthwhile retrieval system, one needs to formulate some
hypotheses about the types of retrieval the system needs to support. It can be useful in
this context to categorize these different types of retrieval, and then to identify the means
by which they might be provided. Tamura and Yokoya (1984) have already attempted
this task in the context of image databases in general, distinguishing three different levels
of retrieval:

Level 1: retrieval by an identifier
Level 2: retrieval by a combination of plural keys
Level 3: similarity retrieval by a given sample.

For shape databases, one can usefully carry this process further, and define six different
types of retrieval (though it is not necessarily helpful to order them into levels as Tamura
and Yokoya have done):

Type A, retrieval by an externally-assigned identifier (Fig 6.1), corresponds to Tamura's
Level 1. The problems involved in retrieval at this level are trivial.

Type B, finding an exact match of an existing structure (Fig 6.2), has no dir.ect
counterpart in Tamura's scheme. It could however be important for registration
purposes (answering the question "have we made this part before?"). It is not a
difficult problem to solve if objects can all be represented exactly, and in the same
canonical form. The query structure is then simply reduced to the same form of
representation as objects in the database, and string- or graph-matching algorithms
used to check whether representations are identical.
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In practice, this type of retrieval is unlikely to prove useful unless the query is
expressed as a rough sketch, the system then displaying a finished drawing in answer
to the query. Otherwise the user is effectively required to design an object in its
entirety in order to test whether it is on file. Where this is the case, or where objects
have to be represented as a range of tolerance values, the process effectively tumns into
the more complex one of similarity matching, discussed under Type F below.

Type C, identification of all objects which partly match a query structure (Fig 6.3), again
has no direct counterpart in Tamura's scheme. It is probably of more practical use than
Type B retrieval, but harder to achieve. It requires successive matching of some
representation of_ tl}e query shape against all potentially-matching segments of each
stored shape. This is effectively a parsing process, involving successive matching of
stored shape elements with each element of the query shape using appropriate
similarity estimation, string- or graph-matching algorithms, and inevitably entails a
great deal of back-tracking. Representing objects in canonical form is of limited help
here, as the required sequence of shape elements could be present anywhere in the
object's stored representation. There is still advantage in ensuring that every individual
shape element has an invariant representation, as this can greatly simplify the
operation of the matching algorithms.

Achieving adequate performance for this type of retrieval with a database of any size
is also a problem. Some means has to be found to screen out obviously unsuitable
shapes, limiting the computationally-expensive process of string- or graph-matching
to a small subset of the whole database. This can best be achieved by analysing all
object representations on file for the presence of a suitable set of easily-matched shape
features (such as number of right-angled vertices or acute-angled arc segments, as
described in chapter 4 above), identifying those present in the query fragment,
screening out those stored shapes lacking these features, and searching only the
remainder. If the database can be indexed on these features, very rapid retrieval can be
achieved.

Type D, retrieval by Boolean combinations of features (Fig 6.4), corresponds to
Tamura's Level 2. The user specifies a set of desired shape features (by using
keywords, or choosing from a text or icon-based menu), and the system retrieves all
objects meeting the specified criteria. This type of retrieval can readily be provided if
feature extraction has taken place as discussed under Type C above - in fact, it
corresponds to the screenout phase of Type C retrieval.

If a predetermined set of features has been defined (such as number and composition
of protrusions and depressions), feature extraction can be performed once for all when
each object is added to the database, and indexes created on these feature values, thus
permitting rapid retrieval. However, one disadvantage of a fixed set of features like
this is that (like controlled vocabulary in a text retrieval system) it may have
insufficient precision to define some kinds of query, particularly where an unusual
type of structure is being sought. The freedom to define additional retrieval features,
either when new types of object are added to the database, or when an unusual query
is encountered, would clearly be desirable. Run-time feature generation would be an
extremely difficult facility to implement. As discussed in section 5.2 above, most
existing database models find it hard to cope with the run-time creation of new data
types. While this problem could be circumvented by defining standard primitives from
which features of arbitrary complexity could be built, it is hard to see how a system
could be given sufficient intelligence either to recognize when a new feature was
needed, and then to define and extract a suitable feature from query and stored shapes
- or to guide an end-user through the same task.
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Type E, identifying the part family to which a query structure belongs (Fig 6.5), is in
some ways related to Type F, general similarity retrieval, though it aims to gene’rate a
class code as output, not a set of drawing identifiers. The task here is similar to
classical pattern recognition; given an unknown object (the query structure), which
class does it fall into? The difficulty here arises mainly from the fact that most,pattem
recognition tasks involve assignment to one of a fairly small number of possible
classes (reported studies of aircraft and chromosome recognition, for example, have
involved assigning "unknown" objects to one of no more than about five categz)ries).
Classifying a workpiece according to the Opitz code is a far more difficult process; the
code runs to more than 10 000 possible categories, and (see section 4.2.1) part of the
classification task involves the use of judgement about the function as well as the
shape of individual shape features. A hierarchical pattern classifier could in theory be
employed, using one set of criteria to assess whether the part was rotational or non-
rotational, then another set to establish the presence or absence of appropriate internal
machined features, and so on, but the size and complexity of the task - and the number
of examples needed for the "training set" of examples needed to establish the ground
rules - render it an unattractive option.

The results from published studies of this kind have been varied. Moayer and Fu
(1976) attempted to classify human fingerprints in this way, with distinctly mediocre
results. Kyprianou (1980) achieved much more intuitively satisfactory results in
classifying rotational parts into subclasses on the basis of length/diameter ratios,
tapering and the presence of machined features, though his system generated its own
shape classes using the technique of cluster analysis, rather than trying to fit a pre-
existing code such as Brisch or Opitz.

Type F, similarity retrieval (Fig 6.6), corresponds to Tamura's Level 3. This form of
retrieval - locating in the database the objects most similar to a query object - is both
potentially the most useful and the most difficult to specify in detail. Engineers asked
to define what they mean by "most similar” find it very difficult to explain to anyone
else just what they mean by this term. It may be that they can define similarity only
after the event, when they have seen some search results displayed. In general terms,
similarity retrieval involves selection of suitable shape features, definition of
similarity measures, and choice of suitably efficient algorithms for matching the query
object with those in the database. The mechanics of similarity estimation are discussed
below, in section 6.3.

Though these types of retrieval are distinct, the techniques for their implementation
overlap to a large extent, implying that a multi-purpose system capable of providing all
these types of retrieval (with the possible exception of Type E) could readily be
developed. Whatever type of retrieval is provided, any practical engineering database
would need to combine geometric and non-geometric data (materials, cost, weight, etc.).
This should pose no special problems if geometric features are extracted as described
above and entered in a database alongside non-geometric features; both types of feature
could then be combined freely to formulate queries. The main design challenge here
centres around the development of a suitable user interface to handle multi-media query
input and results display.

6.3 Mechanisms for shape retrieval
6.3.1 General observations
The parallels that have already been drawn between shape retrieval and both

bibliographic retrieval and pattern recognition can be usefully extended to the process of
query matching. As with feature extraction, the literature in both areas describes an
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enormous variety of matching techniques, again presenting a bewildering choice of
possible models. The discussion below is necessarily selective, and covers only a fraction
of potentially relevant papers on the subject. The classification of methods is highly
subjective, and complicated by the fact that few authors restrict their systems to a single
type of method (a point worth noting in itself). &

6.3.2 Boolean searching

This technique is well established in the bibliographic field. Effectively, it involves a
search for the presence or absence of specified combinations of attributes (or attribute
values). Objects will be retrieved only if they possess the exact combination of attributes
specified. Objects are normally retrieved into temporary sets which can be printed out on-
or off-line, or combined by the searcher to refine the search if the initial output looks
unpromising. The matching process is very simple, since most systems are based on
inverted files which effectively provide an index to every word in the database. A search
for a given combination of terms is thus generally implemented as a comparison of the
item lists for each term specified, a process that can be made very efficient.

This search paradigm is obviously relevant to Type D retrieval as defined above, and
could readily be implemented if the types of features likely to be of most use in retrieval
could be identified and presented to the user in text or iconic form. As discussed below,
this is not an impossible objective. Its relevance to other kinds of retrieval is more
problematic. When estimating the similarity between query and stored shapes, one needs
to be able to take a combination of feature values.into consideration. It is unlikely that the
presence or absence of a single feature will of itself determine a shape's suitability,
except as a way of screening out obviously unsuitable shapes as discussed under Type C.
Despite its widespread use in other forms of information retrieval, then, this search
method is likely to have limited applicability to shape retrieval systems. ’

6.3.3 Similarity matching
6.3.3.1 General principles

The general principle of similarity matching is very simple, given a set of objects and a
set of properties characterizing them. A measure of the similarity between any two
objects i and j (where i and j can be two stored items or a stored item and a query) can be
computed by some comparison operation performed on their property vectors P; and P;.
This may be a simple count of the number of properties the objects have in common,
some function computed directly from differences in corresponding feature values, or a
complex sequence of operations on properties that are themselves vectors. The end-
product is in general a measure of similarity (ranging from O where objects have no
features in common to 1 for identical objects) or distance (where a value of 0 indicates
that two objects are identical, and there is in general no upper limit) between objects,
which can be used either to rank objects in order of similarity or to reject objects with
similarity below a specified cut-off value. (Note that for a measure D to qualify as a true .
distance measure, several conditions need to hold, including the commutativity
relationship D, = Dy and the triangular inequality Dy <= Dy + Dy). Similarity and
distance measures of this kind have been used both in pattern recognition and
bibliographic information retrieval systems.

6.3.3.2 Simple feature matching
One of the earliest examples of similarity retrieval in the bibliographic field was the
experimental SMART system (Salton, 1971), designed as a vehicle to test alternative

document indexing approaches. Unlike most commercial information retrieval systems, it
aims to rank all documents in a test collection for relevance to an incoming query in
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order that as accurate an idea as possible can be gained of the system's retrieval
effectiveness. The measure normally used to assess similarity between a document and a
query is the cosine correlation, a measure of the correlation between the occurrence of
index terms in a query ¢ and a document d:

T

E (Dy * )

t=1

T T
( Z,(Dt2> * E (0c2)) 2
t=1 t=1

where D, is the occurrence of term ¢ in the document, and Q; its occurrence in the query,
and T is the total number of terms. This is a true similarity measure, ranging from 0 if
document and query have no terms in common to 1 if they share an identical set of terms.

c(d,q) =

Similarity estimation is an essential first step in cluster analysis (see section 6.3.4), and
the practitioners of this art have studied the question of similarity and distance measures
in some detail (Everitt, 1980). Similarity measures suggested for binary data (features
which are either present or absent) are the simple matching coefficient (a+d) / (a+b+c+d)
or Jaccard's coefficient (a+d) / (a+b+c), where a represents the number of features which
the objects in question have in common, b and ¢ the numbers of features present in one
object but not the other, and d the number of features absent from both objects. The
choice between coefficients depends largely on the significance to be placed on negative
matches. For quantitative data, a possible similarity measure is Gower's coefficient

E (W3 5x)

where X, is the value of feature k in object i, Ry is the range of values taken by feature %,
and W, is the weight reflecting the validity of the comparison between i and j over
feature & (1 if valid, 0 if not). However, R, is very sensitive to extreme values of k, and a
more robust comparison can often be obtained by calculating a distance measure between
i and j such as the Euclidean distance

ij ( E (Xi}~X5x) 2y
or the absolute metric

Dij = E ( Abs (Xik_xjk) ).
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In either case, it is normal to transform all raw feature values to Zzero mean and unit
standard deviation, to give each feature equal weight.

Many workers in the field of pattern recognition have used techniques of this kind
though normally as part of a more complex system such as that described by Yachida and
Tsuji (1977), which use'd. such techniques as the first stage of a hierarchical parts
recognition system combining the use of global and local shape features, or the context-
driven template matcher of Ben-Bassat and Zaidenberg (1984),. which selected
appropriate sets of features for matching on the basis of previous comparisons.

Closer to the shape retrieval field, Lee (1980) has suggested similarity measures for
classifying triangles as equilateral, isosceles, right-angled or other, and quadrilaterals into
squares, parallelograms, and so on. He also presents a series of similarity measures for
classifying human chromosomes, but these are so specific that they are virtually
impossible to apply to general similarity estimation. ' :

6.3.3.3 Matching using transformations

To some extent, it can be argued that all similarity estimation involves some element of
mathematica) transformation. However, a number of specific types of transformation
have been repeatedly used by different groups of workers. Most of these, such as the
Hough (Hough, 1962), Fourier (Zahn and Roskies, 1972) and state-space (Mokhtarian
and Mackworth, 1986) transformations, are of prime use in recognizing shape features
from noisy digitized images, and hence of little use in the present context. However, the
use of a much simpler transformation, using local segment parameters to generate plots
of 6, the cumulative curvature, against s, cumulative arc length, appears to have much
more relevance. 8-s plots have been used by Perkins (1978) and Tumey et al (1985),
among others, as a more robust alternative to segment-by-segment matching for both
complete and partial boundary matching. The use of this technique overcomes many of
the problems of defining an edge discussed in section 2.5.1.

6.3.3.4 Stochastic methods

The prime technique discussed under this heading is statistical pattern recognition (Chen,
1973). The basic aim of the method is object recognition via classification - though it
should be noted that (unlike the clustering techniques discussed below) the method needs
to be used in conjunction with a pre-existing classification scheme. A large initial feature
set is selected, and the values of these features analysed within a fraining set of items
whose classification is known, with the aim of identifying a small set of features with a
strong statistical association with a particular class, or more specifically with the power
to discriminate between classes. Unknown items subsequently encountered can then be
classified by analysing for the same features, and then predicting probable class
membership using discriminant analysis or similar methods. Statistical methods have
been used successfully in a number of areas, including OCR (Greanias et al, 1963),
radiodiagnosis (Kruger et al, 1972) and classification of blood cells (Mui et al, 1977).
Their usefulness in shape retrieval seems limited, however - classification alone is not

capable of providing the range of retrieval capabilities discussed above. :

Other stochastic techniques have been described in the literature, such as the shape
matcher of Bhanu and Faugeras (1984), which attempts to match unknown and reference
shapes by assigning vertex labels so as to minimize the probability of local mismatches.
This work has limited relevance to the present project, with one possible exception -
matching of inner boundary pattemns.

6.3.4 Clustering
The aim of cluster analysis, as discussed in section 5.4, is to generate a completely

objective classification of the objects under investigation, based purely on the properties
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of those objects. A similarity measure is computed for each pair of items in the
collection, using measures of the type described in section 6.3.3.2. An item-item
similarity matrix is then generated, and items aggregated into clusters on the basis of
their similarity to each other. As the threshold similarity for joining a cluster is relaxed
new items join existing clusters, which may in tun merge with each other, thus
generating a hierarchical classification or dendrogram. The technique was first appfied to
the classification of biological specimens (Sokal and Sneath, 1963), but has since found
adherents both in the information retrieval field (e.g. Salton, 1971), and the pattern
recognition field (Duda and Hart, 1973). ‘

While clustering alone cannot provide the full range of retrieval capabilities required by a
shape retrieval system, it could have an important part to play in shape classification or
similarity retrieval (types E and F as defined in section 6.2 above), especially when
combined with a suitable query interface (see section 7.2.4 below). Rather than
performing a sequential search of the entire database, or comparing lists of drawing
identifiers in an inverted file, a system based on clustering could identify the cluster most
similar to a given query, and allow users to browse through individual drawings within
that cluster, selecting those they considered most useful. Given that'most people seem to
be able to judge shape similarity in a fraction of the time it takes to read an item of text,
this could prove the method of choice for small to medium-sized systems - though the
problems of coping with additions to the shape database (see section 5.4) cannot be
ignored.

6.3.5 Syntactic pattern recognition

The fundamental axiom of syntactic pattern recognition (Fu, 1982) is that all images are
made up of primitives whose relationship with each other can be described by a formal
language, or shape grammar. Suitable parsing algorithms can thus be devised either to
extract desired features from image descriptions or to recognize patterns of image
elements common to both unknown and reference structures. A wide variety of
applications has been reported, including the characterization of bubble-chamber
photographs in particle physics (Shaw, 1970); the automatic classification of human
chromosomes into median, submedian or acrocentric on the basis of their digitized out
lines (Lee and Fu, 1972); and the automatic recognition of aircraft type from silhouettes
(You and Fu, 1979). This last paper is of particular interest for its use of artributed
grammars, which augment normal rewriting rules with additional semantic rules, making
it possible to pass on attribute values from drawing primitives (or terminal symbols) such
as individual boundary vectors to compound structural features (non-terminal symbols)
such as tail assemblies. Some use has also been made of higher-order shape grammars
such as web, plex, graph and tree grammars (Fu, 1982; Lin and Fu, 1984) in areas such as
fingerprint classification (Moayer and Fu, 1976), though the results obtained hardly seem
to justify the increase in complexity involved.

The use of syntactic pattern recognition techniques in engineering has already been
discussed (Section 1.6). Kyprianou's (1980) use of a pattern grammar was clearly usefp.l
in allowing recognition of local shape features such as slots, bosses and pockets. While
later workers such as Choi et al (1984) and Henderson and Anderson (1984) did not
specifically devise shape grammars, they clearly made use of syntactic concepts in
defining and recognizing local shape features for machining. Where syntactic pattern
recognition techniques appear to have been less successful is in recognizing global shape
properties such as symmetry, parallel edges, or repeated features, which are likely to be
important in feature-based retrieval. It is not clear that any major advantage stems from
slavish adherence to the syntactic (or any other single) method. Most recent advances in
the field seem to have come from the application of grammatical concepts where
appropriate, within the context of more general methods.
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6.4 Design criteria for a prototype shape retrieval system

A number of conclusions can be drawn from the preceding discussion. Firstly, while a
prototype system could in theory attempt to offer all types of retrieval capabilit’y except
perhaps Type E, the single most useful type of capability to offer would be Type F
similarity matching. This would automatically include Type B, identity matching (though’
not necessarily its sketch input capability). If the ability to match incomplete as well as
complete query shapes was provided, this would effectively also allow Type C, partial
shape matching. Evaluation of system performance in response to Type C querie,s would
in turn provide the basis for development of Type D (Boolean feature combination)
capabilities.

This implies strongly that the prototype system needs to use one or more of the
similarity-matching techniques outlined in section 6.3.3. There appears to be little
justification for building Boolean search facilities into the system at present, and no
advantage in using techniques of statistical or syntactic pattem recognition - the former
lacking sufficient discriminating power, and the latter likely to prove computationally
very expensive without any guarantee of good results. As observed above, clustering
could prove a useful way of improving system performance in the future, but should be
considered as an enhancement of other similarity-matching techniques rather than as a
substitute. It also has the problem that objectively evaluating the results of a clustering
technique is fraught with difficulties.

The choice between different similarity-matching techniques, and indeed between the
different feature types discussed in chapter 4, is more problematical, since no clear-cut
guidelines emerge from a study of the literature. It was thus decided that the way forward
would be to create a prototype system capable of supporting a wide range of feature types
and similarity-matching paradigms, effectively acting as a test-bed in much the same way
as the SMART system had done for text retrieval twenty years before.

The design criteria for such a system thus include:

1. The system must be able to sﬁpport ' TypcA F retrieval as defined above (this
autornatically includes Type B), and preferably Type C as well.

2. The system should be able to accept query specifications in the form of complete or
incomplete shapes drawn from the same domain as those stored in the database.

3. The system should be capable of matching queries at a range of different levels (e.g.
matching outer boundary shape only, outer boundary shape plus inner boundary
positions, or outer and inner boundary shapes).

4. The system needs to be able to support a variety of shape-matching paradigms, using
as wide a range as possible of the feature types characterized in chapter 4, and
capable of extension to handle other feature types where necessary.

5. Results using different shape-matching paradigms must be comparable, thus allowing
valid conclusions to be drawn on their comparative effectiveness. If possible, the
system should rank retrieved shapes in order of similarity in the same way as the
SMART system, thus allowing the SMART retrieval efficiency measures (see
Chapter 8) to be used if desired. '

6. While computational efficiency is not a major consideration, matching algorithms
which are known to be inefficient should be avoided where possible.

Criteria for interface design are discussed separately, in Chapter 7.
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6.5 Capabilities of the prototype system

The above criteria were reflected in the design of RETRIEVE, the program which
performs matching between query and stored shapes. This program accepts queries in the
form of files specifying complete or incomplete query shapes, together with a statement
of the run-time search options required. It then matches the query shape successively
with all (or, if required, a subset of) stored drawings, computing a distance measure
between the query and each stored drawing using the specified matching technique, and
builds up a list of retrieved drawings in ascending order of distance from the query Sl;ape
This list can be printed when matching is complete, or used to generate a graphicaj
display of retrieved shapes.

Queries are submitted to the program as files for two reasons - firstly (as discussed in
chapter 7), the process of graphical query formulation, and subsequent translation of the
query shape into the same format as the shapes stored in the database, is a complex one,
involving several separate program modules. The most effective way of interfacing
between query formulation and matching programs is to use intermediate files. Secondly,
some reusable query representation is essential if the same query is to be re-run several
times using different search parameters, to compare the effectiveness of alternative
matching procedures.

As discussed above, the prototype version of the system is intended as a test-bed for
comparing the retrieval effectiveness of alternative feature sets and matching techniques.
The range of alternatives offered at present is meant to be illustrative rather than
exhaustive. It is expected that this range could usefully be extended in the future. Three
basic types of search are offered at present, though many variations of each are permitted.
These comprise global feature matching, local feature matching, and what will be
referred to as segment matching, effectively a form of 6-s matching as discussed in
section 6.3.3.3. Each can be used for matching of outer boundaries only, or for matching
mner boundary positions or shapes as well.

Global feature matching is, as one might imagine, based on the global features defined
in section 4.4.2, plus (if appropriate) inner boundary position features 1 - 5 as defined in
section 4.4.4. It relies on computing a distance measure (a true distance measure, as it is
based on Euclidean distances between feature values) between query and stored shape
boundaries based on normalized differences between global feature values from both
boundary and boundary level records. All query and stored shape boundary levels are
examined, in the sequence specified below (section 6.6.3).

Local feature matching uses a combination of the local features defined in section 4.4.3,
plus inner boundary features from section 4.4.4 if appropriate. Two alternative means of
calculating difference measures (almost certainly not true distance measures in this case)
are used. The first, referred to below as local matching, is basically analogous to global
matching, aiming to assess overall similarity between query and stored shapes. It
computes a difference measure on the basis of differences in frequency of each feature
present in either query or stored shape, and would therefore tend to exclude shapes
containing large numbers of features not present in the query. The second, exisrence
matching, works on the principle that a shape containing specified features should be
retrieved however many additional features it contains. In this case, a tally is kept of the
number of query features present in the stored shape, and used to compute a difference
measure as specified below. As with global matching, all query and stored shape
boundary levels are examined in turn whichever method is specified.

Segment matching aims to compute difference measures between query and stored
shapes by measuring the differences between their 6-s plots at comparable boundary
levels. As observed above, this means of searching should be less sensitive to changes in
boundary segment composition. It also provides a test of the hypothesis that there is
value in trying to cast shapes into canonical form; if the hypothesis is correct, a valid
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difference measure can be obtained by comparing query and stored shapes just once at
each level, starting from their canonical starting point. (The standard method of
comparing 8-s plots involves repeating the comparison process using each possible
boundary start point in turn, a computationally expensive process). Again, a number of
run-time options is offered.

Finally, combined matching may be specified. This uses one of the feature-based
methods (global, local, or existence matching) as a preliminary screening search (the user
can specify a maximum number of shapes, a maximum difference threshold, or both)
followed by segment matching on the subset of shapes retrieved by the preh'minar);
search.

Some limitations on the types of matching available have to be made where incomplete

query shapes are specified, since many parameter values (particularly global shape

features) are undefined for incomplete shapes. Global matching is meaningless in this -
case and therefore prohibited. Both local and existence matching are permitted, though

the feature set they use has to be slightly curtailed. Segment matching using a canonical

start point is also meaningless, and therefore not offered by the present version of the

system. (Repeated local ©-s comparisons would however be an effective, if

computationally expensive, way of searching for partial shape matches, and would

therefore be a useful facility to offer in any future version of the system, particularly if

combined with a preliminary screening step based on local or existence matching).

6.6 Detailed program operation
6.6.1 Initialization and query input

The program begins by reading in the sequence of run-time parameters which will govern

the operation of the current session. These include a specification of the search paradigm

required (global, local, existence or segment, separately or combined), the level of
searching required (outer boundary shapes only, outer boundary shapes plus inner

boundary positions, outer boundary shapes plus inner boundary class, all boundary

shapes), the type of output required, the maximum difference cutoff and maximum

number of drawings to be retrieved, whether the search should be limited to a subset of
the database, as well as parameters specific to the match type or search level chosen.

The program is then ready to process queries according to the parameters specified. As
indicated above, each query has to be submitted as a file generated as outlined in chapter
7, below. The program accepts a query file name and attempts to open and read in the
contents of this file, building up a representation of the query in main storage (using a
series of linked lists) which exactly mirrors the structure of stored shapes in the database
(Fig 6.7). A number of validity checks are performed at this stage, including a check that
all query boundaries have the expected number of segments, that traversal at all levels
involves a total angle of 27w, and that specified match type and query structure are
compatible. If shape matching is to be limited to a given shape class, the appropriate
ShapeClass record in the database is located to identify the correct DrawingClass set to -
search. - '

6.6.2 Shape matching - general

The required set of drawings (which may include the entire database) is now fetched one
by one from the database and matched using the appropriate technique (see below). The
overall process for any single match type is identical, with one exception; with feature
(but not segment) matching, it is possible to specify a pre-screening step, rejecting out of
hand any drawing for which outer boundary PA, LW or AL ratios diverge from
comparable query values by more than a specified amount. The main purpose of this is to
reduce search times; it seems to have little effect on retrieval performance in most cases.
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Fig 6.7 Illustration of linked list structure representing query in main storage.
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Whatever matching process is specified, the first step is to match the outer boundary of
the current drawing with the outer boundary of the query, thus yielding a difference
measure between the query and the current drawing. This process is not quite as
straightforward as it seems, as each boundary can be defined at more than one level. and
(as indicated in section 4.4), many shape features are inherent properties of a spe’ciﬁc
boundary level, not the boundary as a whole. This raises the question of which level from
the query boundary to match with which level of the drawing boundary - particularly
when ¢, the number of levels in the query boundary, and d, the number in the drawing
boundary, will often be different.

Since each successive boundary level presents a view of the boundary at a progressively
greater level of detail, it is logical to match corresponding boundary levels from query
and drawing where ¢ = d. Indeed it is necessary if a query shape is to yield a difference
measure of zero when matched with itself. Where ¢ <> d, it is superficially tempting to
treat both in a symmetric way, and (for example) to match the first (or last) min(q,d)
levels. This is however unsound for a number of reasons. In the first place, a query
specification and the drawing it retrieves are not symmetric. The former is open-ended, a
statement of those features the user considers desirable, and a specification which may be
met in a number of ways, possibly unforeseen by the user. The latter is a fixed object
which may or may not be relevant to an enquiry. If a query boundary has three levels, it
is fundamental to the search process that all three levels are matched against every
comparable drawing boundary in the database, however many levels this has. Otherwise
difference measures obtained with one drawing are not comparable with those obtained
with another, and hence no similarity ranking is possible. o

(In passing, it may be remarked that this fundamental asymmetry between drawing and
query inevitably has the consequence that the overall difference measure M between
query and drawing cannot qualify as a strict distance measure, as the measure M,
computed by reversing the roles of query and drawing is not in general identical to the
measure M 4 computed as detailed below, since it may involve comparisons between
different numbers of levels. This does not appear to detract from its use fulness in
ranking drawings in order of similarity).

The solution chosen was hence to ensure that exactly ¢ comparisons took place between
each query and drawing boundary. Where ¢ < d, some drawing levels will be ignored.
Where g > d, all drawing levels will be used, some more than once. In either case, the
program attempts to identify the g likely closest matches between query and drawing
boundary levels, and derives its distance measure from these, using the algorithm set out
below. The process is illustrated graphically in Fig 6.8.

If matching is limited to outer boundaries, the process ends once a difference measure
has been calculated. Assuming the query-drawing difference measure is less than the
specified cutoff value, the drawing's reference number, original file name and difference
measure are added to the list of drawings already retrieved. This is maintained in order of
increasing difference value; if the list size is exceeded by adding a new drawing, the last
drawing on the list is automatically removed. .

If inner-boundary searching is specified, the precise sequence of events depends on the
exact match type and search level specified. However, the overall process is again the
same - one or more further difference measures is calculated by matching inner-boundary
features, weighted appropriately, and added to the outer-boundary difference measure to
give an overall measure of query-drawing difference. Processing then continues as
specified in the paragraph above.
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If combined feature and segment matching is specified, a two-stage pr

Firstly, a feature search is carried out on the sefpof drawings to be ’sgea?cﬁggsiﬁﬁkf:ﬁ’}gﬁ

drawing identifiers stored in an intermediate list. Each drawing in the intermediate list is

then fetched again in turn from the database, and subjected to segment matching. A

combined difference measure is then computed, and if this is less than the spec!i;f'ied

gutfoff value, the drawing identifier is added to the final list of retrieved drawings as
efore.

With feature matching at the inner boundary position level, the required difference
measure can be calculated from inner boundary position feature records without
reference to the inner boundary records themselves. With all other match and level types
however, individual inner-boundary representations from query and drawing must be
directly compared. This raises a problem analogous to that of matching boundaries with
different numbers of levels - which query boundaries should be matched with which
drawing boundaries when query and drawing will have different numbers of inner
boundaries @ and D? It tums out that the solution is also analogous. To ensure -
comparability between comparisons with different drawings, it is again important to
ensure that exactly ) comparisons take place between each query and drawing, ignoring
some drawing inner boundaries where Q < D, and using some more than once where Q >
D. Two additional questions remain - is a basically linear traversal of each inner
boundary list, using a variant of the boundary level traversal algorithm described above,
acceptable in this case? How should the special case of a drawing with no inner
boundaries (for which there is no analogue at the drawing level, since each boundary has
by definition to have at least one level) be treated? '

The short answer to the first question is "yes". In theory, one could match all Q query
inner boundaries with appropriate combinations of Q drawing inner boundaries, selecting
the combination giving the best fit after exhaustive trial-and error matching - or, more
elegantly, using a label assignment algorithm such as.that used by Bhanu and Faugeras
(1984). However, a stated design objective of the present system is the avoidance
wherever possible of algorithms that require backtracking. It also seems sensible to
exploit the fact that inner boundaries in both query and stored shapes are ordered firstly
by distance from outer boundary centroid, and secondarily according to the angle
between their centroid vector and the shape's prime direction (see section 3.2.3 above).
Thus wherever a single-pass comparison of inner boundary lists is possible, it should be
attempted. Hence the level-traversal algorithm was adapted for following and comparing
inner boundary lists.

The second question is harder to answer. Q inner boundary comparisons are clearly
needed to maintain comparability even when a drawing has no inner boundaries. (Note
that the reverse case - a query with no inner boundaries - is no problem, because Q = 0
and hence no comparisons take place with any drawing inner boundaries, another
example of the fundamental asymmetry between query and drawing). The only obvious
solution, somewhat lacking in elegance, is to compute a series of null similarity values,
based on the absolute values of the relevant parameters in the query, and then to use these
instead of difference measures where necessary. For example, if computing a measure of
inner boundary position difference between a query with four boundaries and a drawing
with none, the program will simply use the appropriately normalized sum of the four
query boundary centroid distances instead of summing actual distances between query
and drawing boundary centroids. '

6.6.3 Feature matching in detail
This process starts with an initialization step that includes an optional pre-screening

stage, as indicated in section 6.6.2. This computes an initial difference measure between
query and drawing
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qu = 2.5*Abs (ALq—ALd) + Abs (log2 (PAq/PAd)) + 0.5*Abs (1092 (qu/LWd))

where AL (as defined in section 4.4.2) provides a measure of overall curvature and hence
shape class, PA an estimate of the shape’s low-level thickness and to some extent
complexity, and LW a measure of overall aspect ratio. The measure is purely empirical
but seems to be successful at screening out about half to two-thirds of the entire drawin
file (more for some queries) if a cutoff threshold is set at a level of between about 2 ang
3. Assigning the higher weighting to the AL ratio appears significantly to improve
screenout of obviously un suitable drawings, again suggesting the importance of shape
class in retrieval.

6.6.3.1 Boundary feature similarity matching

If the drawing is not rejected by this screenout process, procedure
MatchFeatureSimilarity is then called to compute a difference measure between query
and drawing outer boundaries, using the following algorithm (presented here in slightly
simplified form), which generates both minimum and cumulative level difference
measures for all query boundary levels, as discussed in the previous section:

Fetch Boundary and first BoundaryLevel records for both query and
stored drawing; :

Compute B, the difference measure derived from feature values in

Boundary records, using appropriate match type, and set C, the
cumulative level difference measure, to zero; o

While unprocessed query BoundaryLevel records remain do
Begin
Compute M, the minimum difference measure from feature values in
current BoundaryLevel. records using appropriate match type, set
temporary difference T = M, and indicate current pair of

BoundaryLevel records as current minimum;

While unequal numbers of unprocessed query and drawing
BoundaryLevel records remain do

Begin

If more BoundaryLevel records remain in query than in drawing
then

fetch next BbundaryLevel record from query
else
fetch next BoundaryLevel record from drawing;

Compute new difference measure L from feature values in
BoundaryLevel records using appropriate match type;

If L < M then

Begin
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Set M = L, and indicate current pair of BoundaryLevel records
as current minimum;

1f more BoundaryLevel records remain in query than in drawing
then

set intermediate difference I = T
End;
Set T=T+ M
End;
Set C=C+ M+ I;
Fetch next BoundaryLevel record after ¢current miniﬁum from query;
If more BoundaryLevel records remaining in drawing then

fetch next BoundaryLevel record after current minimum from
drawing

End;

Compute final difference measure M, calculated as n@°¢'= B + C,
M,yg = B + C/q, or My, = B + min(M), according to run-time option
selected. :

If query and drawing boundaries have equal numbers of levels, this reduces to a single
pass through both, allowing total, average or minimum level difference measures to be
calculated as indicated above. If there are fewer query levels than draw ing levels, the
inner loop allows each query level to be matched against all "spare” drawing levels, and.
the closest-matching pair selected, without incrementing the cumulative difference
measure. If there are more query levels than drawing levels, the inner loop matches
"spare” query levels against each drawing level in the same way - but this time
increments the cumulative difference measure, so that each query level is effectively
matched as required. The detailed matching processes differ depending on whether
global, local or existence matching is specified, as detailed below.

6.6.3.2 Global feature matching
If global matching is used, the query-drawing difference measure B calculated from

boundary records is a weighted distance measure computed from values of the features
AL, PA, LW, and NR using the absolute metric

E Abs .(Xik-xjk)
D: - = i

+J S.D. (%)

Similarly, the difference measure L calculated for each level is the weighted sum of D
for the features ML, LV, MA, AV, MD, DV, RS, PS and CI. Weighting of each measure is
currently performed simply by dividing the total by the number of contributing
parameters, except again for AL, where early experiments suggested that increasing the
weight of this parameter could improve retrieval performance.
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6.6.3.3 Local feature matching

With local matching, the boundary record difference measure B can either be set to zero
or calculated in the same way as for global matching, depending on the run-time option
chosen. No specifically local features are stored in boundary records, so that strictly
speaking, no computation can be performed at this stage. However, the option to use
global measures as a possible performance enhancement has been provided for
comparative testing purposes. Note that where query boundaries are incomplete, this
measure is always set to zero. ’

The boundary level difference measure L is calculated from a combination of the
distribution parameters LD, AD, DD and FD, stored in boundary level records, and the
more complex features SL, AT, DT and PF, stored in boundary feature records. A’gain the
precise combination of features used can be specified at run time. While both are
processed in the same logical fashion, there are inevitably differences in the way this is
implemented. With each parameter selected, a difference measure is calculated by
computing the difference and sum of each pair of corresponding values, and dividing one

by the other:
N
Z Abs (D -0Q4)
i=1

N _
» E Abs (D1+Ql)
Ci=1

where N is the total number of possible values for the feature in question. For the
distribution features, this can readily be computed by successively comparing counts in
each array element. For the more complex features, lists of query and drawing feature
records are compared, and counts of feature value sum and difference accumulated as

follows (Fig 6.9):

gd

- where an unmatched feature record is found in either list, its value is added both to the
cumulative sum and cumulative difference;

- where a matching record is found, the sum of feature values from both records is
added to the cumulative sum, and the absolute difference in feature values added to
the cumulative difference.

All values are weighted by dividing by the total number of features selected, in order to-
maintain as much comparability as possible between measures. _

6.6.3.4 Existence matching

Existence matching uses the same feature set as local matching, but adopts rather
different matching principles. Whereas local matching attempts to measure similarity by
considering all features present in either query or drawing (in other words giving weight
to negative and positive feature matches), existence matching considers only those
present in the query. The presence or absence of drawing features not specified in the
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(a)

Feature Frequency Frequency

range in query in drawing Sum Difference
record record
0.1 - 0.3 2 1 3 1
0.3 - 0.5 3 1 4 2
0.5 - 0.7 4 5 9 1
0.7 - 0.9 5 2 7 3
0.9 - 1.1 1 5 6 4
1.1 - 1.3 0 1 1 1
1.3 - 1.5 0 0 0 0
Total: 30 12
qu =12 / 30 = 0.4
(b)
Query features Drawing features
Sum Difference
Type Frequency Type Frequency
D324 2 2 2
D334 2 2 2
D357 1 D357 2 3 1
D552 2 2 2
D553 3 3 3
D567 2 D567 2 4 0
Total: 16 10
=10 / 16 = 0.625

qu

Fig 6.9 Ilustration of similarity calculations (a) for simple features from boundary level
records (showing part of a feature array), (b) from more complex features ( showing
sample boundary feature records).
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query is immaterial. Furthermore, the actual value of specified features is i i
provided they reach a given threshold. This obviousls implies a slighil)l'mdr?f‘}zrelxﬂ
approach to feature comparison. Rather than computing a difference measure directl
from differences in feature values, feature values from drawing records are classed a)s’
present or absent depending on whether they exceed a specified threshold (or, in a few
cases, fall into a specified range). A difference measure can then be computed as

(no of possible features - no of features pPresent)

(no of possible features).

As with local matching, the boundary record difference measure B can be set to zero or
calculated from global parameters as required. The same parameters are used as for
global or local matching, but the difference measure is computed on the basis of the
number of features whose values differ from those in the query by less than a specified
amount. Again, this measure has to be set to zero where query boundaries are incomplete.

The boundary level difference measure L can be calculated from the same combinations
of features as local feature matching, using a process identical except for the formula
used to calculate the difference measure:

N
Count ( Dy : (Dy > Q;*T) and (Q; > 0) )
i=1
L =
d
g N .
Count ( Q4 : Q; > 0)
i=1 .

where T is a threshold whose value can be specified at run time. A comparative
illustration of the operation of existence and local matching is shown in Fig 6.10.

6.6.3.5 Penumbral matching

It can be argued that local feature (or existence) matching as specified above suffers from
a fundamental flaw; it assumes that all parameters in the feature arrays are independent of
each other. This is manifestly not the case, since most are (arbitrary) divisions of
continuous variables. The feature matching method above assumes, for example, that a
query specifying the presence of two line segments in the length range 0.7-0.9 can be
satisfied only by a drawing with two line segments in exactly the same length range. In
practice, such a query could well be satisfied by a drawing with line segments in the
length ranges 0.5-0.7 or 0.9-1.1, since the dividing lines are necessarily arbitrary and
could well have separated line segments with infinitesimal differences in length.

Whether this effect actually degrades retrieval performance in practice is a subject for
further investigation. It is clearly more of a problem for some parameters than others. The
parent feature distribution PD, which can take only four discrete values, is obviously not
susceptible. The angle distribution features AD and DD are probably at risk only to a
minor extent because of the deliberate bias of angle ranges towards right angles. But the
length distribution features LD, SL and to some extent DT could well be seriously
affected.

Several possible ways of overcoming this problem could be considered. The matching
process could be extended to include neighbouring feature ranges - though this would
probably increase the number of false positive matches generated. The database could be
enhanced, for example by defining an extended length distribution feature specifying two
overlapping length distribution ranges. A line of relative length 0.8537 could thus be
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(a)

Feature !;‘requency ] Frequency Feature Feature
range in query 1in drawing relevant? qualifies?
record record ‘
0.1 - 0.3 2 1 Y N
0.3 - 0.5 3 1 Y N
0.5 - 0.7 4 5 Y Y
0.7 - 0.9 5 2 Y N
0.9 - 1.1 1 5 Y Y
1.1 - 1.3 0 1 N N
1.3 - 1.5 0 0 N N
Total counts: 5 2
qu = (5-2) /5 = 0.6

(b)
Query features Drawing features Feature Feature
- rele- quali-
Type Frequency Type Frequency vant? fies?
D324 2 N N
D334 2 Y N
D357 1 D357 2 Y Y
D552 2 N N
D553 3 : Y N
D567 2 D567 2 Y Y
Total counts: 4 2
Lga = (4 -2y / 4 = 0.5

Fig 6.10 Illustration of similarity calculations for the same set of features as in Fig 6.9,
using existence matching with a threshold T = 1.
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counted both as a 0.7-0.9 length line and as a 0.8-1.0 length line. Searching could then
match query length distributions in, say, the 0.7-0.9 range with drawing lines in either the
0.6-0.8 or 0.8-1.0 ranges.

The strategy adopted for the prototype system was to provide two possible matching
modes - the conventional mode described above and penumbral matching. This is a form
of relaxation method, in which each query or drawing feature value V’; used in the
comparisons detailed above is computed from the weighted average of its stlored value V.
and that of its neighbours, as follows: 1

Vi = 0.5%V; + 0.25%V;.) + 0.25%V;_; (1 < i < N)
V’i = 0'75*Vl + 0.25*Vi+1 (J. = 1)
V'i = 0’75*Vl + 0.25*Vi_1 (i = N)

Analogous definitions are used for the more complex two- and three-dimensional
features SL, AT, DT and PF. An example of penumbral matching is shown in Fig 6.11.
While penumbral matching of the simpler distribution parameters is computationally no
more expensive than simple matching, its use with more complex features is at present
computationally unattractive because it requires the run-time generation of additional
feature records. This difficulty could readily be overcome in a future version of the
system if required.

6.6.3.6 Inner boundary position matching

If inner boundary position matching has been specified, the program then computes a
difference measure on the basis of differences in the number and relative position of
inner boundary centroids. This level of matching compares drawing and position feature
records rather than the inner boundary records themselves. As with boundary feature
similarity matching, the approach taken depends on whether global, local or existence
matching has been specified. As far as possible, the approach adopted for a particular
type of matching is continued in this section - global matching calculates difference
measures on the basis of summary statistics such as inner boundary counts, local
matching compares values of specific features, and existence matching looks for the
presence of specific features. The matching process described below does not make
exhaustive use of all feature types (in particular it makes very little use of data in
boundary family records), but could readily be extended if a higher level of
discrimination were required.

If global matching is specified, matching is limited to drawing records; a distance
measure is computed between query and drawing on the basis of parameters NB, CB, SB,
IB and BF (as defined in section 4.4.4), using the same metric as in section 6.6.3.2. If
local matching is used, drawing records are optionally matched in the same way as for
global matching. Position feature records BP (as defined in section 4.4.4, and ﬂlusgratqd
in figs 4.3-4.5) are then matched as outlined in section 6.6.3.3. If existence matching is
used, drawing records are optionally matched on the same parameters as for global
matching, but using the techniques outlined in section 6.6.3.4.

Whichever method of matching is selected, the difference measure computed is then
multiplied by a position weighting factor (supplied at run time) and added to the outer
boundary difference measure as a combined indicator of shape difference.

6.6.3.7 Inner boundary shape feature matching

If the highest level of shape matching is specified, searching of inner boundary shapes,
the program then attempts to compute a measure of inner boundary shape difference. For
the reasons discussed in section 6.6.2, this involves finding the closest possible match for
each query boundary, then summing the total difference measure over all query
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(a)

Transformed Transformed

Frequency frequency frequency
range in query in drawing Sum Difference
record record
0.1 - 0.3 2.25 1 3.25 1.25
0.3 - 0.5 3 2 5 , 1
0.5 - 0.7 4 3.25 7.25 0.75
0.7 - 0.9 3.75 3.5 7.25 0.25
0.9 - 1.1 1.75 3.25 5 1.5
1.1 - 1.3 0.25 1.75 2 1.5
1.3 - 1.5 0 0.25 0.25 0.25
Total: 30° 6.5
qu = 6.5/ 30 = 0.2167
(b)
Query features Drawing features
Sum Difference
Type Frequency Type Frequency
D314 0.33 0.33 0.33
D323 0.33 0.33 0.33
D324 0.33 D324 0.67 1.00 0.33
D325 0.33 0.33 0.33
D333 0.33 : 0.33 0.33
D334 0.67 D334 0.33 1.00 0.33
D335 0.33 0.33 0.33
D344 0.33 0.33 0.33
D347 0.17 D347 - 0.33 0.50 0.17
D356 0.17 D356 0.33 0.50 0.17
D357 0.33 D357 0.67 1.00 0.33
D358 0.17 D358 0.33 0.50 0.17
D367 0.17 D367 0.33 0.50 0.17
D542 0.33 0.33 0.33
D543 0.5 0.50 0.50
D551 0.33 0.33 0.33
D552 0.5 D552 0.67 1.17 0.17
D553 1.0 D553 0.33 1.33 0.67
D554 0.5 0.50 0.50
D557 0.33 D557 0.33 0.67 0.00
D562 0.33 0.33 0.33
D563 0.5 _ 0.50 0.50
D566 0.33 D566 0.33 0.67 0.00
D567 0.67 D567 0.67 1.33 0.00
D568 0.33 D568 0.33 0.67 0.00
D577 0.33 b577 0.33 0.67 0.00
Total: 16.00 7.00
qu =7/ 16 = 0.4125

Fig 6.11 Effects of specifying penumbral matc.
above (assuming both sets of features are comp

hing on the two matching cases shown
lete). Note that additional feature records

need to be created in the second case, where feature D, needs to generate penumbral

neighbours in two dimensions, namely Dy.1): Dy-1)22 D, 241y aNd Dy ).
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boundaries to generate the required measure, which is again weighted and added to the
combined indicator described in the previous section. Procedure MatchF eatureSimilarity
(section 6.6.3) is used to compute a difference measure between each pair of boundaries.

The algorithm for selecting the closest-matching pair of boundaries for matching is
virtually identical to the algorithm for selecting the closest-matching pair of b0undary
levels, described in detail in section 6.6.3.1, and is therefore not described again. The
only major difference, as indicated in section 6.6.2, is the need to deal with the special
case of a drawing with no inner boundaries.

6.6.4 Segment matching
6.6.4.1. Principles of segment matching

Segment matching as defined here provides a completely different way of matching
query and stored shapes, and one that can usefully complement feature matching. It is in
fact essential if Type B retrieval (identity matching) is to be provided. All a search of
extracted global or local features can do is to confirm that query and stored shapes share
a number of common aspects. A difference measure of zero does not prove that query
and drawing shapes are identical. As discussed in section 6.3.3.3, the principle of
expressing closed boundary shapes as plots of 0, the cumulative angle traversed, against
s, the cumulative arc length, is well established. 6 here is a single-valued function of s,
which increases from 0 to 2m as the boundary is traversed completely in an anti-
clockwise direction. (Some authors prefer a slightly different transformation, subtracting
2ns/S (where S is the total boundary length) from 6, to give a horizontal plot which
effectively shows the extent to which the shape differs from a circle). Circular arcs in the
original boundary are transformed into straight lines in the 6-s plot, with gradient
indicating their curvature. Straight lines in the original boundary become lines with zero
gradient in the plot, and vertices become discontinuities or vertical lines (Fig 6.12).

Such a plot can easily be used to generate a measure of the difference between two
shapes, by summing the area between their 6-s plots (Fig 6.13) - or indeed by integrating
any measure derived from differences in 8 between query and stored shapes for a given s.
As discussed in section 6.5, the process is usually a computationally expensive one
because it has to be repeated many times over for each pair of boundaries being
compared, using a different starting point each time, to find the closest-matching relative
orientation of the two shapes. The present program uses what is effectively a heuristic
approach by comparing each pair of query and drawing boundaries just once (at each
level selected), using the canonical start point for each boundary identified in earlier
processing. This approach has the advantage of greatly increased computational
efficiency, requiring only a single pass through each set of line segments for each level -
though it runs a risk of missing similar shapes where the canonicalization process has
assigned different start points.

Calculation of a difference measure between two boundaries is best achieve‘d,‘ first by
normalizing both boundary perimeters to the same length, then by subdividing both
boundaries into an equal number of corresponding subsegments, each terminated when a
discontinuity is encountered in either boundary (Fig 6.9). A distance measure can then
readily be computed for each pair of corresponding subsegments, by integrating either
the absolute magnitude or the square of the angular difference D between cumulative
query angle 6, and drawing angle 64 over the length L of the subsegment. If the absolute
difference is used, this gives a difference measure for each subsegment of:

M, = 0.5 * L * (Abs(Dg) - Abs(Dg))
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Fig 6.13 Similarity matching between query and stored shapes. Both shapes are divided
nto subsegments as shown in the top illustration. The lower illustration shows cumulated
angle plotted against cumulated length for both shapes, the angular difference between
query and stored structures is summed over the entire boundary to yield a global
distance measure D indicating the difference between the two shapes.
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where Dy is the difference between cumulative query and drawing angle at the start of th
subsegment, and ngt;le difference at the finish. If the square of %he fxlxgular difference i:
used, the corresponding difference measure for each subsegment becomes:

Mé = I * (Ds*Df + (Ds_Df)z / 3)

where Dg and Dy are start and finish angular differences, as before. Whichever measure is
used, it can then be summed over the entire set of subsegments making up one boundary
level and used to give an overall measure of difference between the two boundaries.

6.6.4.2 The segment matching process

Segment matching of query and drawing boundaries begins with selection of the
appropriate traversal level for each boundary. A range of options is provided, under
which a pair of boundaries may be matched at :

- top level only
- bottom level only
- combined matching, top-level followed by bottom-level matching,
or
- all level matching, successive matching of all query levels in a similar way to that
outlined in section 6.6.3.1.

In the two latter cases, difference measures from different levels are added, normally
weighting lower-level difference measures by an attenuation factor specified at run time.

For each query-drawing pair selected for matching, the following algorithm is invoked. It
traverses query and drawing boundaries, repeatedly identifying corresponding
subsegments and calculating 6 and s values in each, and hence deriving a difference
measure which is then cumulated over all subsegments. It computes the second measure
Mg defined above - preliminary experiments suggested that this measure may be slightly
less sensitive to very small differences in shape than M,, though in most cases both
measures give identical similarity rankings. The square root of M is in fact used in
subsequent calculations.

Let L represent current normalized subsegment length,
Sq and Sy the (normalized) length of the current query and drawing
line segments,

Ag and Ay the current query and drawing line segment arc angles,

Dq and Dy the current query and drawing line segment discontinuity

angles, .

and Ly lengths traversed along current guery and drawing line

segments,

Tq and Tq cumulative angles traversed around query and drawing
boundaries including the current subsegment,

Pq and Py cumulative angles traversed up to the beginning of the
current subsegment,

Dg and Dg the differences between cumulative query and drawing angle
at the start and finish of each subsegment,

and M the overall difference measure to be computed. Then:

Iq

Calculate normalization factors required to set each boundary
perimeter to 100, and zeroize Lq, Ly, Pq, Py and M;
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Get first line segments of query and drawing boundaries at
appropriate level;

If Sq <= Lq then
Add Dg to Py, get next query segment, and zeroize IL_;
If Sq <= Lgq then q
Add Dy to Py, get next drawing segment, and zeroize Ly;
While more query or drawing segments remain do

Begin

Set L = min (S -Lq,Sd—Ld);

= * .
Set Ty = Pg + L * Ay / Sy;
Set Tq = Pq + L * Ay / S4;
Set Dg = Pq - Py, and Dg = Tq - Tyi

Add L * (Dg * Dg + (Dg - Dg)2 / 3) to M;
Set Pq = Tq, and Pd = Tg4/
Add L to Lq and Ly;
If Sq <= Lq then
Add Dq to Pq, get next query segment, and zeroize L
If Sd <= Ld then
Add Dy to P4, get next drawing segment, and zeroize Ly

q’

End.

6.6.4.3 Inner boundary matching

The matching process above can obviously be applied to outer or inner boundaries.
However, a complete identity match requires more than an indication that all boundary
shapes are identical. It needs also to establish identity of position and size. Hence a
complete inner boundary match involves a pairwise comparison of query and drawing
boundaries (in the same sequence as that used for inner boundary feature matching,
section 6.6.3.7), computing the following difference measures for each query-drawing
boundary pair: :

(a) Position difference, the Eucﬁdean distance between query and drawing boundary
centroid positions, calculated as '

PD = (CDq2.+CDd2'2*CDq* CD4*COS (CA;=CAy) ) /2

where CD,, CD,, CA, and CA, are respectively centroid distances and centroid
angles of query and ?h'awing boundaries. In use, the measure is- normalized by
dividing by the average centroid distance for all inner boundaries in the database.

(b) Class and size difference, a measure similar to the initial screening measure described
in section 6.6.3, except that as well as comparing AL, LW and PA ratios, it also
computes measures of size and orientation similarity (unimportant at the outer
boundary matching level, but important in distinguishing between shapes which are
identical in every respect except relative inner boundary size or orientation). The
additional terms in the measure are perimeter difference (log, of the ratio of query
and drawing boundary perimeters) and axis difference, the angle between major axes
of query and drawing boundaries after allowing for possible rotational symmetry.
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(c) Inner boundary shape difference, calculated as described in section 6.6.4.2 above.

The three difference measures for each query-drawing boundary pair, weighted according
to parameters supplied at run time, are then added to generate a total inner boundary
difference measure, which in turn is added to the outer boundary measure to give a final
measure of difference between query and drawing shapes.

As with feature matching, the matching process need not involve all levels. Any of the

following four levels of matching may be specified at run time:

- outer boundary shape only

- outer boundary shape plus inner boundary position (using measure (a) above)

- outer boundary shape, inner boundary position, class and size (using measures
(a) and (b)) ~

- complete matching of all boundaries (using all the above measures).

6.6.5 Accumulation and display of results

As indicated in section 6.6.2, the program successively matches the query file with all
drawings from the specified target set within the database, building up a list of retrieved
drawings in order of similarity, using the specified match type. At the end of the
matching process, this is used to generate a display of retrieved drawings in an
appropriate format, specified at run time. Further details, and examples of output, are
described in the next chapter (section 7.7). ' : o

Once results have been displayed, the p'ro'gramk is. ready to accept the next query, using-
the same set of run-time parameters to specify the level and type of matching.

6.7 Mirror images

A decision was taken at an early stage to regard the mirror-image of an unsymmetrical
object as a separate shape. Despite the fact that two-dimensional objects such as those
represented in the test database can be converted to their mirror-images simply by tuming
them upside-down, it was decided to allow mirror-images to retain their separate identity,
for two reasons:

- parts may have different finishes on upper and lower surfaces, which are therefore not
freely interchangeable;

- in any future extension of the system to cover 3-D object representations (which
cannot readily be converted to their mirror-images without passing into the fourth |
dimension), it will be important to be able to distinguish a face from its mirror-image.

In the meantime, however, the system needs to be able to make the connc;ction between -
mirror-images where necessary. This is an easy task in some areas, less so in others:

- all global and most local features are completely symmetric, so that matching on
these features, however performed, will always retrieve mirror-images. The only
exceptions to this are the local triplet features AT and DT, which are inherently
directional, and are thus unsuitable for use if mirror-images are to be retrieved.

- all inner feature boundary pattem features are inherently symmetric; again, matching
of these features will always retrieve mirror-images.
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- boundary segment matching as described in section 6.6.4 is obviously directional, and
thus provides the most reliable means of distinguishing between mirror-images 11; this
is required. A problem obviously arises when no distinction is to be drawn between
mirror-images. This is overcome in the present system by the expedient of matching
each drawing boundary twice with each query boundary, once traversing the query
boundary in the same direction as the drawing boundary, once in the reverse
direction. Even though this provides only for mirroring about an axis perpendicular to

the canonical start line, it appears to provide an effective (if rather inefficient)
solution in practice.

- inner boundary position, class or shape matching requires inner boundaries to be
processed in a set order, starting with those furthest from the outer boundary centroid
and working gradually inwards. Within a group of boundaries whose centroids all lie
a fixed distance from the outer boundary centroid, boundaries are arranged anti-
clockwise, in centroid angle order (section 3.2.3). The program therefore generates a
second ordering for query inner boundaries, in order to be able to match drawing
inner boundaries in mirror-image order: again, not a totally satisfactory solution, as it
deals with only a single plane of mirroring. :

The success or otherwise of these expedients can be judged from the results presented in
chapter 8.

6.8 Efficiency considerations

Although computational efficiency was considered in section 6.4 to be a design criterion
of minor importance, some discussion of the question is clearly warranted here. In many
ways, the efficiency of a system such as this is unusually difficult to evaluate, as it falls
into the category neither of data processing systems where processing requirements are
so simple that one can assess performance purely by considering file access
requirements, nor of complex mathematical or scientific software where I/O
considerations can be ignored. Both central processing and disc access contribute
significantly to overheads in a system such as this. To assess system efficiency in detail
would be a significant task in its own right.

One can however make a number of general observations. Firstly, all algorithms used
here are polynomial-bounded, setting a reasonable upper limit on the resources they
consume. Most are in fact simple O(n) or O(n2) processes. For example, feature matching
of a single boundary requires one simple set of comparisons for each drawing level
processed, provided global matching or local/existence matching using the simple
features located in boundary level records are used. Disc access is almost certainly the
rate-limiting step here; the matching process is hence of complexity O(n), where n is the
number of levels processed in searching the average boundary.

How does this relate to ¢ and d, the number of levels in query and drawing boundaries?

In the best case, no backtracking at all takes place, so the total number of levels

processed is Max(q,d). In the worst case, Abs(g-d) abortive matches take place for each:
successful one, so the number processed is gd - Min(g(g-1),d(d-1)). In the average case,

one could assume Abs(g-d)/2 abortive matches between the first pair of boundaries, a
number that would effectively halve each time, giving an estimate of Max(q,d)+Absgq-d).

The overall complexity is thus certainly at worst O(qd), and in many cases will be

effectively O(d) for query shapes with relatively few levels, and O(q) for more complex

query shapes.

Local or existence matching using the more complex features housed in poundary feature
records is a less efficient task, as the entire set of feature records for a single leyel of the
drawing boundary has to be read in from disc and compared with corresponding query
records. Whether the rate-limiting step is the reading in of feature records or their
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comparison remains to be established. In either case, however, the processing load per
level is effectively proportional to the average number of feature records per boundary
level in the stored drawing. If penumbral matching is used, additional features have to be
generated and inserted in an ordered feature list, an O(n2) process.

Inner boundary matching uses a version of the level-matching algorithm analysed above
to select boundary pairs for matching. It is therefore reasonable to assume that processing
times for matching Q query inner boundaries with D from the drawing will in the best
case be proportional to Max(Q,D), in the worst case QD - Min(Q(Q-1),D(D-1)), and in
the average case, Max(Q,D) + Abs(Q-D) - again at worst O(QD).

Segment matching is obviously a more computationally-expensive process than feature
matching, as a complete sequence of line segments has to be matched for each level, not
just a single level record. The process is analogous to local/existence matching using
boundary feature records, as discussed above. Again, it remains to be established whether -
the rate-limiting step is the reading in of segment records or their comparison, but in
either case the processing load per level is effectively proportional to s, the average
number of segment records per boundary level. The load is normally limited in practice
by restricting matching to just top and bottom levels rather than comparing all levels, as
for feature matching. Segment matching at the inner boundary level is the most expensive
task of all, as the entire process has to be repeated at least max(Q,D) times, which could
result in a worst-case complexity of O(n3) where n is the total number of segment records
to be compared per drawing.

Some quantitative figures on cpu usage by program RETRIEVE are presented in section
8.4.6 below. '
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CHAPTER 7. INTERFACE DESIGN

7.1 General considerations

The design of a suitable user interface for input of queries and display of results is an
area of crucial importance in determining user acceptability. The problems involved in
providing users with the means to formulate queries of the six types distinguished in the
previous chapter are far from trivial. The systems designer is placed in an awkward
situation by the very nature of the subject. The accurate formulation of a graphical query
is inevitably a tricky and time-consuming task, and one that may well require a certain
modicum of drawing ability. Users have to work much harder to make their wishes
known to the system than with a conventional DBMS or bibliographic retrieval system,
and hence are likely to be less tolerant of poor system performance. '

The question of who would use such a system also has to be addressed. Although "user-
friendly" query languages such as SQL have been offered by commercial database
management systems for many years, experience suggests that few engineers or
managers actually use such facilities direct, except for very straightforward queries. Even
fewer managers use bibliographic retrieval services direct. In both cases, an intermediary
with a detailed knowledge of the database and the query language generally inputs the
actual query, and forwards the results to the original enquirer. The development of
graphical front-end interfaces (see section 7.2.2 below) may alter this situation - though if
one remembers that in their time both SQL and COBOL were hailed as end-user
languages that would make programmers redundant, a measure of cynicism is justified.
The implications for graphical database design are probably that one should aim where
possible for a system that can be used both by inexperienced and skilled operators, and
leave the question of who should use such systems to be settled later.

Four main types of interface have so far been used by graphics database designers:

- Command languages (essentially text-based)

- Menu-driven interfaces (text or graphics-based)

- Example-based interfaces (text or graphics-based)
- Novel graphics systems.

Some of these appear to be inherently more suitable for some types of query than others.
By analogy with bibliographic retrieval systems, one might for example expect 2
command language to prove most suitable for type D retrieval (Boolean feature
combination), while an example-based interface would seem ideal for type F retrieval
(similarity matching)..

7.2 Some existing systems
7.2.1 Command language-based systems

This type of interface, where users type in a series of (textual) commands from .a
formally-defined command language, has been the standard method of access to both
database management and information retrieval systems for many years. Some, like SQL,
are in such widespread use that they have become interational standards. It is therefore
not surprising that most early image database systems relied almost exclusively on
command languages. Database researchers were relatively familiar with their capabilities,
particularly in formulating complex queries, and found a worthwhile challenge in
extending them to cover new types of data. One of the earliest systems of this kind was
GRAIN, already described in some detail in Chapter 1, above. I’he GRAIN laqguage,
based on relational algebra, provided conventional operators allowing retqeval of images
by Boolean combinations of features, as well as additional commands to display retrieved
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pictures as line drawings or raster images, and to invoke user-defined similari
measures. It also had a limited ability to handle queries on spatial relationships betwee?;
items in pictures.

Similar picture query languages described in the literature have included SQUEL i
QUEry Language), described by Herot (1980), and ISQL (Image Strgcmred(s(gzggl,
Language), described by Assmann et al (1984), based respectively on the conventional
query languages QUEL and SQL. Perhaps more surprisingly, the more recent
GRIM_DBMS described by Rabitti and Stanchev (1989) also relies on a text-based
command language for query formulation.

7.2.2 Menu-based systems

Systems where users formulate queries by combining text descriptors or icons selected
from screen displays, are attractive both for their simplicity for casual users, and for their
ability to mix text and graphics in queries if required. Perhaps the most relevant example
of a pure menu-based interface is the DLink feature-based design system described by
Patel (1985). Here, the user chooses desired structural features from a list displayed on
the screen, and combines them to generate a representation of the desired design object to
be fed into a geometric modelling package. A query structure representing a complete or
partial design could be built up in exactly the same way, by combining desired features
(represented either as text or as icons) with specified orientation.

Pure menu-based systems tend to lack flexibility, and can prove tedious in operation for
experienced users. A more recent development that is rapidly gaining in popularity is the
WIMP environment (the acronym standing variously for Windows, Icons, Menus &
Pointers or Windows, Icons, Mice & Pull-down menus, according to taste). This provides
the user with a separate screen window for each task being undertaken, a mouse or
similar pointing device to select appropriate actions (often represented on the screen by
icons) or choices from menus which are "pulled down" when required. Environments of
this type are increasingly being used to provide graphical front-ends to conventional
databases (e.g. Burgess (1986), Wu (1987) and Kim et al (1988)), information retrieval
systems (Frei and Jauslin, 1983), and multi-media databases (Frasson and Er-Radi
(1986), Leong et al (1989)). While each system described in the literature differs in detail
from its neighbours, most offer the user a graphics environment in which they can build
up a query, examine the structure of the database, browse through a thesaurus of
permitted index terms (in the case of the bibliographic system), or display the results of a
search. The use of high-resolution bit-mapped screens allows full mixing of text and
graphics, and some systems can handle surprisingly complex queries (Kim et al, 1988).

7.2.3 Example-based systems

Systems where the user provides a text or graphical example of the kind of output
desired, and the system then searches for the best possible match(es), are again a
potentially attractive proposition where graphical input of queries is required. The QPE
language described in Chapter 1 obviously falls into this category. Like its text-based
parent QBE, it allows the user to formulate queries by filling in a specimen of desired
output on a table displayed on the screen. Unlike QBE, it can display answers In
graphical form (as a sketch or raster image), and permit entry of spatial queries via a light
pen, trackball, or joystick. A wide range of pictorial operators is also supported, allowing
the computation and display of the centre point of a line or region, the line between the
nearest points in two regions, or the union or intersection of any two lines or regions.
However, the majority of commands remain essentially text-based.

Another example-based system briefly described in the literature is ARES (Ichikawa et
al, 1980). While few details of the system are available, it apparently allows users to
input a sample image which is then subjected to a feature extraction process involving
application of error-correcting codes to the bit map of the image, and then matched with
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existing images in the database. The form in which the query image is submitted to the
system is not described.

7.2.4 Novel systems

One completely novel approach to pictorial data retrieval is that of Herot (1980). His
Spatial Data Management System (SDMS), though conceived as a graphical Ciue
interface for a conventional relational database, is in many ways even better suited z
pictorial databases. Entities in his prototype system were displayed to the user as icons
(warships, displayed as silhouettes, were used as examples). A "world view" of the entire
database was shown on one screen; every ship was displayed as a miniature icon, colour
coded to indicate its state of readiness, and grouped to show present location. A second
screen allowed the user to "zoom in”, showing any desired part of the database (e.g. ships
in the Indian ocean) in greater detail. As the user homed in on a particular ship, its icon
was magnified to fill the entire screen, and additional data about the ship (tonnage, speed,-
present commander) automatically displayed. This kind of data organization proved
particularly useful where users simply wished to browse through the database, or had
difficulty in formulating their queries. It was supplemented by a more conventional query
language which could be used to put specific queries to the system.

7.3 Interface design criteria
7.3.1 Query formulation

Criteria for selecting query languages are by no means clear-cut. In their review of query
languages for pictorial databases, Chang and Fu (1981) argued that the most effective
approach to query language design was to extend existing text-based languages, rather
than to design new ones from scratch. While conventional query languages were unable
to handle the full range of pictorial queries, those based on the relational database model
could provide a substantial proportion of the required query facilities, and could readily
be extended without distorting their essential structure. The use of an existing relational
DBMS as the basis for an image database system simplified the design task, as well as
providing useful database features such as applications independence, security and
Integrity.

This view now seems rather naive. Chang and Fu made no attempt to characterize the
type of user they had in mind when comparing query languages - but it seems clear that
the needs of end-users such as geographers or engineers were given scant consideration.
Few end-users have ever been happy with conventional database query languages even
for numerical and text applications - hence the increasing interest (see below) in
graphical front-ends to conventional databases. It is completely unrealistic to expect
engineers to formulate queries to a graphical database in a dialect of SQL!

A more thoughtful review of graphical interface requirements comes from Kim et al
(1988), in the presentation of their graphics-based database query language PICASSO -
which is explicitly designed with end-users in mind. They stress the ease with which
inexperienced users can use graphics-based interfaces to build quite complex queries, and
to explore the structure of a database if required. They suggest four design principles for
graphical interfaces, as follows: '

- The graphical interface should be able to provide information to the user about the
structure of the underlying database;

- The user should be able to formulate queries incrementally, using the results from one
step as the starting point for the next;

- There should be a facility allowing the user to browse the database freely;
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- Graphical feedback should be provided to assist query formulation.

Later workers such as Leung et al (1989) have endorsed and extended these principles
adding two more: s

- There should be consistency between different parts of a language that deal with the
same type of information,;

- The level of detail provided by the syétem at any given point should be user-
selectable.

While some of these points are debatable (how much does an end-user really need to
understand about the underlying structure of a database?), they do- provide a useful
context for evaluating potentially useful features for new systems. ™

7.3.2 Display of results

As proposed above, a graphics database system should be able to provide users with a
choice of output formats. At the lowest level, a graphical query could be satisfied by
display of drawing number or design file name, leaving it up to the user to examine the
drawing or file to establish whether it meets the criteria specified. Most users, one feels,
would expect a drawing of each retrieved object to be displayed, probably in order of
presumed similarity to the query. Some users would undoubtedly require a copy of the
original design file, on which to base a modified design. '

The difficulty of precisely specifying search criteria in advance is also recognized above,
as the need to provide a means of incremental query formulation, so that the user can if
necessary apply a trial-and-error process of formulating a query, running it, examining
the results, and modifying the query accordingly. This clearly implies the need for a
system to be able to display results from intermediate search steps at any time. It also
suggests that the technique of relevance feedback (Salton, 1971) may be of use. Here, the
user first formulates some approximation to a query, the system displays the results, and
the user selects the items which appear most relevant. The system then uses.this feedback
to modify the query, repeating the process until the user is satisfied, or no further
improvement in retrieval performance can be achieved. In a situation where many user
queries may well be ill-defined, such feedback would clearly be highly desirable. Its
implementation as part of a similarity retrieval system is not fundamentally difficult - the
system could simply use drawings selected by the user as queries in their own right.

7.3.3 Applicability of existing types of interface

Command languages (with suitable display facilities for retrieved drawings) can readily

handle type A and D queries as defined above, for either 2-D or 3-D objects. They can bp

used for incremental query formulation, in browsing, or to show database structure if

required. Their limitations stern from the fact that they are essentially text-based. Even

when extended to allow specification of shape or position information, they are far too -
unwieldy for anyone but the most dedicated enthusiast. As far as any 'end—useg, is

concemed, they are effectively unable to handle any type of query which requires

graphical input.

Menu-based query formulation could be used for all types of retrieval, particularly those
involving graphical input (types B, C, E, and F). If used intelligently in a windowing
environment, it can prove sufficiently flexible to be acceptable to most users, both for
specific query formulation or browsing. Incremental query formulation guided by display
of intermediate search results can easily be provided. Menu-based methods may well
prove the only feasible means of formulating 3-D queries.
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Example-based query formulation is an attractive proposition for que

if sample queries can be easily built up on the Is)crgen, or subncxlitte?; gpfliero?;sroI;
sketches. The method is not really suitable for incremental query formulation, and would
be difficult to adapt for 3-D queries, but is well suited to browsing. The main difficulty
lies in ensuring that the example has been described to the system with sufficient
accuracy - a particular problem with sketch input, where some degree of interpretation is
necessary ("are those two sides supposed to be parallel?"). Several sketch interpretation
systems have been described in the literature (e.g. Liardet et al (1978), Kato et al (1982));
these could be used to "clean up” freehand sketches of desired objects prior to feature
analysis and database query as described above. In principle, a language like QPE could
also be used for example-based retrieval. However, its textual bias means that it suffers
from the same inherent problems as command languages, and is thus only really suitable
for type D queries. , :

Novel methods of data organization and display such as Herot's could readily be applied
to an engineering data_base, particularly if used in conjunction with some form of
clustering or parts classification scheme, as suggested in section 6.3.4. Identifying parts
similar to a given object would involve displaying a "world view" ‘of icons representing
typical members of each part family; "zooming in" to a selected part family would then
display each of its individual members, allowing users to identify parts of interest to
them. From the user's point of view, the advantages would be considerable - no query
language to learn; no need to define the query object in any detail; no draughting ability
required; no problems with 3-D objects (as long as desired features could be recognized
from the 2-D drawing). It could well be the method of choice for handling type F
(similarity retrieval) queries - though it would be of little use for formulating specific
queries of types B, C or D. ;

7.4 Interface design for the prototype system

The discussion above has highlighted the need for a shape retrieval system to operate in a
wide variety of query and display modes. No single type of interface is likely to be
suitable for all types of user and all types of query. Any attempt at tailoring interface
design to the needs of specific users at this stage would be doomed to failure - no reliable
information is yet available on how searchers would actually use such a system. '

With this and the design criteria discussed in Section 7.3 in mind, therefore, the eventual
aim of the prototype system is to offer the following query interfaces:

1. An example-based interface, where a complete or incomplete query structure can be
built up on the screen, and then submitted for feature extraction and shape matching as
described in Chapter 6. It is expected that this would be the main method for
specifying type B, C or F queries. Query formulation would use either keyboard input
or a mouse or similar pointing device to specify line type, size and position - the
former where accurate query specification was paramount, the latter where speed and
ease of use was of more importance. A relatively straightforward extension to the
system could allow users to select any retrieved drawing and find those drawings most
similar to it, thus providing a measure of relevance feedback.

2. An extension to (1), in which input could be submitted to the system as a rough sketch,
which could be digitized either by following its outline with a stylus and tablet, or
placing the sketch in front of a digital camera, extracting lines from the resultant
image, and "cleaning up" the sketch as outlined in section 7.3.3.

3. A menu-based interface, allowing users to select and combine query features
(represented as text descriptors or icons), perform Boolean searches on the database,
examine results and amend queries where required, much as envisaged by Frasson and
Er-Radi (1986). This would be the prime method for formulating type D queries.
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4. A browsing interface, based on Herot's ideas as described in the previous secuon
Drawings would be clustered according to similarity measurements compuzes \a‘s
specified in the previous chapter, and icons representing each cluster displaved on e
screen. Selection of an icon would then allow display of all drawings ror sub-classes
in the cluster; selection of an individual drawing would display full informarion abou:
the object and its drawing file. Inexperienced or casual users would normally aCC‘:\‘\t
the database in this mode. ’ .

Between them, these interfaces offer a comprehensive set of query specification tonls
with the ability to handle a range of query types and interaction modes. However. thev
cannot all be integrated with the shape matching process as closely as one would like.
The size and complexity of the shape file needed to represent an example-based query
(see Fig 6.3, in the previous chapter), plus the need to perform canonicalization and
feature extraction on the query shape before matching takes place, mean that formulation
of example-based queries and shape matching must remain loosely-coupled processes.
By contrast, menu-based and browsing interfaces do not require complex intermediate
files to link with the shape-matching process, and can therefore be tightly coupled. The
main implication of this is that incremental query formulation should be much easier for
menu-based than example-based queries, and response times should be significantly
shorter.

Implementation of the full range of options was considered too ambitious a tash to be
attempted within the present project, particularly as some options required speciai-
purpose hardware which was not readily available. Option 1 was selected for
implementation in the initial prototype, on the following grounds:

- it provides a means of formulating the potentially most useful types of query
(similarity matching and partial shape matching);

- its retrieval performance is readily susceptible to evaluation, unlike. say. option 4.
where there is no objective means of assessing how well the system has clustered or
displayed the shapes in the database:

- it could be readily implemented without recourse to special-purpose hardware.

7.5 Implementation of the query formulation module
7.5.1 Overview

The overall purpose of the query formulation interface is to allow a user to build up an
example query shape on the screen, which can then be subjected to feature extraction and
shape matching as indicated in the previous chapter. This effectively requires that the
user is provided with a graphics editor. though one with strictly defined capabilinies
Valid queries obey similar syntax rules to valid drawings - one or more boundaries. each
consisting of one or more line segments, each of which may be a straight line or circular
arc. No boundary segment may touch or intersect any other segment. The only difference
is that query boundaries do not need to be closed.

The query formulation program thus needs to be able to build up such query shapes on
the screen, to allow the user to verify their correctness and modify them if necessarv, and
to store the results in a form that can then be subjected to feature extraction. The most
straightforward way to achieve this is clearly to set a cursor at some (arbitrary: stan
point, and let the user specify length, type and direction of each line segment unul the
query boundary is complete. Each line segment is assumed to start where the previous
segment finishes. Limiting the user's freedom of action in this way makes 1t much easier
to ensure the validity of the final querv. Incomplete boundaries can he handled w0 2
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number of ways, but the most satisfactory is to allow the user to de umm

which can connect two normal boundary segments (Fig 7.1). This }?:setl(:e adv};nstilggr:(teﬁ;
queries qulvmg two strgetchqs of boundary which are not physically connected, but
whose relative position is still important, can readily be specified. It also éatl
simplifies the process of feature extraction, as programs SKELETON CANONGE%;I anﬁ
DATALOAD (?]l of_ which rely on shape boundaries being closed) caI; be readily adapted
to process queries with dummy segments. P

Some of t_he more detailed design options were constrained by the availab

software - DEC VT240 terminals (providing what by today'systandaxg artec?rfi;? :Ivlfgnirnn(}
resolution graphlcs.dlsplays), and GKS (Graphical Kemnel System) graphics. GKS, an
international graphics standard defining a set of routines which can be called from
applications programs to proyide notionally device-independent graphics input and
output, can in theory support virtually any type of interaction between user and machine
However, the low level and stereotyped nature of the functions it prOvides acts as é
severe deterrent to the designer's imagination. For example, GKS provides no functions
to draw a circle on the screen, or to accept numeric input from the keyboard, leaving this
to the applications programmer. There is thus a very strong incentive to choose a design
that is simple to program, rather than one that will prove easy to use.

—————— Dumny segments

Fig 7.1 Use of dummy segments to indicate incomplete query shapes. In
the first example, the three solid segments constitute the query, the dashed
dummy segment notionally closing the boundary but playing no part in
query matching. Hence this query should match with rectangular shapes
of any length. In the second example, the dummy segments indicate that
either long side may include protrusions or depressions - though the
relative positions of the two halves of the query are important, so that it
should match only shapes derived from rectangles of similar length/width
ratios.
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Some features of GKS'did prove useful. It is relatively easy for the programmer to set up
(text) menus from which the program user can choose with a suitable pointing device
(mouse or arrow keys) - though the position of the menu on the screen has to be specified
in device-dependent coordinates. Considerable use was made of such menus for guiding
the flow of control: at each stage, a menu of legal commands was displayed on the right
of the screen, thus preventing the user from selecting an inappropriate command, and
reducing the amount of error-handling necessary. T

Two main options were available for allowing the user to indicate the length and
direction of each line segment: keyboard input, where the user was prompted to enter the
relevant numeric values from the keyboard (as text strings, which were then converted to
numeric values by the applications program), and locator input, where a graphics cursor
was moved around the screen (by mouse or arrow keys) until it reached the desired
position, when depression of a mouse button or the <enter> key made its current
coordinates available to the program. Perhaps surprisingly, the former type of input
proved much more successful in practice for query formulation, as the accuracy of
locator input did not prove sufficient to ensure that supposed right angles really were
90°, or that opposite sides of a supposed rectangle were equal in length within the
tolerances required by the feature extraction programs. Keyboard input was thus used
exclusively in evaluating the initial prototype.

7.5.2 Detailed program operation

On startup, program QUERYFORM displays an initial explanation screen, followed by
an initial choice menu, inviting the user to start constructing a drawing boundary or to
exit the program. Assuming the user chooses the Start boundary option, the system then
creates a header record for that boundary, and prompts the user for the position and start
direction of the first line (see Fig 7.2). Queries are built up in a screen window initially
spanning an X-coordinate range of -120 to +120, and a Y-coordinate range of -100 to
+100. If the user simply hits the <enter> key, the program chooses default values for
boundary start position and direction. Note that although the feature extraction and shape
matching programs make no use of Cartesian coordinates of line end-points or arc
centres, an arbitrary coordinate system has to be used in the query formulation program,
so that GKS can display the query shape on the screen. Most of this can be hidden from
the user, but some fixed starting-point and direction for the whole process have to be
specified.

The user is then invited to choose one of the following commands:

Add line: add a new straight-line segment to the current boundary
Add arc: add a new circular arc segment to the current boundary
Add dummy: add a new dummy segment to the current boundary
Quit boundary: abort construction of the current boundary.

In all but the last case, the system prompts the user for appropriate parameters to define -
the current line, creates an appropriate segment record to hold these parameters, and
displays the resulting line on the screen - as a solid line for a straight-line or circular arc -
segment, as a dashed line for a dummy segment. If the current boundary is not closed (i.e.
boundary start and end points are not coincident), the user is then prompted for the next
command, now having a slightly wider choice:

Add line: add a new straight-line segment to the current boundary
Add arc: add a new circular arc segment to the current boundary
Add dummy: add a new dummy segment to the current boundary
Undo last: remove the last line from the current boundary

Rescale: rescale the current query display

Close boundary: add a segment to close the current boundary

Quit boundary: add a dummy segment to close the current boundary.
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Currently available

= Mmenu choices e
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\

T TrT

T T T T

-ﬁﬁStort bound

X : Exit program

Keyboard
input window

Fig 7.2 Query input screen at start of boundary creation process. Note
use of three separate screen areas for query shape display, keyboard input
and command menu. Coordinate axes are displayed only when boundary
creation is first initiated; the cross in the query display area denotes the
default start position for the current boundary.

The Add line, Add arc and Add dummy commands have the same effect as before, except
that a new line or arc segment is validated by checking that it does not intersect any
existing boundary segment. If it does, the segment is rejected, and the user invited to
enter another command. Undo last deletes the last line from the current boundary, and
may be used repeatedly; Rescale changes the scale of the query display, allowing the user
to zoom in or out as required. Close boundary may be used as a quick way to terminate
boundary construction, allowing the system to calculate the length and direction of the
last segment; Quit boundary effectively allows construction of an incomplete boundary
to be terminated, adding a dummy segment for compatibility purposes.
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A typical input screen with a partly complete query shape is shown in Fig 7.3.

Once the boundary is complete, the user is invited either to enter another boundary or
quit the program. There is no limit to the number of boundaries (or segments) that may
be entered, though the operation of the GKS segment-drawing routines and the validation
procedures which ensure that no line segments intersect make the entry of a complex
shape a somewhat tedious process. If the Quir program option is chosen, and at least one
valid boundary has been created, the program will write the "raw" query formulation to
file, for input to the feature extraction stage. A

7 Currehtly availableT™

Query shape menu choices
Add line

\ \ S~ 2> Add arc
vy =
[ o Add durmy
Coordinates of
current screen
pasition Undo last
7 v
[ : |
\ Rescale -

\>Current coords: -20 50 Current direction 180
Close

Segment length > Quit

Keyboard
input winclow

Fig 7.3 Query input screen showing partly-completed query shape. Note
representation of dummy segment as dashed line.
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7.6 Feature extraction

Before the "raw" query shape can be matched with shapes in th i

uer ¢ . e database, it must be
converted to a similar form. This process involves three separate steps, each
corresponding to one processing stage for stored shapes (see Chapter 3): ’

1. generation of a hierarchical boundary representation;
2. casting the representation into invariant form;
3. feature extraction and query file generation.

Building a hierarchical boundary representation is accomplished by program
QUERYSKI'EL,. derived from program SKELETON (described in sect};onp 3%.3).
Processing is identical, with one exception; dummy segments cannot themselves be
extended to form higher-level segments in shape hierarchies, though they can be included

as bottom-level intermediate segments within such hierarchies (Fig 7.4).

------ Dummy segments — — —— Higher-level segments
generated by hierarchy
builder

Fig 7.4 Rules for inclusion of dummy segments in shape hierarchies.
Dummy segments can be included only as intermediate segments within
hierarchies, as shown in the first example. They cannot themselves be used
as the basis for higher-level segments as in the second example.

Program QUERYCAN casts query representations into canonical form using the same
method as CANONGEN (section 3.3.4). Dummy segments have a length of zero. Hence
when comparing altemative paths around the boundary, a path with a real segment at a
givgn position will always be selected in preference to one with a dummy segment at that
position.
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Program QUERYFEAT extracts all relevant features of the i i

using procedures analogous to program DATALOAD '(sectiglngt)es?arrigegtol?e: I'tlhagttt:itn:i
query representation in a file suitable for input to program RETRIEVE (section 6.6). F
queries without dummy segments, the feature extraction process is exactly as déscﬁbgé
in section 4.5; where dummy segments are present, some features cannot be defined
thath null valfuesthhave to be S(}t.d As indicated in section 6.5, program RETRIEVE tésstg
each query for the presence of dummy segments, an i

matchci:d where necessary. Y S d curtails the range of feature types

The rules for determining feature validity in incomplete query bOﬁndaﬁes ) .
Where dummy segments are present in a given boundpary atqa sg’eciﬁed level gn:ﬁlzgé
global features defined in section 4.4.2 are assigned a value. Local b’ounciary features
(section 4.4.33) are computed where values can be calculated without reference to dummy
segments (Fig 7.5). Inner boundary position features (section 4.4.4) are held to be
dependent on relative positions of boundary centroids, not individual segments, and are
therefore calculated. This is not strictly valid, since the presence of a dummy Se:‘;mcnt-in
the top level of a boundary implies that the boundary centroid position cannot be defined. -
However, changes in the shape of individual boundary segments seldom have a major
effect on the boundary centroid position. It was therefore considered worthwhile to
include such fegtures for boundaries with dummy segments, at least in the initial
prototype, since it was a reasonable hypothesis that their effect on retrieval performance
would be beneficial.

Fig 7.5 Local shape feature generation from incomplete shapes. Arc
angle values are valid for line segments BC, CD, DE and FA;
discontinuity angle and triplet values for angles C and D; arc angle triplet
values only for segment CD.
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7.7 Display of results

As indicated in section 6.6.5, program RETRIEVE allows the user to select one of a
number of output formats, following the principles outlined in section 7.3.2:

(a) A list of drawing identifiers, file names, and difference measures, displayed on the
screen in order of increasing difference from the query (i.e. descending similarity).
The list header contains full details of all run-time parameters specified.

(b) The same output as (a), but directed to a print file (Fig 7.6).

(c) If a suitable graphics terminal is available (DEC VT240 or similar), retrieved
shapes may be directly displayed. The query is first drawn on the screen, then
retrieved shapes, in similarity order, together with identifiers and distance
measures. Drawings are scaled so that up to four may appear on each screen.

(d) The same output as (c), but directed to a-Tektronix plot file (which can also be
displayed on a laser printer - see Fig 7.7). : ' o

(e) The same output as (c), but directed fo a Postécript file for output to a laser printei.

No relevance feedback facility is available at present.
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Match of query DRAWO48 (draw048.QUE ) by RETRIEVE: version 4.0
Drawings searched: 1 - 188 retrieved: 30 jmit: &0 cutoff: 250»06
Init cutoffi1.21 IB weighting - position: 0.20 class: 0.40 shap;: 0.10
Feature Match IB positions only Mirror images All classes |
tocal featurs matching taking minimum level and feature values

Features used - Arc Triplets Farent Features Seglength Distribution
Drawing no File name Similarity Measure
34 ENGO? ©0.30064
147 ENG119 0.30320
164 ENG137 5.7345
34 MORECIRC 3.7451
111 ENG71 4,111i0
74 ENG38 4,1121
102 ENG63 4.19864
127 ENGT4 . 4,2023
74 ENGO34 : - 4,2150
79 ENGO3S - o . A.2438
83 ENG43 o + 2535
140 ENGI14 4,2732
70 ENGOZ3 : 4.3171
101 ENG61 - , 4,3283
g4 ENGO6Z S 4.3283
24 CIRCLES ' - : 4.3471
73 ENG36 4,3500
134 ENG123 4.35%¢6
80 ENG37 4,3492
149 ENG1Z24 4,3777
63 EMG22 4,4044
69 ENG21 4.4273
139 ENG112 4,4432
171 ENGIZ2 4,4478
173 ENG162 4,5259
33 MORECIRC33 4.7934
25 CCIRCLEZ2S 4,8013
137 ENG107 4,.8264
39 TRIANGLE 4.9122
72 _ ENGZ27 4,7484
End of report - total CPU time used (ms) 1790

Fig 7.6 An example of printed output, showing ranking of retrieved
drawings in similarity order.
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Query name DRAW(0S89

Drawings retrieved, in similarity order

Drawing no 108 Drawing no 114
D = 1 , D = 13

|

Drawing no 115 Drawing no 119
D= -~ 53 . - D = 53

Fig 7.7 A graphical display of retrieved drawings, again ranked in
similarity order. Note that the values of the difference measure D shown
here are multiplied by 10 and then rounded to the nearest integer.
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CHAPTER 8. TESTING AND EVALUATION

8.1 Scope of the evaluation process

The preceding chapters have described the SAFARI system, and the reasoning behind the
decisions taken in its design, in some detail. Some measure of evaluation of the prototype
system is clearly required in order to test the basic validity of its approach before further
development can be undertaken. It is perhaps important at this stage to distinguish
between program and system testing, which aims to ensure that the system's design
objectives have been met, and system evaluation, which tries to establish whether these
objectives are in fact worthwhile.

For conventional computer systems such as invoicing or stock control, the distinction
between these two processes is clear-cut. Testing involves verifying that all possible
types of input to the system lead to correct outputs or changes to data stores. For a large
system, this is a decidedly non-trivial task, but can at least rely on the truth of one axiom
- for every input, it is possible to define unequivocally what the system's response should
be. In other words, there is always a set of "correct” values against which the system's
output can be checked. Evaluation, on the other hand, is much more subjective, centring
on aspects such as user acceptability or value for money. Often, it is not carried out at all,
the fact that someone has been prepared to fund the systems development process in the
first place being considered sufficient justification for its existence.

For systems which aim in one way or another to emulate human judgement, the picture is
more complicated. At the lowest level, it is still essential to verify that each system
component behaves in the way its designer intended. Program testing can be carried out
in exactly the same way as for conventional software, by comparing output values with
those expected by the designer. Overall system effectiveness is however a much more
difficult concept to measure, as it may be impossible to define a "correct” output for a
given input. For example, a medical expert system, faced with a given set of symptoms,
may well come up with a diagnosis which one specialist would endorse and another
would reject. Even if further investigation of the patient revealed that the expert system's
diagnosis was in fact correct, one cannot rule out the possibility that it reached the right
conclusion for the wrong reasons. Similarly, a bibliographic retrieval system may
perform according to its designer's specification in that the references it generates in
response to a given query always contain the keywords specified. Whether this set of
references is actually useful to the enquirer (the real criterion of system effectiveness) is
another matter.

One can thus distinguish at least three levels of evaluation for such a system - testing of
program correctness, measurement of system effectiveness, and assessment of overa_ll
fimess for purpose. For prototype systems such as SAFARI, the second of these is
probably of prime importance. This is not to downgrade the _importance of
comprehensive program testing, which is just as necessary here as it is for any other
system. It is simply a recognition that any number of standard techniques are applicable
(e.g. Myers, 1979). ‘

Assessment of a system's overall fitness for purpose, while a key issue for operational
systems or later prototypes, is simply not possible with early prototypes. Such an
assessment requires a variety of factors to be evaluated, including effectiveness in
providing the required output, acceptability of user interface, response times, and cost-
benefit ratios. Most of these factors can be evaluated only when it has been shown thgt
the system does in fact work - and in some cases only after the system has been in
operation for a significant period of time (cost-benefit analysis, for example, requires a
system to have been operational for long enough to have produced measurable effects on
the behaviour of its users).
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Choosing appropriate measures of system effectiveness thus appears to be a crucial issue
The evaluation process requires some objective success criteria to be set, together wiﬂ-i
some reliable way of measuring how well these criteria have been met. What criteria
should be chosen, and how can they best be measured?

8.2 Evaluation techniques used with related systems

One obvious source of evaluation measures would seem to be the literature on related
systems - which raises the question of what kind of system SAFARI really is. This
question is discussed further (and hopefully resolved) in Chapter 9. Meanwhile, one
might expect to look to four related types of system, all of which attempt in some w’ay to
mimic human judgement, for ideas on evaluation - bibliographic information retrieval
systems, expert (knowledge-based) systems, image database systems of the type
described in Chapter 1, and pattern recognition systems. ' .

8.2.1 Information retrieval systems

Information retrieval systems (see chapter 5) have a long history, predating the computer
by a considerable period. Since the mid 1950s, a substantial body of research into their
effectiveness (summarised in Sparck Jones, 1981) has been built up. Six evaluation
criteria, originally proposed for the Cranfield experiments on index language
effectiveness (Cleverdon et al, 1966), appear to have stood the test of time:

1. The recall of the system, i.e. the proportion of relevant material in the system actually
retrieved in response to a query; ‘ : ‘

2. Its precision, i.e. the proportion of retﬂcved matérial that is actually relevant;

3. Its coverage, i.e. the extent to Whiéh all relevant material is included in the system;
4. The time lag between vreceipt of a query and delivery of the system response;

5. The form of presentation of the outpﬁt; |

6. The effort required by the user to obtain search results.

The first two of these measures (illustrated as a Venn diagram in Fig 8.1) can be regarded
as prime indicators ‘of system -effectiveness, i.e. ability to present users with useful
material while screening them from irrelevant information. They have the advantage of
being easily expressible as numeric quantities, thus allowing valid comparisons to be
made between the performance of different systems. The remaining measures are harder
to quantify, and hence less immediately appealing as performance indicators. The third
measure is in any case primarily of interest to the manager of the data collection rather
than to the system designer, while measures 4 - 6 can be regarded principally as-
indicators of user acceptability. :

To assess precision and recall values, it is essential to have some means of judg.mg'the
relevance of a retrieved item to the query. Such judgements are notoriously subjective.
Only the person framing the original query can really tell whether a given documer'lt
contains useful information. Even then, (s)he may well not judge the documents
usefulness by the same criteria as those used to formulate the query. The difficulty of
emulating human relevance judgments accounts for many of the problems of evaluating
that performance. Failure to appreciate these difficulties invalidated a number of early
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Retrieved

IM n N orocicion = MO N
__INI recision = |M|

Recall

Fig 8.1 Diagram illustrating the deﬁniﬁon of precision and recall

studies. Retrieval experiments now normally use either the enqulrérs own relevance
judgements (accurate but possibly idiosyncratic), or that of a panel of independent
experts (objective but possibly based on a misunderstanding of the query).

Despite this, precision and recall (or measures derived from these parameters) have
become the de facto standard for evaluating retrieval systems, or comparing the relative
effectiveness of different types of search strategy or indexing language. For any given
system, they tend to show complementary behaviour as the retrieval cutoff point is
varied. Any action which increases recall (such as broadening the scope of a query) will
decrease precision, and vice versa. Hence one can characterize the behaviour of most
retrieval systems by plotting precision-recall graphs of the type shown in Fig 8.2.

Graphs of this sort are a somewhat cumbersome way of recording effectiveness,
particularly when comparing the relative performance of two systems. A single numerical

measure of effectiveness was first proposed by Swets (1963), who postulated the
following criteria for the ideal retrieval measure:

1. It would be a pure effectiveness measure, r'eﬂecting only the system's ability to
distinguish between wanted and unwanted items;

2. It would be independent of retrieval cutoff point;

3. It would be expressible as a single number;

4. It would provide an absolute scale on which the performance of different systems

could be compared.
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Precision

oy

Recall 1.0

Fig 82 Typical precision-recall graph illustrating the inverse
relationship between these two measures. As a search formulation is
broadened, recall invariably rises and precision diminishes.

His own E measure, based on statistical decision theory, is potentially able to satisfy all
of the above criteria. However, it relies on the assumption that the numbers of both
relevant and non-relevant documents retrieved at a given level of some control variable
(such as depth of indexing or number of search concepts combined) are normally
distributed with respect to that variable. Since this is rarely the case in practice, his .
measure has limited validity and is seldom used.

For systems capable of ranking output in presumed order of relevance, two single-
number measures of effectiveness, which meet the above criteria and make no
assumptions about the underlying distribution of the data, have been proposed. Both were
used in the evaluation of the SMART system (Salton, 1971), and both compare the actual
ranking of retrieved documents with the best and worst possible cases. Normalized recall
(so called because it is computed by considering recall values at each possible document
ranking level) can be computed as: '

n n
E (Ry) - E (1)
i=1 iél

n(N - n)

o

where R; is the rank at which relevant document i is actually retrieved, n is .the total
number of relevant documents, and N the size of the whole document collection. In a
similar fashion, normalized precision is defined as:
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n
E (log Ry) - E (log i)
i=1

s ()

n

It is important to note that either of these measures can stand alone as an indicator of
retrieval performance. Despite their names, normalized precision and recall are not a
complementary pair of performance indicators, nor do they bear an inverse relationship
to each other. The only difference between them lies in the weighting assigned to
different document ranks - the normalized precision measure giving more weighting to
the rankings of the first few relevant documents retrieved, the normalized recall measure
being more sensitive to the ranks of the last few relevant documents retrieved.

Several other composite measures of system effectiveness have been proposed (see van
Rijsbergen (1979), chapter 7), though none would seem to have any compelling
advantages over those outlined above. - '

8.2.2 Expert systems

Whatever performance measures are chosen, the evaluation of an information retrieval
system is essentially a test of its relevance judgements. In the same way, the evaluation
of an expert system is a test of its decision-making. In both cases, it is necessary to
compare performance with that of human subjects faced with the same decisions.
However, the expert systems community does not appear either to have made use of the
formal performance measures described above, nor to have developed its own measures.
(This may of course simply be a reflection of the relative youth of the discipline).

The need for careful and objective evaluation, and the problems of achieving this in
practice, are, however, well recognized by expert systems researchers. The review by
Gaschnig et al (1983) notes the importance of formal testing, though it illustrates the
difficulty of comparing machine judgements with those of humans by comparing the
results of two trials of the MYCIN medical diagnosis system in different hospitals.
Despite identical experimental design, the performance of MYCIN appeared to be
substantially better in one hospital than another, a difference attributed at least in part to
differences in diagnostic style between the two hospitals.

This review contributes a number of generally applicable insights. It stresses the need for
objective standards against which performance can be assessed, the need for careful
experimental planning to avoid bias, the value of sensitivity analysis (testing the effects
on performance of small changes in input parameters), and the value of eliminating as
many variables as possible before measuring system performance. It also lists a2 number
of potential pitfalls, including failure to clarify what is being evaluated, biasing the
results by selecting too narrow a range of test cases, failing to select an appropriate
standard, overgeneralizing from results obtained, and attempting detailed evaluation at
too early a stage of development.

173



8.2.3 Image database systems

While some pictorial database systems, such as those described by Chang et

Chock et al (1984), are designed to handle queries for which zn unegueivglcgll 9"ii?g)h(t)'r'
answer can be defined (such as identifying all grid cells on a given map classified as
"forest”, or calculating the distance between two identified city centres), most have a
wider scope. For example, ARES (Ichikawa et al, 1980), GRAIN (Chang et al 1980) and
REDI (Chang and Fu, 1980) all allow users to input queries involving’ similarity
estimation, which require the system to make relevance judgements. However, none of
these authors present any examples of output from their systems, let alone an e;'aluatio’n
of their performance. The only workers in this area who acknowledge the problem of
achieving acceptable values of precision and recall appear to be Rabitti and Stanchev
(1989) - and even they give no actual evaluation results. :

8.2.4 Pattern recognition systems

Parallels between the SAFARI system and image recognition systems have already been
drawn in Chapter 4. Such systems again aim to mimic human judgement, in this case in
recognizing familiar shapes within a digitized image. Perhaps because most image
recognition systems deal with relatively well-defined situations (such as whether a given
object is present in a given scene or not), the question of evaluation is clearly considered
of less importance than with information retrieval systems or expert systems. If a system
has been designed to decide whether a given image is that of a hammer or a pair of pliers,
there is not much difficulty in deciding whether its decision is correct or not. Even with
more complex recognition tasks, such as identifying, counting and locating (say) steering
knuckles in a whole heap of assorted motor parts, a "right" answer can still be defined
without the need to involve a panel of independent observers. )

Like most of the work on image databases referred to in the previous paragraph, studies
such as those of Yachida (1977), Perkins (1978), Tumey (1982), Bhanu (1984) and
Stockman (1985) thus appear to have little to contribute in the area of evaluation. Indeed,
one might legitimately criticize some of these studies for the small number .of test cases
they use to demonstrate the validity of their approach. '

8.3 Evaluation approach chosen for SAFARI
8.3.1 General observations

The above studies highlight the need for an- objective evaluation of the prototype
SAFARI system, to determine the extent to which its underlying assumptions form a
valid basis on which to build an operational system. Since the system is expected to be
able to handle graphical queries in the same way that a bibliographic system handles text,
performance measures based on precision and recall would seem to be h1gh1y
appropriate. The fact that they can yield a numerical indication of pexfoqnance is
particularly helpful, as one can then readily judge whether any given modification to the
system is likely to be beneficial or not.

Objectivity in the selection of test data, and in the assessment of the relevance of output
shapes to the original query input, are clearly of crucial importance, .th{o‘ugh not easy to
ensure. Also of major importance is the need to limit the scope of the initial evaluation to
those parameters that can realistically be tested with an early prototype. An obvious
example is the need to test system effectiveness (through precision, gecall or related
measures) before making any attempt to investigate the acceptability of the user
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interface. Unless one knows that a system is capable of delivering reliable results
assessing user reactions to its interface is unlikely to prove worthwhile. ’

The prototype version of SAFARI aims primarily to retrieve drawings similar t .

query shape (Type F retrieval). It is thus reasonable to start by %esting theos;s%;ﬁ'l;
performance in this area. Unless the system's judgments of shape similarity can be
demonstrated to be reasonable, there is little point in extending its scope to other types of
retrieval. The decision was thus taken to base initial evaluation purely on the system's
ability to identify and rank those drawings most similar to a given query shape. This
required (a) a reasox.labl.e-sized collection of test shapes both for the database and .to act
as queries, (b) an objective standard for judging the similarity of stored and query shapes
and (c) a reliable measure comparing system performance with the standard. The

following sections describe these aspects in tum.

8.3.2 The test database

Ideally, one would base a test database for a system like SAFARI on a random sample of
all possible shapes from its chosen domain, so that all possible types of shape and
geometric feature stood an equal chance of being represented. Unfortunately, such a
concept is impossible to translate into reality - any attempt at identifying shape or feature
classes in advance immediately introduces an element of prejudice. Failing this, some
collection of shapes assembled for some other purpose, such as drawings of spare parts
stocked by an electrical goods firm, might suffice, though such a collection could well
contain a preponderance of shapes of a particular type. The situation is not unlike that in
the text retrieval world, where many authors (see e.g. Sparck Jones, 1981) have lamented
the lack of comparability of retrieval experiments using different document collections,
and called for standard collections that any experimenter can use.

The logistic difficulties of assembling such a collection of shapes for the evaluation of
SAFARI proved to be considerable. Only a limited proportion of industrial parts falls into
SAFARI's restricted domain of shapes. Hence the drawing collections of local
engineering firms were of little use as collections, even though some of their individual
parts could be used. For the initial test database, therefore, shapes were taken from a
variety of sources - actual machined parts, illustrations from parts catalogues, and
textbooks of engineering drawing (perhaps particularly suitable, as one might expect
examples to be deliberately selected to cover as wide a range of drawing types as
possible) providing the largest numbers of shapes.

The majority of shapes were drawn using the DOGS CAD system at Newcastle
Polytechnic, though: a minority were produced using the MEDUSA system, as a test of
compatibility. In several cases, identical shapes were drawn at different orientations and
sizes, or using different CAD systems, in order to check that SAFARI would in fact
process their different representations in the same way. In all cases, drawings were made
available to the SAFARI system as IGES-format transfer files, as described earlier. The
test database eventually contained 187 such shapes. ‘

The prime purpose of this test collection was obviously to act as a database of stored
shapes against which queries could be put. It also provided the majority of test data for
the shape analysis programs described in Chapters 3 and 4. Log files were generated by
test versions of all programs, and a random selection of these were carefully examined to
ensure that test shapes were in fact being processed as expected. A check was also made
that the segment hierarchies generated by program SKELETON (chapter 3) appeared
intuitively sensible, and program modifications made where (as in Fig 3.33) this appeared
not to be the case.

A subset of this test collection was also used to provide the query shapss for the initial
evaluation experiments. Although it can be argued that such "queries" are somewhat
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artificial, the same can be said of virtually any query shape put to the system at its present
stage of development. It can equally be argued that the only truly realistic way to test
retrieval effectiveness is to use examples of actual queries put to an operational system -
something that is just not possible in the present context, as no operational systems exist
In any case, assessment of the system's ability to rank stored shapes in order of snmlanty

to any given stored shape is a realistic test of any system that aims to provide relevanc
. . h . e
feedback in the way described in section 7.3.2 above. P

8.3.3 Standards for judging similarity
8.3.3.1 Selection of a suitable standard

As discussed above, the only completely realistic standard for -judging retrieval
performance - users' own judgement of the relevance of each stored item to their original
queries - cannot be used at this stage of prototype development because no body of users
or queries exists. Some compromise was therefore essential if any worthwhile yardstick -
was to be defined. Since initial testing was to be limited to type F (similarity matching)
queries, the most sensible approach was considered to be to ask a group of potential users
to identify those drawings from the test database with highest similarity to a series of
query shapes. Assuming some reasonable degree of consensus between subjects, the
results of such an experiment could then yield a reasonably objective indication of the
drawings that the system ought to retrieve in response to each of the query shapes tested.

The only "potential users" available in sufficient numbers and willing to participate in
such an experiment were mechanical engineering undergraduates at Newcastle
Polytechnic. These students were considered acceptable subjects, as there was no reason
to suspect that their judgements of shape similarity would differ materially from those of:
eventual users of any shape retrieval system. All students were skilled in engineering
drawing, and had experience of using CAD systems. It therefore proved relatively easy to
explain the purpose both of the system and of the experiment to them.

8.3.3.2 Experimental design

All 187 drawings in the test database were printed out using a high quality laser printer,
and photocopied on to cards. Two separate sets of cards were produced, the first (printed
on buff card) showing the complete drawing, the second (printed on yellow card to
minimize the risk of confusion) showing outer boundaries only. (This was done so that
the system's performance in outer and inner boundary matching could be judged
separately if required). Since a number of shapes in the database had been drawn with
identical outer boundaries, differing only in inner boundary pattern, this left each "outer
boundary” pack with a significant number of duplicate shapes. With the agreement of
three independent observers (the author's wife and children), 17 such duplicate shapes
were identified and removed from each yellow pack.

16 of the 187 drawings from the buff-coloured "complete drawing" pack were then
selected as "query" shapes by the same observers, without the author's participation.
These 16 drawings were then removed from each pack, leaving 171 to act as "stored
shapes. An identical procedure was adopted for the yellow "outer boundary only" pgckl;
Again, 16 drawings were selected as query shapes (6 identical to "complete dfawmg"
queries, 10 different), and removed from each yellow pack, this time leaving 154 "stored
shapes. The two series of query shapes are illustrated in Figs 8.3 - 8.4 and 8.5 - 8.6.

Two experimental sessions were held, involving a total of 58 students. At each session,
the purpose and background of the experiment were explained, and each student given a
pack of "stored" shapes, a set of 8 "query" shapes of the same colour, and a form for
recording results. Students were then asked to take each "query” shape in turn, and after
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Fig 8.3 The first eight outer-boundary query shapes
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Fig 8.4 The remaining outer-boundary query shapes
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Fig 8.5 The first eight all-boundary query shapes
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Fig 8.6 The remaining all-boundary query shapes
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examining the pack of "stored” shapes, to write down on the form th i

of any stored shapes they considered identical to the query shape, plues ?I?Vt‘;mfigvgus?: e;:
they considered closely similar, in order of similarity to the query. Students all woﬂged
individually, and were allowed up to an hour to complete the task. Quite deliberately
they were given no guidance on how to judge similarity - though at the end of the session
they were invited to comment briefly on the method they had adopted. Nor was an

pressure put on students to complete all eight queries if they were running short of timz
or losing interest. At the completion of the experiment, forms were analysed and counts
recorded of the number of subjects who had ranked each "retrieved" drawing in similarity
positions 0 (identical), 1, 2, 3, 4 and 5.

8.3.3.3 Experimental results

Results for four of the test queries, reflecting varying degrees of consensus, ar '
below in some detail. Full results for all querie:rayre gabulited in Appendix A. © presented :
Query 170 (outer boundary only) produced the most consistent results of any of the
queries. It was one of a series of drawings used to illustrate the effects of changing
dimensional parameters in otherwise identical shapes, so the degree of consensus here
was perhaps not surprising. Table 8.3.1 indicates the number of students ranking each of
the retrieved drawings at the specified position (e.g. 1 of the 16 students considered that
drawing 167 matched the query exactly; 12 of the 16 students ranked drawing 166 third
in similarity to the query). The drawings themselves are illustrated in Fig 8.7.

Table 8.3.1. Query no: 170, no of subjects: 16

Drawing Exact Frequency at ranking position
3

No matches 1 2

167 1 13 1 1 0 0
169 0 0 13 2 1 0
166 0 3 -1 12 0 0
168 0 0 1 1 5 7
172 0 0 0 0 9 6

Query 89 (all boundaries) again elicited a high degree of consensus with the highest-
ranking drawings (11 of the 13 subjects judging query 89 considered shape 108 to be
identical to the query, and 12 that shape 114 was the most similar of those remaining).
Although there was a good measure of agreement over which remaining shapes should be
included in the similarity listing (apart from drawing 150, selected by only one student,
and which seemed, at least to the author, a distinctly eccentric choice) there was little
consensus over their actual ranking. Students' choices are listed in table 8.3.2, and
illustrated in Fig 8.8.

Table 8.3.2. Query no: 89, no of subjects: 13

Drawing Exact Frequency at ranking position

No matches 1 2. 3
108 11 1 0 0 0 0
114 0 12 1 0 0 0
115 0 0 4 5 1 0
119 0 0 3 1 4 0
90 0 0 2 3 3 1
150 0 0 0 0 0 1
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Drawing no 167

Drawing no l69
Drawing no 166 Drawing no 168
Drawing no 172

O——0O

Fig 8.7 Students’ judgements of the five shapes most closely resembling query shape 170,
based only on outer boundary shape
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Drawing no 108 Drawing no 114

]

Drawing no 115 Drawing no 119

Drawing no 90 Drawing no 150

3 O °f

Fig 8.8 Students’ judgements of the shapes most similar to query shape 89, based on the
complete shape (outer and inner boundaries)
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Two examples of queries where less consensus was apparent are also presen

Query 175 (all boundaries) has a longer 'tail' than the ?vgo previous exax%ples tzgdhf;%
schools of thought could be distinguished, one giving drawing 27 the highest s’unxlanty
the other favouring drawing 82 (Table 8.3.3). Examination of the drawings themselves
(Fig 8.9) suggests a possible explanation - students preferring drawing 27 could have
been looking primarily for outer-boundary similarity, while those favouring 82 gave
more weight to similarities in inner boundary pattems.

Table 8.3.3. Query no: 175, no of subjects: 12

Drawing Exact Frequency at ranking position
No matches 1 2 3 4 5

82
27
87
37
145
31
83
24

oocoocoocooco
OO0 OoONR U
COHORWHWL
OHOWRWHEN
HoOOROWHO
cooNMUORO

Finally, query 32 (outer boundary only) illustrates a case where students showed little or
no agreement after position 2 on the list (Table 8.3.4; Fig 8.10). The most plausible
explanation for this is that there were in fact only two drawings similar to the query shape
in the entire pack. Support for this view comes from the fact that 9 of the 16 students
judging this query left positions 3, 4 and 5 in their lists blank. Again, however, consensus
was apparent in the choice of the first two drawings selected.

Table 8.3.4. Query no: 32, no of subjects: 16

Drawing Exact  Frequency at ranking position

No matches 1 2 3 4 5
33 0 13 0 0 1 0
82 0 0 9 1 0 0
87 0 0 1 2 2 0
23 0 0 2 0 0 0
145 0 0 0 1 2 1
138 0 1 0 0 0 0
161 0 0 1 0 0 0
102 0 0 0 1 0 1
66 0 0 0 1 0 0
29 0 0 0 1 0 0
24 0 0 0 0 1 0
128 0 0 0 0 1 0
118 0 0 0 0 0 1
39 0 0 0 0 0 1
65 0 0 0 0 0 1

It is left for the reader to judge for him or herself whether these rankings are plausible. In
the author's view they are, though in a sense this is a secondary point. The main
conclusion that can be drawn is that the students' judgements were largely consistent, and
therefore a reasonable base from which to derive similarity rankings for use in evaluating
the prototype version of SAFARI.
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Drawing no 82

Drawing no 87

Drawing no 145

Drawing no 83

Drawing no 27

Drawing no 37
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'Drawing no 31

Drawing no 24

Fig 8.9 Students’ judgements of the shapes most similar to query shape 175 (all

boundaries)



Drawing no 33 Drawing no 82
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Drawing no 87 Drawing né 23
Drawing no 145 Drawing no 138

I Yl

F ig,; 8.10 Some of the shapes students judged similar to query shape 32 (outer boundary
only)
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8.3.3.4 Subjects' comments on the process

Some useful insights into subjects' methods for matching query shapes can be gained
from thq comments that some of them recorded. Students matching shapes only on outer
boundaries had fewer cues to go on, and this was reflected in some of their comments;

"I chgcked all query shapes, sorting out all shapes that looked nothing like the
queries, occasionally taking out 'similars' strikingly similar to the query shapes
then.SOEted through the remaining 'similars’, picking out those most similar to the
queries

"I looked for geometric similarities first, then subdivided the closest ones by size
and number of correct features" .

"Primary shape sort; final shape sort; leave sorted shapes out of pack"

Note the principle of rapid screening to remove totally unsuitable shapes, followed by
more detailed consideration of those remaining.

Students working with all-boundary queries made similar comments to those above, but
also gave more specific clues to their method of working, e.g:

"Identify major outline; major shapes, both intemnal and external; compare minor
shapes/variations” A

"Look for major outer shape initially, then any significant internal shapes; finally
narrow down slight differences" _

"Shape first, contents (circles, etc) second - unless close similarities here; extemal
attributes last" '

This suggests that the order in which SAFARI performs its matching operations (overall
outer boundary shape, inner boundary pattern, then detailed shape comparison) may find
parallels in the way human subjects assess shape similarity. '

8.3.3.5 Derivation of standard similarity rankings

The remaining task in this phase was to derive a composite ranking of stored drawings in
order of similarity to each query. In many cases (such as query 170), the ordering was
obvious - one simply needed to pick out the highest-frequency rank for each drawing
from the tables above. In others (such as query 175) it was not. A combined rank-
frequency score was thus devised to allow a single ranking for each query. A number of
alternative measures were considered. The simplest was the sum of weighted rank
frequencies:

i=0

where f; is the number of rankings for each drawing at position i, with { = 0 for exact
matching. This suffers from the problem that one has to assign arbitrary ranks to
drawings which fail to appear in all lists in order to avoid unrealistically low scores. A
variant which avoids this problem is:
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F' = E £, % (6 - i)

i=0

though it could be argued that this gives insufficient weight to exact or very similar
matches. It also requires normalization to allow for variation in the number of
respondents. The final measure chosen, S, defined as:

(£g+0.7*£1+0.5%£)+0. 3% £3+0. 2% £4+0. 1% £c)

n

overcomes these problems. (Again, f; is the number of rankings for each drawing at
position Z, and » is the total number of subjects performing the test). It is a true similarity
measure in that a value of 1.0 indicates all subjects consider query and stored shapes to
be identical, while a value of 0 indicates that no subjects consider there to be any
similarity between query and stored shapes. The higher weightings for earlier rankings
reflect the presumed importance of high similarity ratings. Drawings were then ranked in
order of S value, as shown in Appendix A. : =

The final decision to be taken concemed cutoff point. As already observed, the long 'tail'
of entries for query 32 is almost certainly a reflection of some subjects’ desire to make
sure all the boxes on their results forms were filled, rather than any real conviction that
the drawings were particularly similar to the query. To use these results to judge system
performance would not seem reasonable. An arbitrary cutoff was therefore applied - any
drawing whose S score was less than 0.1 was deemed not to be sufficiently similar to the
query and was therefore dropped from the list. '

8.3.4 Measures of system performance

From the discussion above, it should be clear that the most appropriate measures of
system effectiveness for use with SAFARI are precision and recall, or some parameter
derived from them. Single-value measures have obvious attractions, and those defined fqr
the SMART system would seem to be particularly appropriate. Like SMART, SAFARI is
an experimental system aiming firstly to establish the fundamental validity of its
approach, but eventually to throw light on the effectiveness of different methods of shape
indexing and searching. Again like SMART, SAFARI ranks all output in presumed '(')rder
of similarity to the query, rather than setting an arbitrary cutoff between "retrieved” and -
"not retrieved” items. At least at present, the shape collections it houses are small enough
that users can if necessary examine every item in the database for relevance to provide
the standards necessary to judge system performance. Hence the standard measures
chosen to judge the retrieval effectiveness of SAFARI were the normalized recall and
precision measures P, and R}, defined in section 8.2.1.
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8.4 Evaluation of SAFARI's retrieval effectiveness
8.4.1 Design of evaluation experiments

Experimental design for this phase of the study was relatively straightforward. Dummy
query files were generated from the database for all 26 query shapes in the format
illustrated in Fig 6.3. A batch version of program RETRIEVE was created, allowing run-
time parameters to be input from a command file, thus creating a permanent record of the
parameter values used. Printed output was generated in the format shown in Fig 7.6
showing similarity rankings and distance measures of all retrieved drawings. Cutoff
limits for these experiments were set artificially high to ensure that all drawings
identified in the human shape matching experiments were actually retrieved by the
system, however low their ranking. In order to ensure that similarity rankings were
directly comparable with those generated by the students, the program could be set to
ignore all drawings whose identifiers were on a specified "stop list" (the electronic
equivalent of removing query and duplicate cards from the drawing packs as described in
section 8.3.3.2). .

For each query, the similarity ranking of each drawing identified as relevant in the human
shape-matching experiments described in section 8.3.3 was recorded, and entered on a
spreadsheet containing the formulae required to calculate values for the P, and R,
measures defined in section 8.2.1 above - either for individual queries, or for the entire
set of queries relevant to a given set of run-time parameters. As indicated in section 6.6.1,
it is possible to specify a number of different run-time parameters for each search
conducted, including the matching paradigm to-be used, the precise combination of
feature types selected, the level of search exhaustivity, and the relative weighting of
difference measures calculated by different parts of the matching process. In order to
judge the potential of each matching paradigm,.a large number of test runs was
performed, each using a different combination of run-time parameters, in order to find
the most effective level of exhaustivity and set of shape features to be used with each
paradigm. For example, the most effective combination of features found for local feature
matching was to use arc angle, discontinuity angle and parent feature distribution
features as defined in section 4.4.3 to compare outer boundaries, and the boundary
pattern features defined in section 4.4.4 to compare inner boundary positions.

Varying the level of search exhaustivity or the number of feature types used in matching
in fact made very little difference to performance once a certain minimum threshold was
passed. Hence no exhaustive attempts were made to identify the optimum combination of
parameters once this performance plateau was reached. The main lessons to be leamnt
from these preliminary experiments were that to give adequate retrieval performance it
was necessary (a) to use at least two feature types in the calculations, and (b) to base
overall difference measures between query and stored shape boundaries on the single
most closely matching pair of boundary levels, rather than averaging difference measure
over all boundary levels. Detailed results of these preliminary tests are omitted from this
thesis for reasons of space, but are available from the author on request. Except where
otherwise indicated, the results presented below are all based on what is believed to be
the most effective combination of search parameters for that search paradigm.

8.4.2 Detailed resuits from typical‘ queries

Some results from a typical search are illustrated in Fig 8.11, and presented in tabular
form below. The results shown in the figure are based on existence matching (as defined
in section 6.6.3.4) using features based on parent feature and arc angle distribution
(features 6, 8, 10 and 12 from the list in section 4.4.3), followed by segment matching as
defined in section 6.6.4. This combination, though far from optimum with all queries,
was found to give good all-round performance in most situations.
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Drawings retrieved, in similarity order
Drawing no 8

Drawing no 6

D = '
6 D = 14
Drawing no 7 Drawing no = 92
D = 16 D = - 20
Drawing no 99 Drawing no 129
D = 51 - D = 66

EE;E;;
Drawing no 4 Drawing no 45
D = 92 D = 94

[ —

[

Fig 8.11 Results from SAFARI (using existence matching followed by segment matching)
for query shape 9 - illustrating the eight stored shapes judged to be most similar to the
query
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Table 8.4.2.1 shows the first 12 drawings retrieved in response to this query, respectiv
using global feature matching as defined in section 6.6.2 (using all gle rg)i’ob:c\slp featu;l:}s]
listed in section 4.4.2), local feature matching (as defined in section 6.6.3.3), and
existence matching, both based on the parent feature and arc angle distribution fca;tures
enumerated above, followed in each case by segment matching.

Table 8.4.2.1 - system response to query shape 9

Global matching Local matching Existence matching
Drawing Difference Drawing Difference Drawing Difference
No Measure No Measure - No Measure
8 0.61 8 0.61 ) 0.61
6 1.38 6 1.38 6 1.38
7 2.73 7 2.12 7 1.58
4 4.50 45 5.41 192 2.04
99 4.70 94 5.45 99 5.07
45 4.75 4 5.51 129 6.56
94 4.78 99 7.30 4 9.23
92 6.72 3 8.80 45 9.40
28 7.01 28 9.44 - 94 9.41
57 8.22 165 10.33 128 9.46
50 8.38 92 10.42 120 9.71
60 8 11.68

.38 1 10.80. 50

All of the 12 shapes retrieved in response to this query (an asymmetric bracket) show
some family resemblance to the query, though the resemblance is perhaps less obvious
with some of the later shapes. The results compare well with student judgements of
relevance (Table 8.4.2.2): :

Table 8.4.2.2

Drawing Similarity
No Measure
8 0.600
6 0.583
7 0.292

The three methods of matching also agree with each other remarkably well over the first
three drawings retrieved, though they diverge considerably over the lower rankings. Note
that the actual values of the difference measure D have no significance for the system
other than as a way to rank drawings in order of presumed relevance to a query. The fact
that drawings 8 and 6 have the same D values for all three methods reflects the fact that
both of these drawings were judged identical to the query at the feature-matching stage.
Only at the segment-matching stage (common to all three methods) was any difference
detected.

Some measure of the robustness of these rankings can be gained by examining D values.
In the case above, the first three rankings in each list look reasonably secure. However,
the next four D values in the global matching list are all very similar, and a very small
change in parameter weightings could easily have resulted in a d1f_ferent ordermg for
drawings 99, 45, 94 and 92 - emphasizing the importance of presenting the user with D
values as well as actual rankings. Ideally, one might expect some step change in D values

191



between the last "relevant" drawing and the first "non-relevant" one, though this would
be a very severe test of a system's discriminating power.

The results from another typical query are shown in Fig 8.12 and Table 8.4.2.3 though
here the system's performance is not quite so good, and a higher cutoff is néeded to
retrieve all shapes judged relevant by students. Again, the diagram shows the results of
parent feature and arc angle distribution-based existence matching followed by segment
matching, while' the table below compares global feature matching, local feature
matching and existence matching. Most of the 20 retrieved shapes are again a plausible
response to the query, though some (such as drawing 168) contain features which human
judges considered undesirable.

Table 8.4.2.3 - system response to query shape 47

Global matching Local matching Existence matching
Drawing Difference Drawing Difference Drawing Difference
No Measure No Measure No Measure
59 0.00 59 0.00 59 0.00
142 0.60 142 0.38 142 0.37
53 0.91 53 0.55 53 0.50
168 6.21 168 3.30 15 2.04
68 6.68 68 8.05 68 2.48
134 10.66 15 17.04 168 5.98
187 11.30 134 19.43 78 14.39
12 12.64 187 - 20.01. 172 14.51
36 15.33 172 20.33 36 19.21
174 17.26 - 151 20.70 134 19.71
15 17.51 36 21.72 187 20.34
172 17.98 174 22.00 151 20.74
151 18.60 26 - 24.06 12 20.84
26 18.68 .12 - 24.83 174 22.32
98 19.86 98 25.73 167 27.22
31 23.09 167 26.86 166 27.53
78 23.59 78 27.08 169 27.62
3 27.59 170 28.04 170 27.86
108 28.33 3 31.67 125 29.82
89 28.35 166 32.65 26 29.98

This compares modefately well with student judgemeﬁts of relevance (Table 8.4.2.4):

Table 8.4.2.4

Drawing Similarity
No Measure
59 0.883
53 0.567
142 0.492
68 0.183
12 0.150

Again, there is a high degree of agreement between the three methods used over the first
three rankings, though divergence sets in lower down the list. The system appears to be
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Drawings retrieved, in Similarity order

Drawing EO 59 DraWing no 112
D = 0 sz
= 4
Drawing no 53 Drawing no 15
Drawing no 68 Drawing no 168
D = 25 ' D = 60
@)
Drawing no 78 Drawing no 172
D = 144 D = 145

§(>o' O——0

Fig 8.12 Retrieval results for query shape 47, again illustrating the eight most similar
stored shapes
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quite good at picking out very similar drawings, but perhaps less good at predicting h

human subjects will rank less similar items. Drawing 12, foI:' examgle, doesp not appgar (t)ﬂvz
position 14 on the local feature matching list, and 13 on the existence matching list
Some possible reasons for relative retrieval failures such as this are discussed below.

8.4.3 Comparative results - outer boundary queries

System rankings of drawings deemed relevant by student judges are presented below for
three of the 16 queries. (Results for the remaining queries are shown in Appendix B).
Four different system rankings are shown in each case, each resulting from a different
method of similarity estimation, as listed below. In each case, the parameter combination
chosen was that which was found to give the best overall retrieval performance.
Matching was obviously limited to drawing outer boundaries for these experiments.

- global feature matching, based on all the global features listed in section 442,

- local feature matching, based on arc angle distribution, discontinuity angle
distribution and parent feature distribution (features 6, 7 and 8 from the list in section
4.43);

- existence matching, based on the parent feature and arc angle distribution features
listed earlier (6, 8, 10 and 12 from the list in section 4.4.3);

- segment matching, combining top and bottom-level 6-s matching as defined in
section 6.6.4.1, with an attenuation factor of 0.3 (section 6.6.4.2).

Results are presented in tabular form for each query, showing for each method the rank at
which each drawing judged relevant by human subjects was actually retrieved, and
normalized recall and precision measures R, and P . Retrieved drawings are listed in the
order in which they were ranked by human subjects. The query shapes are illustrated in
Fig 8.5. : ’

Table 8.4.3.1 - Query shape 44

Drawing Global Local Exist Segmatch

No rank rank rank rank
42 9 1 7 1

41 3 5 3 3

43 : 15. 11 35 13
180 5 8 14 51
104 2 4 2 14

40 - 30 3 8 17

R 0.9516 0.9876 0.9459 0.9122
P, 0.7822 0.9154 0.7693 0.7244

This was a query where local feature matching performed well, and other types of
matching gave adequate results. All feature matching methods readily detected similarity
between the query (a scalene triangle) and other triangles of similar shape. (dravymgs 41,
42 and 104), even where the ends were rounded off, though global matching failed with
drawing 40, where corners were rounded off to a very marked extent. The system was
less successful in finding the two right-angled triangles 43 and 180; the query shape
contained no right angles, so the system made no attempt to look for them.
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Table 8.4.3.2 - Query shape 75

Drawing Global Local Exist Segmatch

No rank rank rank rank
83 1 1 1 9
140 3 2 13 3

74 20 12 8 1

76 2 6 5 7

R, 0.9733 0.9817 0.9717 0.9833
P, 0.9049 0.8942 0.8183 - 0.8781

Generally good performance, though each method had at least one flaw. Students judged
four stored shapes similar to the query, a circular disc with four rectangular notches
equally spaced around its circumference. All were basically circular, but 83 (like 75) had
four notches, 140 had two, 74 was a perfect circle, and 76 had two rectangular
protrusions on its circumference. Both global and local feature matching performed
adequately, though giving too low a rank to the perfect circle (which generated few
feature types). Existence matching (based on a search for arc angle triplets and parent
features) ranked drawing 140 too low, and segment matching retrieved drawings in
reverse order of similarity!

Table 8.4.3.3 - Query shape 120

Drawing Global Local = Exist Segmatch
No rank rank rank rank
129 2 1 4 83
118 1 -2 2 118
124 21 . 21 1 141
128 3 8 3 1
R, 0.9717 0.9633 1.0000 0.4450
P, 0.9021 0.8441 1.0000 0.3526

An excellent result for existence matching, fair for global and local feature matching, but
hopeless for segment. matching. Students' judgements here seemed to have been based
purely on angular similarity. In response to a query in the form of an E-shaped bracket
with the central arm significantly shorter than the others, they retrieved shapes with
equal-length arms (129), with an almost non-existent central arm (128), and with a
central arm longer than the others (124). Existence matching using arc angle triplets and
parent features proved most successful here (alone proving able to retrieve drawing 124
at a reasonable rank), almost certainly because this emphasized angular similarity rather
than similarity in feature size. - ' :

8.4.4 Comparative results - all-boundary queries

System rankings of three of the 16 all-boundary queries are presented below in a similar
format (results for the remaining queries are presented in Appendix B). In this case, five
different system rankings are shown for each query, each resulting from a different
method of similarity estimation, as follows:
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- global feature matching, again based on all global features;

- local feature matching, based as before on arc an le, discontinuity angl
feature distribution; & ty angle and parent

- existence matching, again based on arc angle and parent feature distribution, arc
angle triplet and parent feature composition features; :

- segment matching as defined above, combining outer boundary 6-s matching with
inner boundary position matching, as defined in section 6.6.4.3.

- segment matchiing combining outer boundary 6-s matching with full inner boundary
shape matching, as defined in section 6.6.4.3. :

Results for each query are presented in the same form as for the outer-boundary queries

in section 8.4.3 above, comparing system rankings and R, and P, measures for each
shape-matching method. The query shapes themselves are shown in Fig 8.6.

Table 8.4.4.1 - query shape 49

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
61l 4 2 1. 8 5
88 1 3 .20 14 8
56 3 1 2 12 6
110 2 4 7 7 3
R, 1.0000 1.0000- 0.9701 0.9536 0.9820
P, 1.0000 1.0000 0.8584 0.6559 0.8040

Shape 49, a rectangular plate with one comer chamfered off, proved a useful
demonstration of the system's power to distinguish between closely similar shapes. The
feature matching methods (particularly global and local feature matching) had little
difficulty in identifying the four desired shapes from over 60 similar straight-edged
drawings. Existence matching performed less well, though the low ranking of drawing 88
(and to a lesser extent drawing 110) was in fact a problem caused by the feature set used
rather than by existence matching per se. As shown in Fig 8.13, drawings 56 and 61 (but
not 88 or 110) are fundamentally rectangular. Hence the top-level shapes of drawings 56
and 61, and the status of their low-level line segments, are quite different from thosp of
drawings 88 and 110. The feature set used here for global and local matching emphasmed
line curvature and discontinuity angle, with successful results. Existence matching, by
contrast, used more complex parameters such as arc angle triplet and parent feature
composition, emphasizing the difference between those shapes which were b_as1cally
rectangular (56 and 61) and those which were not (88 and 110). Segment matching was
not conspicuously successful, though the addition of inner boundary shape matching
markedly improved its performance, successfully rejecting shapes whose inner
boundaries were not all circular.
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Drawings retrieved, in similarity order

Drawing no 56 Drawing no . . 61
D = 25 D = 26
o o
OO @) O
O
O O
Drawing no 110 . Drawing no 88
D = 38 ' : D = 39
O
o O

Fig 8.13 Results for query shape 49; two of the retrieved (and relevant!) drawings (61
and 56) are clearly derived from underlying rectangles, while the other two (88 and 110)
are not.
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Table 8.4.4.2 - query shape 100

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
105 1 2 5 92 4
181 6 1 19 33 25
178 71 4 20 32 15
R, 0.8571 0.9980 0.9246 0.7004 - 0.9246

Py 0.6869 0.9789 0.5771 0.2881 0.5945

An unusual seven-sided shape which caused the system some difficulty. Only local
feature matching proved really equal to the task of identifying all three shapes
(containing five, ten and eight sides respectively) deemed similar by student judges.
Global matching failed dismally with drawing 178, almost certainly because this shape
was much more regular than the other two, and hence had much lower values for length
and discontinuity angle variances. Existence matching also performed poorly, ranking
drawings 181 and 178 too low because they contained too few of the required types of
arc angle triplet or parent feature composition. Segment matching proved the worst
method of all, almost certainly due to differences in outer boundary starting point, at least
where inner boundary matching was based solely on. position. Where inner boundary
shape was taken into account, performance improved markedly - to be expected given the -
close similarity of inner boundary shape between the query and all retrieved drawings.

Table 8.4.4.3 - query shape 154

Segmatch Segmatch

Drawing Global | Local Exist rank rank
No rank rank rank (position) (shape)
149 1 1 1 2 9
171 2 2 2 1 1
79 3 3 5 5 8
83 6 7 4 19 22
74 4 4 8 6 3
Ry 0.9988 0.9976 0.9940 0.9783 0.9663
P, 0.9913 0.9839 0.9530 0.8921 0.8237

An exercise in inner boundary matching, as illustrated in Fig 8.14. The query, and hence
most retrieved shapes, were circular discs with complex patterns of inner boundaries. All
three feature-matching methods performed well, and segment matching performed better
than on many queries. Its only real "failure" was with drawing 83, which did not have a
completely circular outer boundary, and was thus rankegl’ below many drawings which
did - possibly indicating that the relative weighting given to outer boundary shape
similarity was too high here. The fact that segment matching using inner boundary s}}apes
gave poorer results than when using position matching suggests that there may still be
room for improvement in selection of the order in which inner boundaries from query and
drawing are matched with each other.
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Drawings retrieved, in similarity order

Drawing no 171 Drawing no 149
D = 4 D = 5

Drawing no 74 | Drawing no 79
D = 16 ' D = 17
O O O
O O O oQo
(ONN®
O

Fig 8.14 Illustration of inner-boundary shape matching with query 154
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8.4.5 Comparison of matching techniques

Tables 8.4.5.1 and 8.4.5.2 below present comparative P, and R

n Scores for each query,

together with the median, mean and standard deviation of all scores for each group of
queries. Statistical analysis of P, and Ry, scores for each of the shape-matching methods
was performed to establish whether any of the methods performed consistently better
than the others. The non-parametric Wilcoxon matched-pairs, signed-rank test was used
since scores for each query for each pair of methods being compared formed comparablé
pairs, and no information was available about the underlying distribution of the data.

Table 8.4.5.1 - P, and R, scores for outer boundary queries

Global Local Existence Segment
Query no matching matching matching matching

score score score score

32 R, 0.9671 0.9474 0.9375 0.8355
P, 0.7442 0.6372 0.6177 0.6524

44 Ry 0.9516 0.9876 0.9459 0.9122
Py 0.7822 0.9154 0.7693 0.7244

46 R, 0.9906 0.9879 0.9799 0.9275
P 0.9408 0.9228 0.8877 0.7529

47 Ry 0.9910 0.9820 0.9764 0.9561
Py 0.9505 0.9181 0.9026 0.8647

57 Ry 0.9470 0.9316 0.9581 0.8940
P, 0.7155 0.6674 0.7278 0.5944

62 R, 0.9517 0.9181 0.8872 0.9517
P, 0.8029 0.7625 0.7116 0.8301

67 R, 1.0000 1.0000 1.0000 1.0000
P, 1.0000 1.0000 1.0000 1.0000

72 R, 0.9933 0.9867 0.9933 0.7917
Pa 0.9049 0.8400 0.9049 0.3626

75 R, 0.9733 0.9817 0.9717 0.9833
P, 0.9049 0.8942 0.8183 0.8781

103 R, 1.0000 0.9978 0.9890 0.9978
P, 1.0000 0.9784 0.9058 0.9784

115 R, 0.9934 1.0000 1.0000 0.9757
P, 0.9479 1.0000 1.0000 0.8436

120 Ry . 0.9717 0.9633 1.0000 0.4450
Py 0.9021 0.8441 1.0000 0.3526

170 R, 0.9973 0.9879 1.0000 0.3570
P, 0.9835 0.9420 1.0000 0.2993

175 R, 0.9866 0.9208 0.9705 0.9651
P, 0.9228 0.7424 0.7991 0.8413

176 R, 0.9603 0.9823 0.9558 0.9073
Py 0.8537 0.9023 0.7265 0.7477

183 Ry 0.9917 0.9983 0.9983 0.9333
Pn 0.9368 0.9868 0.9868 0.7012

Ry Median 0.9886%F  0.9845" 0.9781% 0.9304
Mean 0.9792 0.9716 0.9709 0.8646

S.D. 0.0187 0.0283, 0.0309 0.1901

Py Median 0.9139 0.9088 0.8951 0.7503
Mean 0.8933 0.8636 0.8505 0.7140

S.D. 0.0889 0.1135 0.1225 0.2152

Asterisks indicate performance differing significantly from that for segment matching

(Wilcoxon matched-pairs signed-rank test),
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The scores obtained with these test queries suggest that the SAFARI system is capable of
yielding an acceptable level of performance. R, and P, scores compare favourably with
those obtained for document retrieval in the SMART experiments, where R_ values
typically varied between 0.9 and 1.0, and P, values between 0.6 and 1.0 (Saltonn 1971)
All three fcatu;e-matching methods (particularly global matching) gave perfo’rmancé
markedly superior to the segment-matching methods, for both outer-boundary and all-
boundary queries, though no one method stood out as significantly superior to either of
the others. Full segment matching of all inner boundary shapes appeared to give
marginally better performance with all-boundary queries than matching limited to inner
boundary positions, though the differences observed with the test queries were not
significant. It is perhaps worth noting that differences in median scores between segment
and feature matching methods were less striking than those in mean scores - suggesting
that an important aspect of feature matching's superiority is its success in avoiding
disastrous results such as those seen with segment matching on queries 120 and 170.

The fact that all three feature-matching methods could be "tuned" to give comparable
levels of performance (albeit with different combinations of parameters) suggests that a
wide range of feature types could have been used successfully in these circumstances. It
is perhaps noteworthy that the optimum levels of performance observed with local
feature and existence matching were based on three and four basic feature types
respectively. Adding extra feature types, or introducing more sophisticated techniques
such as penumbral matching (section 6.6.3.5), caused a slight but measurable decline in
performance for the query shapes tested. Some of the simplest methods thus gave the best
results, a phenomenon not unknown in the text retrieval field (e.g. Sparck Jones, 1981).

On the basis of these results, it is hard to justify the use of segment matching as a
technique on its own. Although it appears to be a valuable technique for determining
whether shapes are identical, problems in determining the correct start point for 6-s
matching in a heterogeneous set of shapes effectively rule it out as an effective general
technique for similarity estimation. Its usefulness for similarity matching thus stands or
falls on the degree to which it is effective in combination with one of the feature-
matching techniques, where segment matching is used to discriminate between shapes
retrieved by a preliminary feature matching step, as outlined in section 6.5. The fact that
segment matching does appear to be a sensitive discriminator of closely related shapes is
suggestive evidence that combined matching could prove effective.

Tests were thus run to compare the retrieval performance of each of the three feature-
matching methods alone and in combination with segment matching. The same parameter
sets were chosen for each type of feature matching as in previous experiments; where
combined matching was used, the set of drawings retrieved by feature matching was then
subjected to segment matching at the most appropriate level (outer boundary only for
outer-boundary queries, inner boundary class and size (the combination giving the
highest overall scores) for all-boundary queries). The results of these tests are presented
in tables 8.4.5.3 and 8.4.5.4 below.

The addition of segment matching appeared to produce a modest improvement over
feature matching alone with the test queries used - at least when using global or existence
matching. The results with local feature matching were more equivocal. However, none
of the differences observed were statistically significant, and one cannot therefore
conclude from these experiments that combined feature and segment matching has any
consistent advantage over feature matching alone. While it would be premature to
dismiss segment matching completely as a means of identifying shapes (it remains the
only reliable means of detecting shapes identical to a query), its overall usefulness
would appear to be limited.
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Table 8.4.5.3 - P, and R, scores for outer boundary queries

Global matching Local matching Exist. matching

Query no Alone With Alone With Alone With
segmatch segmatch segmatch
32 R, 0.9671 0.9967 0.9474 0.9605 0.9375 0.9441
P, 0.7442 0.9567 0.6372 0.7924 0.6177 0.7598
44 R, 0.9516 0.9718 0.9876 0.9842 0.9459 0.9538
P 0.7822 0.8333 0.9154 0.9022 0.7693 0.8406
46 R, 0.9906 0.9960 0.9879 0.9960 0.9799 0.9919
P, 0.9408 0.9659 0.9228 0.9659 0.8877 0.9384
47 R, 0.9910 0.9910 0.9820 0.9854 0.9764 0.9820
P, 0.9505 0.9489 0.9181 0.9296 0.9026 0.9173
57 R, 0.9470 0.9735 0.9316 0.9735 0.9581 0.9868
P, 0.7155 0.7915 0.6674 0.7676 0.7278 0.8537
62 R, 0.9517 0.9785 0.9181 0.9557 0.8872 0.8953
Py 0.8029 0.8996 0.7625 0.8480 0.7116 0.7534
67 R, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
P, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
72 R, 0.9933 0.9867 0.9867 0.9867 0.9933 0.9433
P, 0.9049 0.8400 0.8400 0.8400 0.9049 0.6602
75 Ry 0.9733 0.9950 0.9817 0.9917 0.9717 0.9900
P, 0.9049 0.9669 0.8942 0.9368 0.8183 0.9128
103 R, 1.0000 1.0000 0.9978 1.0000 0.9890 0.9934
P, 1.0000 1.0000 0.9784 1.0000 0.9058 0.9479
115 R, 0.9934 1.0000 1.0000 1.0000 1.0000 1.0000
P, 0.9479 1.0000 1.0000 1.0000 1.0000 1.0000
120 R 0.9717 0.9400 0.9633 0.9367 1.0000 0.9983
P, 0.9021 0.8640 0.8441 0.8246 1.0000 0.9868
170 R, 0.9973 1.0000 0.9879 0.9866 1.0000 0.9973
P, 0.9835 1.0000 0.9420 0.9384 1.0000 0.9801
175 R, 0.9866 0.9906 0.9208 0.9624 0.9705 0.9919
P, 0.9228 0.9408 0.7424 0.8427 0.7991 0.9428
176 R, 0.9603 0.9558 0.9823 0.9779 0.9558 0.9558
P, 0.8537 0.8468 0.9023 0.8897 0.7265 0.8468
183 Ry 0.9917 0.9933 0.9983 1.0000 0.9983 0.9983
P, 0.9368 0.9500 0.9868 1.0000 0.9868 0.9868
R, Median 0.9886 0.9922 0.9845 0.9860 0.9781 0.9910
Mean 0.9792 0.9856 0.9716 0.9811 0.9709 0.9764
S.D. 0.0187 0.0175 0.0283 0.0188 0.0309 0.0297
P, Median 0.9139 0.9494 0.9088 0.9159 0.8951 0.9279
Mean 0.8933 0.9253 0.8636 0.9049 0.8505 0.8955
S.D. 0.0889 0.0694 0.1135 0.0784 0.1225 0.1014
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Table 8.4.5.4 - P, and R, scores for all-boundary queries

Global matching Local matching Exist. matching

Query no Alone With Alone With Alone With
segmatch segmatch segmatch

9 R, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

P, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

47 Ry, 0.9976 0.9952 0.9855 0.9880 0.9867 0.9892

P, 0.9806 0.9668 0.9335 0.9399 0.9366 0.9435

48 R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

P, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

49 R, 1.0000 1.0000 1.0000 0.9970 0.9701 0.9790

Py 1.0000 1.0000 1.0000 0.9706 0.8584 0.8790

57 R, 0.9722 1.0000 0.9206 0.9921 0.9425 0.9960

Py 0.8011 1.0000 0.6743 0.9116 O0.7157 0.9491

72 R, 0.9940 0.9925 0.9940 0.9880 0.9%9940 0.9416

Py 0.9073 0.8967 0.9073 0.8439 0.9073 0.6286

80 Ry 0.9795 0.9976 0.9904 0.9952 0.9783 0.9928

P, 0.9205 0.9839 0.9386 0.9718 0.8958 0.9506

89 R, 0.9759 0.9867 0.9940 0.9952 0.9807 0.9867

Py 0.9141 0.9366 0.9668 0.9718 0.8809 0.9141

100 R, 0.8571 0.8651 0.9980 0.9940 0.9246 0.9266

Py 0.6869 0.6810 0.9789 0.8982 0.5771 0.5811

109 R, 0.9861 0.9504 0.9960 0.9663 0.9683 0.9345

P, 0.9116 0.7607 0.%9625 0.7877 0.8098 0.7410

120 Ry 1.0000 0.9940 0.9940 0.9880 0.9970 1.0000

Py 1.0000 0.9601 0.9601 0.9367 0.9766 1.0000

122 R, 0.9623 0.9921 0.9980 0.9980 1.0000 1.0000

P, 0.8537 0.9378 0.9789 0.9789 1.0000 1.0000

154 R, 0.9988 0.9892 0.9976 0.9867 0.9940 0.9988

P, 0.9913 0.9506 0.9839 0.9442 0.9530 0.9913

159 R, 0.9538 0.9869 0.9556 0.9869 0.9512 0.9782

Py 0.8591 0.9493 0.8787 0.9581 0.8547 0.9444

175 R, 0.9590 0.9554 0.9735 0.9530 0.9771 0.9530

Py 0.9015 0.8980 0.8809 0.8723 0.8916 0.8723

176 R, 0.9701 0.9835 0.9641 0.9910 0.95%6 0.9701

P, 0.7966 0.9112 0.8879 0.9472 0.7379 0.8379

R, Median 0.9828 0.9923 0.9940 0.9915 0.9795 0.9880

Mean 0.9754 0.9805 0.9851 0.9887 0.9765 0.9779

S.D. 0.0355 0.0342 0.0218 0.0125 0.0227 0.0254

Py Median 0.9128 0.9500 0.9613 0.9457 0.8937 0.9440

Mean 0.9078 0.9270 0.9333 0.9333 0.8747 0.8896

S.D. 0.0911 0.0889 0.0810 0.0583 0.1174 0.1320
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8.4.6 Efficiency of matching process

As discussed in section 6.8, computational efficiency was not felt to be a maijor
consideration in the design of the prototype version of SAFARI. No systematic atterfll t
was therefore made either to measure performance in detail or to tune the system fgr
greater efficiency. Nevertheless, such considerations cannot be totally ignored. Records
were therefore kept of cpu usage for each run. As indicated in section 3.4 abc;vc these
figures must be treated with some caution, as they represent total cpu usage for the
current process, including any required by the operating system paging the process in or
out of main memory. They do however give some indication of the relative
computational expense of the different matching techniques used. The figures shown in
table 8.4.6.1 below (presented as ranges, in order to show the spread of values involved)
represent total cpu usage (in seconds) for a complete search of the database for a single
query, when run in batch mode on the VAX 8700 processor at Newcastle Polytechnic.
This process involves reading in the query file from disc, and matching it successively
with.up) to 154 stored shapes (outer boundary queries) or 171 stored shapes (all-boundary
queries).

Table 8.4.6.1 - comparative cpu usage
of different matching techniques

cpu usage (s) for
Method Query set complete database search
used used

Minimum Maximum

Feature matching alone:

Global All-boundary 0.8 1.6
Outer-boundary 0.6 1.2
Local All-boundary 0.8 2.1
Outer-boundary 0.6 1.5
Existence All-boundary 1.2 17.5
Outer-boundary 1.3 15.7
Segment matching alone”™:
Outer boundary only 13.2 14.1
Inner boundary position 15.7 17.4
Inner boundary class & size 16.1 25.5
Inner boundary shape 15.2 55.1
Combined feature and segment matching+:
Global All-boundary 2.6 20.0
Outer-boundary 1.9 12.3
Local All-boundary 2.9 19.8
Outer-boundary 2.0 12.5
Existence All-boundary 3.0 35.7
Outer-boundary 2.5 26.3

Outer-boundary query set used for outer boundary only matching, all-boundary

set for the other three methods.
* Inner boundary class and size segment matching used with all-boundary queries,

outer boundary only matching with outer-boundary queries.

Feature matching clearly seems to be more economical in its use of resources than
segment matching, making it even harder to justify the use of segment matching in the
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retrieval process, at least with a small collection such as this. Note that existence
matching is not more resource-intensive per se; the cpu usage figures in the table above
are based on runs using the parameter set giving the highest overall P, and R.. scores.
The most effective parameter combination for existence matching used featu?es from
both boundary level and boundary feature records, thus requiring considerably more
processing than with local feature matching, where the most effective features were all
located in boundary level records. Note also the small variation in cpu times different
queries for segment-only matching - a reflection of the fact that no pre-screening was
performed here, and hence that every shape in the database had to be searched in detail.

8.5 Conclusions

The results of this (admittedly artificial) evaluation experiment suggest strongly that the
approach to shape matching adopted for SAFARI has the potential to deliver acceptable
retrieval results in an operational environment, at least within its own specific domain of
shapes. Further testing of the existing prototype with "real” queries would obviously be
worthwhile, though this in turn requires a "real" database of shapes, rather than the
present somewhat artificial test collection, if the results are to yield valid additional
information. It could however be more profitable in the long run to extend SAFARI's
capabilities before any further evaluation is attempted, to allow it to handle a sufficiently
wide range of shapes for tests with operational drawing collections to become possible - a
point discussed further in chapter 9.

It is tempting to try to draw conclusions about the relative merits of different feature sets
or shape-matching techniques. However, the size and nature of the test collection is such
that no generalization of this kind can be considered valid. The specific feature sets used
here have proved useful with one collection of shapes. Their value in retrieval with other
shape collections remains to be established. It is perhaps encouraging that all three
approaches to feature-matching seem capable of yielding acceptable retrieval
performance, and that performance did not seem particularly sensitive to the precise
feature set chosen. This would seem to suggest a certain degree of robustness in the basic
approach.
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CHAPTER 9. CONCLUSIONS

9.1 Summary of findings

The' basip objective of .this project - to investigate the problems of developing an
engineering database with shape retrieval capabilities through the construction and
evaluation of a prototype system - has been achieved. A prototype system, SAFARI, has
been deve}oped, and has demonstrated an acceptable level of retrieval perfonn;mce
within a limited but far from trivial domain of shapes, suggesting that the principles
adopted in its design could well prove useful in an operational shape retrieval system. To
gauge the overall success of the project, it is perhaps worthwhile to review each of the
design decisions taken on the issues listed in section 1.8 in tumn.

In a sense, the first important decision concemed the project itself rather than the system.
This was the decision to investigate the development process as a whole via prototype
development, rather than to concentrate on a single issue such as devising improved
shape matching algorithms - in other words, to adopt a breadth-first rather than a depth-
first approach to the problem. The abundance of published literature concentrating on
detailed aspects of the problem contrasts vividly with the paucity of reports adopting a
broader view, suggesting strongly that the approach adopted for the present project is not
only justified, but probably overdue!

The first group of decisions conceming the system itself involved the definition of its
scope and nature. As discussed in chapter 2, it was decided to limit the domain of shapes
acceptable to the prototype system to genuine 2-D objects capable of being stamped out
of sheet metal. This domain was further limited by restricting boundary segments to
straight lines or circular arcs - though it was noted that this still included the vast majority
of machined parts. While the restriction to 2-D parts may seem unrealistic, it was almost
certainly essential to the success of the project, in that the additional complexity involved
in handling 2-D orthographic projections or 3-D geometric models would have prevented
investigation of the full range of design issues in the time available. It is in any case a
less important restriction than might be supposed - as indicated in section 9.3.3 below,
the problem of generalizing the approach to 3-D geometric models of machined (as
opposed to sculptured or moulded) parts should not be too onerous.

The decision to base input on a standard exchange format remains as valid now as when
the project was started. The ability to accept drawings in standard format is essential for
any operational system; even with a prototype, it provides a useful discipline and a clear
starting-point. IGES was the only widely-used CAD exchange format at the time the
project was started, and thus the automatic choice. One would expect future systems to
make use of STEP (and any successor standards) in the same way.

The second group of decisions concerned shape representation (discussed in some detail
in chapters 2 and 3). The majority of these decisions still seem sound in retrospect. Some
of these were implicit, such as the decision to retain a complete (though condensed)
representation of an object's shape, rather than just its characteristic shape features -
essential for identity matching, or if retrieved shapes are ever to be displayed to the user.
Others were discussed in more detail, such as the decision to represent dxawmgg by
defining their inner and outer boundaries rather than using area-filling representations
such as quadtrees (section 2.4), and to represent such boundaries as sequences of straight-
line or circular arc segments. Such representations have proved economical to store and

efficient to process.

Perhaps the most important (and novel) aspect of shape representation yv1thm SAFARI
has been the decision to view each boundary as a series of levels, a_nd to link all extracged
shape features to a specific level. This appears to be a crucial factor in ensuring
successful retrieval performance (section 8.4.1). It is a design principle that has been
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clearly vindicated within SAFARI, and would seem to b il Py
future shape retrieval systems. ¢ well worth considering for

The decision to derive a unique representation for each shape is more questionable
While there is clearly a need to represent shapes in a form invariant to translation.
rotation and scaling, the advantages of selecting a unique starting-point for bound ;
traversal and a unique ordering for inner boundaries are less obvious. The rationflz
behind this decision (section 3.1) was that it could greatly improve the efficiency of the
segment matching process, at the risk of failing to match a certain proportion of similar
shapes. In practice, the proportion of shapes where the matching process fails has been
higher than expt;cted, anc} thus the usefulness of this form of unique representation as a
basis for similarity matching must be regarded as not proven. However, it could still have
a valuable role to play in a system where identity matching ("have we made this part
before?") was of prime importance.

The outcome of the third group of decisions, concerning selection of retrieval features
(chapter 4), is harder to evaluate. In one sense, they have proved highly successful - a
relatively unsophisticated set of features, representing a very limited degree of shape
understanding, has provided the basis for good retrieval performance with the test
collection. The efficiency with which such features (with the possible exception of some
inner boundary pattern features) could be extracted and matched was encouraging. It is
noteworthy that some of the best retrieval scores were achieved by matching on three
simple local features alone (arc angle class, discontinuity angle class, and parent feature
type). Attempts at increasing the level of sophistication by introducing more complex
features seemed to be counter-productive. Until evaluation can be performed with a
wider set of drawings, however, it is impossible to determine the extent to which these
features are generally useful.

The fourth group of decisions related to retrieval capability, and how it should be
provided (chapters 5 and 6). The decision to concentrate on providing similarity
matching in the prototype version of SAFARI was taken on purely pragmatic grounds -
one had to start somewhere, and the limited evidence available suggested that this would
be potentially the most useful type to provide. As discussed in section 6.4, this capability
could readily be extended to cover other types of retrieval. The decision to provide a
number of alternative matching paradigms in the prototype system made it possible to
compare a number of different strategies. Given the minimal differences in performance
between global, local and existence feature matching, this proved less worthwhile than
expected. The principle of endowing the system with facilities for varying the depth and
matching strategy for a given search seems generally sound, in view of the limited state
of knowledge of users' retrieval needs in this area. The ability to vary run-time search
parameters is unfortunately of dubious value at present, given the limited state of
knowledge about their effects on system performance!

The facility to specify segment matching as a way of refining the results of a preliminary
feature search is still considered potentially useful, even though none of the evaluation
experiments reported above provided any conclusive evidence of their value. The shape
database used for these experiments was small, and contained a very heterogeneous
collection of drawings. Given a collection that was larger, more homogeneous, or both,
feature matching on its own might well have produced less impressive results. In such
cases, the ability of segment matching to discriminate between highly similar shapes
might well come into its own. Such a facility should certainly be provided as an option in
future systems. Whether segment matching under these circumstances should still be
based on a unique boundary start point is an open question. Repeated segment matching,
using each vertex on the drawing boundary in tumn as starting point, could prove
acceptably efficient if limited to a small subset of the database, and might give more
reliable results.
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The decision to use a database management system based on the somewhat i

CODASYL model for the prototype system, justified in chapter 5, again prggcfe?ls}slé?;rlzib}i
practice. No advantage could be taken of the power of relational query languages when
implementing SAFARI's feature extraction and shape matching algorithms. The function
of thp DBMS was thus p}nely to provide access to individual stored data elements when
required - a task for which CODASYL database management systems are well suited.

The present investigation has not attempted to assess the suitability of alternati
DBMS, such as the NF2 model discussed in section 5.3. o ative types of

The final group of decisions concemed interface design (chapter 7). As argued in section
8.1, it is premature to attempt any systematic evaluation of the existing interface, since
this should be regarded purely as a vehicle for formulating test queries. Further work is
clearly required in this area.

9.2 Further work required

Overall, therefore, the design decisions taken in the development of the prototype
SAFARI system appear to have been vindicated. There is, however, scope for further
development in several areas. Further evaluation studies should ideally be conducted on
the current prototype with different test collections, preferably using both similarity and
partial shape queries provided by would-be users of such a system. The system's
similarity retrieval capabilities have been investigated in some detail with one test
collection. The general applicability of these results must be in some doubt until they can
be replicated with further collections of shapes. It can however be argued that more
widespread evaluation (possibly including a comparison with manual part coding) should
await the development of future versions capable of handling a wider domain of shapes.
This issue is discussed in more detail in section 9.3 below.

Various aspects of fine-tuning could obviously be investigated in more detail, such as
comparisons of altemative feature sets, matching techniques, and alternative ways of
generating different boundary levels. It could be particularly useful to test the effect of
allowing the shape hierarchy building module SKELETON to create and store alternative
level hierarchies for shapes that have more than one acceptable parsing (chapter 3).

Possibly the most interesting areas for further development concemn query interface
design and data structuring. As discussed in section 7.4, only one of four potentially
suitable types of query interface has yet been implemented. The task of implementing the
remainder, integrating them with the rest of the system, and extending them to handle
queries involving both shape elements and textual or numeric data, is far from trivial,
even if the system remains restricted to 2-D shapes.

An operational shape database housing large collections of drawings would require more
powerful data access methods than those provided in the prototype system. The question
of whether these can be best provided via an underlying CODASYL, relational or even
object-oriented DBMS, or through purpose-built file structures (like most bibliographic
retrieval systems) should provide a fruitful area for further study.

9.3 Relevance to 3-D object retrieval
9.3.1 Introduction
As the foregoing discussion should have made clear, a system such as SAFARI will be of

real use to engineers only when its scope can be enlarged to encompass 3-D shapes. An
important measure of the usefulness of the Mark I prototype is thus the degree to which
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the principles used in its design can be generalized to three dimensi T i
routes to such genqral%zation could be taken - the system could bese?:?;de‘gotop(;:ailg%:
either the 2-D prOJectlons.of solid objects produced by draughting packages such as
DOGS, or the 3-D geometric models produced by systems such as ROMULUS.

9.3.2 Orthographic projections of 3-D objects

On the face of it, extension to handle 2-D orthographic proiections might i
option. The system would still be dealing witg tw%—cflixnensionalgpaft?rnmsd:)efef'sml:;
following strict (though more complex) syntactical rules. Examination of typical
drawings such as Fig 1.1 suggests that it would not be difficult to extend the scope of the
boundary creation program LINEJOIN and the shape hierarchy builder SKELETON to
cope wit_h the situation where a line segment belonged to two or more partially-
overlapping boundaries, though some degree of redundancy would inevitably be
introduced, and the concept of a boundary level might need to be modified. There might
also be an increase in the complexity of the algorithms involved. Reducing such a
drawing to canonical form might prove a significant problem, but the evidence above
suggests that there is little advantage to be gained by such a process. Feature generation
would be a significantly more complex process, because many more types of relational
feature as defined in section 4.2.3 would be necessary. Where each inner boundary
simply represents a hole in a piece of sheet metal, a relatively rudimentary set of features
representing their relative position and orientation can provide sufficient information for
effective retrieval. Inner boundary patterns such as that illustrated in Fig 1.1, representing
a variety of related features machined out to different depths, would clearly require a
much wider feature set to reflect the relationships involved. The whole concept of an
inner boundary family as defined in sections 4.4.4 and 4.5.5 would also need to be
reviewed.

The major difficulty with this approach, though, lies with its overall philosophy. While
engineers quite legitimately talk of retrieving a drawing from the archives, what they
really require is the design specification of a particular object. The underlying object
being modelled by the CAD system is the real target for retrieval, at least in the vast
majority of situations. To regard a drawing representing a single projection of that object
as a retrieval target in itself is a perfectly legitimate stance (see the discussion on general
pictorial information retrieval systems in the next section). It is however unlikely fully to
meet the needs of potential users, whose prime interest is in whether the object itself is
the right shape to meet their requirements. To achieve this through the medium of 2-D
orthographic projections, the system is likely to need to reconstruct the 3-D shape of the
object in question before identifying and extracting features for use in retrieval. This, as
indicated by Nagendra and Gujar (1988), is a major task, since three orthographic
projections alone do not necessarily define an object uniquely, and some additional cues
such as textual comments are often necessary to resolve possible ambiguities in 3-D
shape (Yoshiura at al, 1984). While SAFARI could in principle be extended in this
direction if the capability to handle libraries of 2-D orthographic projections was
required, providing it with a 3-D shape reconstruction facility would be a major task.

9.3.3. 3-D geometric models

The other alternative, to extend SAFARI to handle 3-D geometric models directly, does
have certain advantages, though this would again be a highly complex task. Starting with
the premise (shared by all boundary representation schemes) that a solid object comprises
the union of its faces, one can readily envisage a 3-D analogue of SAFARI in which each
object would be represented as a set of faces, each defined in a manner similar to that
described in chapter 3 above. The definition of each face would need to be extended in a
similar manner to that described for orthographic projections above, since shape features
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could themselves contain more detailed features, as indicated b i
though the extensions might well need to go further. °d by Kyprianou (1980),

Pockets and bosses, shape features completely enclosed within a sin

few problems even if nested. Shape rewriting rules similar to thoseggsggcﬁ;“g;é?igggs
could be used to generate descriptions of each face at different levels of detail in an
analogous manner to the boundary level in the present version of SAFARL. Slots holes or
any other feature spanning two or more faces would be more difficult to handle as they
would not fit neatly into SAFARTI's existing type of shape hierarchy. It would proigably be
necessary to indicate that such features were jointly "owned" by all faces they touched
and therefore part of each face description, at least at the lowest level. '

Further extensions to this representation would be needed where faces were not planar
an implicit assumption made by the present version of SAFARI. An indication would
then be needed of the surface's curvature along different axes (relatively straightforward
if the system was to be limited to spherical and cylindrical surfaces, in the way the
present prototype is limited to circular arcs), and this information would need to be taken
into account in calculating the relative position, orientation and labelling (as protrusion or
depression) of shape features associated with that face.

Feature generation should not in itself be a difficult process, though considerable thought
may need to be given to the task of feature selection, which would be no easier for 3-D
objects than for 2-D shapes (section 4.2). Experience with SAFARI to date suggests that
feature types much simpler than those identified by automatic feature recognizers for
process planning (Henderson and Anderson, 1984; Lee and Fu, 1987) can be effective
retrieval keys for 2-D shapes; whether this situation holds for 3-D objects remains to be
established. Intuitively, one again feels (as with orthographic projections) that relational
features will be more important for 3-D objects than for the simple 2-D shapes examined
so far. Characterizing useful relational features may be difficult; extracting them from
object descriptions is likely to prove a complex process.

Canonicalization of the kind attempted by the present version of SAFARI is unlikely to
prove feasible in the 3-D context. Even assuming the degree of complexity involved in
processing each face to be no more than that for a complete 2-D shape, finding a
canonical ordering of n faces could require comparison of up to n! alternative face
orderings. As observed above, complete canonicalization is probably unnecessary.
However, some partial ordering of faces could be justified on efficiency grounds if shape
matching were to involve sequential matching of faces at any stage. Perhaps more
importantly, the position and orientation of each local shape element (slot, boss or hole)
need to be related to some invariant point and direction (possibly object centroid and
principal axis - if any) before relational shape features can be generated. If partial
matching of faces is to be attempted, some means of specifying an invariant point and
direction on each face may be required.

Interface design for a 3-D version of SAFARI would probably present some difficulties.
As discussed in section 7.3.3, few types of user interface are really suitable for
formulating 3-D queries. Text-based command languages are equally unsuitable for
formulating 2-D and 3-D queries. Example-based interfaces in the 3-D context are
inevitably tedious to use, as the only effective way of building up an example query is to
use some kind of 3-D geometric modeller. There is no 3-D equivalent of the rough hand-
drawn sketch! One is thus left with menu-based interfaces (which, if based on the same
principles as the feature-based design system described by Patel (1985), could prove
effective if slow) and browsing along the lines suggested by Herot (1980). The latter
could prove the best compromise for small to medium-sized collections, provided
agreement could be reached with users on the most appropriate projection of each object
to display. One might envisage this as the default interface mode, with the more
cumbersome example- or menu-based interfaces available as options where specific type
C or D queries were involved.
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Interface problems of another kind are likely to be encountered by a true 3-D versj
SAFARI. While many CAD systems can exchange 2-D drawi}xllgs in standard ?CI}lF?Sf
fpnpat, opportunities to exchange 3-D geometric model descriptions are much more
limited, as the equivalent 3-D standard, STEP, is still in the process of development
(Wilson, 1990). This has two implications. Firstly, it will be some time before STEP
interfaces are a standard feature of geometric modelling systems. Obtaining significant
volumes of data in standard format may thus prove difficult. Secondly, it is difficult to
decide what level of translation capability to build into the next version of SAFARI until
more details of the standard are known. At one level, there is the need to decide how
many of the alternative ways of defining a given line or plane to support. At a deeper
level, knowledge of the extent to which topology and shape feature definitions are
enforced by the standard is necessary before deciding how much inferential capability is
needed by the next version of SAFARI. (The situation with IGES, which made no
attempt to enforce any such definitions, was fairly clear-cut). However, the general
principle of basing input to SAFARI on a standard data exchange format rather than tying
it to a specific modelling system is still considered valid. Note that this provides an
additional reason for using boundary representation rather than CSG (see section 1.2) as
the basis for any 3-D version of SAFARI. Systems based on boundary representation can
accept input in either boundary representation or CSG form; CSG-based systems can in
general accept input only in CSG form.

9.3.4 Conclusions

In the author's opinion, therefore, the majority of the principles adopted in the design of
the Mark I version of SAFARI are applicable - with appropriate extensions - to the wider
domain of engineering parts currently represented as orthographic projections or 3-D
geometric models. To this must be added the caveat that, just as the initial prototype of
SAFARI was limited to shapes made up of straight-line and circular-arc segments, the
above discussion assumes that the 3-D version of SAFARI would be limited to objects
with planar, cylindrical or spherical surfaces (which includes the vast majority of
machined parts). The extent to which this approach remains valid for objects with
sculptured surfaces has yet to be established.

9.4 Applicability to pictorial information systems in general
9.4.1 A taxonomy of related systems

As discussed in chapter 1, interest in what can be loosely be termed pictorial information
systems has been developing for some years, particularly in the geographic field. What
relevance, if any, does the present work have for the generality of such systems? To
answer this question fully, it is first necessary to establish the similarities and differences
between SAFARI and other types of system.

Firstly, SAFARI is a shape retrieval system, attempting to find the most similar objects to
a given query purely on the basis of shape features. The system is believed to be unique
in a number of respects; (a) subject area - with the possible exception of the ARES
system (Ichikawa, 1980), for which few operational detalls' are available, it is the only
known system capable of retrieving engineering drawings by features extracted
automatically from the drawings themselves (as opposed to manually-assigned index
terms or classification codes), (b) boundary and feature representation - the prmc1ples'of
deriving a unique representation for each shape, viewing each shape boundary as a series
of levels of increasing complexity, and associating extracted shape features with a
specific level, do not seem to have been explicitly described elsewhere, and (c)
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evaluation - it is the only pictorial information s i :
1 1 ystem for which an
evaluation of retrieval performance has been attempted. Y Systematic

Wh,ﬂe SAFARI can be copside;ed to be a pictorial information system, an information
retneval. system or an engineering database system, none of these titles are particularl
helpful In conveying 1ts true nature. Its closest analogues are clearly the few genuinz
shape retrieval systems in other areas - particularly the fingerprint matching systems now
used by many pphce fqrces (IEEE, 1985). Some of the medical imaging systems which
scan pictorial diagnostic aids such as X-rays (Toriwaki, 1980; Yokoya and Tamura
1982; Frasson and Er-Radi, 1985) also fall into this category, though their image analysis’
capabilities as reported in the literature are rudimentary by comparison with SAFARI or
fingerprint matching systems. Although not strictly shape retrieval systems, the image
retrieval systems described by Rabitti and Stanchev (1987b, 1989) have in some ways a
better claim to membership of this group, as they have implemented principles of feature
extraction and classification closely related to those employed by SAFARI.

Further removed from SAFARI than this group are three very different types of system,
each of which, though clearly distinct from SAFARI in overall philosophy, has
influenced its design to some extent. These are geographical information systems and
their analogues, feature recognition systems developed in connection with automated
process planning, and image analysis systems developed for robot vision.

Geographical information systems appear at first sight to be the closest of these to
SAFARI in overall objectives. The similarities between SAFARI and systems such as
GRAIN (Chang et al, 1977), REDI (Chang and Fu, 1980), PICDMS (Chock et al, 1984)
and PROBE (Orenstein and Manola, 1988) are obvious. Both types of system store
pictorial data which can be retrieved and displayed in a number of different ways on
request, and both types are based on an underlying DBMS (though using different data
models). But there is one crucial difference. The geographical systems are essentially
spatial retrieval systems, identifying objects or areas lying within identified map
coordinates, or bearing specified spatial relationships to each other (adjacent to, within,
northwest of, etc). The "intelligent image database system" of Chang et al (1988), though
not strictly geographic, also falls into this category, as it is designed to answer questions
about the relative positions of specific objects within an image. Thus, while such systems
might share aspects of interface design with SAFARI, their query formulation
capabilities and matching processes in the main are quite different. The only potential
area of overlap is similarity retrieval, which would clearly require matching techniques
analogous to those used by SAFARI. Several of the authors above describe query
languages which include similarity retrieval commands - though none of them gives any
indication of how to implement such commands. In the GRAIN system, for example, it is
simply assumed that searchers will provide their own similarity matching procedures.
Most later authors recognize that their systems need some kind of feature extraction
capability to support this kind of retrieval, though the vague terms in which they discuss
the problem make it quite clear that none of them have made any systematic attempt to
solve it.

Feature recognition systems, aiming to recognize and extract shape features from CAD
drawings or geometric models, have been the subject of increasing interest in recent
years. The motivation for such studies has most often been to recognize machinable
features in the design, as a prelude to automated process planning (deciding what
sequence of drilling, tuming or milling operations is necessary to convert an unformed
piece of metal into a finished part). Examples of such work are Choi et al (1984),
Henderson and Anderson (1984), Lee and Fu (1987), and Varady et al (1990). One can
also perhaps class the work of Kyprianou (1980) and Kakazu and Okino (1984) ux}der
this heading. Although the motivation here was different (the generation of workpiece
classification codes with group technology in mind), the techniques used were
remarkably similar. In every case, syntactic analysis of object representations from a
CAD system was used to uncover the presence of specific types of shape feature as a
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prelude to further application-specific processing. While these systems differ cle

. : arl
from SAFARI in that none of thqm offe_r any query or retrieval facilities, nor anz
systematic means of storing and uniquely identifying shape feature representations, the

approach to shape analysis chosen for the prototype system was st ly i
some of the earlier systems of this type. e sy as strongly Influenced by

Cpm'put'er. visior} systems which attempt to recognize the presence of specified objects
within digitized images (such as those reviewed in Chin and Dyer, 1986) also resemble
SAFARI In some important respects. The basic process of extracting features from
objects detected within images, in order to match them with existing templates, has man
parallels with the shape analysis and matching procedures underpinning the SAFART
system. As indicated in chapter 4, the pattern recognition literature has provided the
source both of feature types (such as P%A ratios) and similarity estimation techniques
(such as 6-s matching) adopted for the prototype system. However, such systems differ
fundamentally from shape retrieval systems in the restricted number and type of objects
they are designed to recognize. This can be most clearly shown by contrasting the way in
which the two types of system handle their normal input - a digitized image containing
objects to be recognized in the case of a robot vision system, a query shape for a system
such as SAFARI. The vision system, though it needs to perform some highly complex
analysis on the input picture, is faced with a relatively simple task when it comes to
shape matching, since few systems reported in the literature hold more than about ten
stored template shapes. The shape retrieval system, on the other hand, while needing to
perform relatively little analysis of the query shape, has to match the query against
hundreds, possibly thousands, of stored shapes. Hence the emphasis in a shape retrieval
system needs to be on efficient, general-purpose shape-matching methods, coupled with
appropriate data storage techniques - as opposed to a vision system where the main
design effort has to be directed towards image segmentation and feature extraction from
noisy images.

9.4.2 Relevance of the SAFARI project

The field of pictorial information system design is steadily growing in importance,
judging by the volume and diversity of the literature (Lunin, 1987; Petrie, 1988; Chang,
1989). As well as empirical studies of the kind described in chapter 1, attempts are now
being made to develop a body of underlying theory, such as the concept of the
generalized icon (Chang, 1987) which specifies a formal mapping between logical and
physical picture objects, and which might therefore be of value in picture indexing. How
useful such concepts will prove in stimulating further research remains to be seen. One
would perhaps have more faith in the general applicability of Chang's work had he not
limited his supporting examples to Chinese ideograms.

There is another reason for questioning the validity of the generalized icon concept
referred to above. The sheer diversity of picture types used to communicate ideas
between human specialists in different fields raises fundamental problems about treating
all types of picture in the same way. To expect humans to view maps, diagrams, press
photographs, engineering drawings, X-rays, chemical structures, trade marks, and
cartoons as a single homogeneous set of visual objects, which can all be interpreted in the
same way, does not on the face of it seem reasonable. Engineering a}nd architectural
drawings are clearly recognizable as design documents specifying the size and shape of
certain artefacts. Maps are occasionally used as specification documents, but most often
simply record the presence and location of certain types of natural or man-made object.
Diagnostic images such as X-ray photographs are used in a compietely defere_nt way;
only those parts of the image showing some kind of abnormality are normally of interest.
Photographs in general are virtually impossible to interpret at more than the most .tnvxal
level without the aid of cues outside the picture, such as explan_atory text. Studies on
picture comprehension performed nearly 20 years ago by Firschein and Fischler (1971,
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1972), contrasting the way in which different subijects attempt i identi
scenes, illustrate this point admirably. ! mpted to interpret identical

Since the user is seldom, if ever, really concemed with the phvsical i

vehicle for conveying underlying ideas which are more easl.i)lyysrlecparle;rexﬁgfl Zﬁ:;ﬁc:.slla
than textua]ly, it is necessary to base image retrieval systems on logical picture ob'ect};
and the specific fgatu;es which can be derived from them. Such characteristic featureg are
remarkably application-specific. Thus SAFARI specifically exploits the underlying
regularity of machined components; fingerprint matching systems rely on identification
of characteristic minutiae; geographical information systems link related types of data via
spatial coordinates. The likelihood of a general picture retrieval system achieving
successful results without being able to rely on application-specific cues of this kind is
not great. An analogous situation can be observed in the artificial intelligence field
(Winston, 1984), where real progress in expert systems development came about only
when the search for a general-purpose problem solver was abandoned in favour of
application-specific systems such as MYCIN and PROSPECTOR.

If this view is valid, its implications are clear. It is impossible to apply many of the
application-specific techniques adopted for SAFARI - or for any other such system - to
pictorial information systems in general. Some design principles are likely to be
generally applicable, though many of these are already well-established, such as the need
to extract characteristic features from each stored object and use these as retrieval keys.
One might further expect the domain of drawings where the complete SAFARI approach
remained applicable to be those which were created and interpreted in the same way as
engineering drawings. This effectively includes only two further classes - architectural
plans and drawings, and technical illustrations such as the drawings of new inventions
included in patent specifications (normally single isometric or perspective views, which
require considerable interpretation to reconstruct the original 3-D object).

Some aspects of the SAFARI approach might well be useful outside this area. While its
relevance for geographic information systems is limited because spatial rather than shape
retrieval is involved, aspects of its approach to feature extraction and storage would
certainly seem to be valid for queries involving similarity matching, if only to the extent
of recognizing that a relatively simple feature set might well provide adequate retrieval
performance. Its relevance for process planning feature recognition systems is probably
minimal, because the level of feature description required by these systems is much more
detailed than the level that appears to be needed for simple shape retrieval. The most
promising related area might well be image analysis - the principle of viewing each 2-D
boundary identified as a series of levels, each with its own characteristic feature set,
could well improve recognition performance in systems with relatively large numbers of
reference shapes; and the principle of 6-s matching of canonical shape descriptions,
though of limited usefulness for similarity retrieval, could be extremely valuable in
searching for exact matches between image and reference objects, and significantly more
efficient than published methods such as Perkins (1978).

In a way this limited applicability is disappointing, as it implies that progress in the
pictorial information retrieval area will continue only on a piecemeal basis, with new
systems inevitably tied to specific applications areas, with little to offer to related areas.
On a more positive note, one can perhaps observe that this merely emphasizes the variety
and richness of the field, and the possibilities it offers for further work, bpth to .the
practical systems designer and the theorist. There may well be further underlying des;gn
principles to discover, as in the expert systems field, where knowledge representation
techniques such as the rule and the frame have gained widespread acceptance, despite the
bewildering variety of knowledge they handle. Whether such advances stem from
Chang's mathematical approach, Fischler and Firschein's psychological investigations, or
simply the steady progression of empirical studies such as SAFARI, time alone will tell.
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9.5 Epilogue

Twenty years of research into automated image processing have left most observers with
the inescapable conclusion that it is not an inherently suitable application area for the
digital computer. The human eye and brain still outperform even the best computer
systems with contemptuous ease. In many ways, automated image processing systems are
an apt target for Dr Johnson's famous comparison with a dog walking on its hind legs: "it
is not done well; the wonder is that it is done at all". It is perhaps in this light that the
SAFARI project should be judged. A successful attack has been made on a problem (that
of extracting, storing and matching drawing features efficiently and reliably enough to
incorporate into an operational database) which many writers have described, but few
have attempted to solve. The demonstration that acceptable retrieval performance can be
achieved with relatively unsophisticated feature extraction and matching techniques will,
one hopes, encourage similar developments in other areas of pictorial information
retrieval.
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APPENDIX A - RESULTS OF STUDENT SIMILARITY RANKING

Table Al. Similarity ratings for OUTER-BOUNDARY queries

EXPERIMENTS

Dra;;ng mi:zgzs irequengy at ranking EOSition Overall
-5 rating
Query no 32 (16 subjects) -
33 0 13 0 0 1 0 0.
82 0 0 9 1 0 -0 O.ggé
87 0 0 1 2 2 0 0.094
23 0 0 2 0 0 0 0.063 .
145 0 0 0 1 2 1 0.050
138 0 1 0 0 0 0 0.044
161 0 0 1 0 0 0 0.031
102 0 0 0 1 0 1 0.025
66 0 0 0 1 0 0 0.019
29 0 0 0 1 0 0 0.019
24 0 0 0 0 1 0 0.013
128 0 0 0 0 1 0 0.013
118 0 0 0 0 0 1 0.006
39 0 0 0 0 0 1 0.006
65 0 0 "0 0 0 1 0.006
Query no 44 (16 subjects) -
42 5 10 0 1 0 0 0.769
41 1 3 7 2 2 0 0.475
43 1 1 4 5 3 2 0.375
180 0 0 2 7 4 1 0.250
104 0 0 2 1 3 2 0.131
40 0 2 0 0 0 3 0.106
38 0 0 1 0 0 0 0.031
78 0 0 0 1 0 0 0.019
31 0 0 0 0 0 1 0.006
Query no 46 (16 subjects) -
52 6 8 0 1 0 0 0.744
146 5 4 5 1 0 0 0.663
51 1 1 5 2 1 1 0.319
18 0 0 2 4 3 1 0.181
13 0 0 2 1 4 0 0.131
28 0 1 0 0 2 0 0.069
10 0 1 0 0 0 1 0.050
16 0 1 0 0 0 0 0.044
14 0 0 0 2 0 1 0.044
148 0 0 0 0 0 1 0.006
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Drawing Exact Frequency at rankihg position Overall

No matches 1 2 3 4 5 rating
Query no 47 (16 subjects) -

59 14 1 0 0

53 2 11 1 1 . 5 5222
142 3 1 9 1 )

0 0 0.531

68 0 1 3 4

2 1 0.244

12 0 0 2 :

3 5 0 0.181

174 0 1 0
3 2 1 0.131
134 0 0 1 1 0 0 0.050

15 0 1 0 0 0 0 '

18 0 0 0 0.044
1 0 0 0.019

Query no 57 (16 subjects) -
94 1 13 2 0 0 0 0.694
3 1 1 7 3 0 1 0.388
99 0 0 2 4 1l 1 0.156
4 0 0] 1 1 1 1 0.069
55 0 0 0 2 0 1 0.044
50 0 0 1 0 1 0 0.044
5 0 0 0] 1 2 0 0.044
1 0 1 0 -0 0 0 0.044
9 0 1 0 0 0 0 0.044
155 0 0 0 0 1 -3 0.031
6 0 0 0 0 1 0 0.013
8 0 0 0 0 1 0 0.013
7 0 0 0 0 0 1 0.006

Query no 62 (16 subjects) -
143 9 6 1 0 0 0 0.856
158 4 8 3 1 0 0 0.713
160 0 1 5 1 1 1 0.238

81 0 0 2 5 3 0 0.194
152 0 0 2 2 6 0 0.175
156 0 0 1 3 1 0 0.100

97 0 1 0 1 0 1 0.069

56 0 1 0 0 0 0 0.044

77 0 0 0 1 1 1 0.038

63 0 0 0 0 1 0 0.013

58 0 0 0 0 1 0 0.013
162 0 0 0 0 0 1 0.006

16 0 0 0 0 0 1 0.006

Query no 67 (16 subjects) -

71 12 4 0 0 0 0 0.925
144 9 5 1. 0 0 0 0.813
106 0 2 0 0 0 0 0.088
113 0 0 1 0 0 0 0.031
107 0 0 1 0 0 0 0.031

83 0 0 0 1 0 0 0.019
111 0] 0 ] 1 0 0 0.019
153 0 0 0 0 1 0 0.013
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Drawing

No

Query no 72 (16 subjects)

65
69
70
139
66
54

Query

83
140
74
76
106
87
164
127
145
111
35
54

no 75

Exact
matches

QOO OO0

(16 subjects)

OCOOOCOOO0OOOOO M

Frequency at ranking position

1

O N

oy
QO OO0 OOOKHMHMO

2

QORFRPRNOW

QOO O0OO0OCOKFHNHFH WO

Query no 103 (16 subjects) -

105
100
86
123
132
40
11
88
177
85
135
109
1
136
78
119

Query no 115 (16 subjects)

90
119
114
165

89
108

84

91
121

QOO OO OO0OOOCOOOODOOO0O

QOO OOOOOOKH

QOOOOFHKFHFFEFRPRPRPOOOOW-N

11

[eNeoNeoNoRoNeNoN )

OQOOHOOOOOORRKHEKHFHAAW

OCOOONENNN

228

3

[oNaR NN N

OHFHFRNONMNWRO

S OO0 OoOHOHOWUBNWO

PHHONOOOKFROKKNHWOO
COO0OO0O0ODO0COOOOHHRFWNOO

4

ook EFEN

COCORFRNOWOODWWOO

CORRRPERERHRO

HFROONROKFROHOO

5

PPRPOOOO

OQOOKFHROFRROOFFRONRKFRFORFPOOH

HOOOOOWOoOOo

Overall
rating

QOO0 O

QOO O0OOO0OOO0OO0OOOO0

sNoNoNoRloNeRoNoloNoNoNoRoNoNeNe

[eNeoNeoNoNoNo oo o]

.506
.413
.381
.275
.050
.006

.813
.450
.219
.206
.069
.050
.044
.031
.025
.013
.006
.006

.406
.319
.113
.094
.081
.069
.069
.063
.050
.044
.044
.044
.031
.025
.019
.019

.606
.469
.150
.081
.075
.050
.031
.019
.006



Drawing Exact Frequency at rankin it i
No matches 1 2 3 g 5081t1°§ Overall

rating
Query no 120 (16 subjects) -
ﬁg 8 10 3 1 0 1 0.556
4 8 1 0 0 0.444
128 0 0 1 4 2 0 0.131
126 0 0 0 4 1 1 0.094
66 0 0 0 0 2 0 0.025
6 0 0 0 0 1 1 0.019
5 0 0 0 0 0 1 0.006
Query no 170 (16 subjects) -
167 1 13 1 1 0 0 0.681
169 0 0 13 2 1 0 0.456
166 0 3 1 12 0 0 0.388
168 0 0 1 1 5 7 0.156
172 0 0 0 0 9 6 0.150
Query no 175 (16 subjects) -
27 15 0 0 1 0 0 0.956
24 0 11 5 0 0 0 0.638
37 0 4 8 2 1 0 0.475
102 0 0 2 7 0 1 0.200
82 0 1 1 1 2 1 0.125
87 0 0 -0 1 1 2 0.044
31 0 0 0 0 1 1 0.019
25 0 0 0 1 0 0 0.019
161 0 0 0 0 1 0 0.013
145 0 0 0 0 1 0 0.013
Query no 176 (16 subjects) -
179 0 10 6 0 0 0 0.625
21 0 6 10 0 0 0 0.575
177 0 4] 0 5 2 0 0.119
88 0 0 0 1 2 0 0.044
56 0 0 0 2 0 0 0.038
181 0 0 0 0 1 2 0.025
95 0 0 0 0 1 1 0.019
26 0 0 0 1 0 0 0.019
Query no 183 (16 subjects) -
182 0 10 2 2 1 0 0.550
184 0 2 10 2 0 0 0.438
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Table A2. Similarity ratings for ALL-BOUNDARY queries

Drawing Exact Frequency at rankin ositi
No matches 1 2 3 J E 102 o:::zi;

Query no 9 (12 subjects) -

; 0 ; . 0 0 0 0.600
0 0 0.583

! 0 0 1 10 0 0 0.292

o 0 0 0 0 3 0 0.050

0 0.033

24 0 0 0 0 0 1 0.008
131 0 0 0 0 0 1 0.008

13 0 0 0 0 0 1 0.008
155 0 0 0 0 0 1 0.008

Query no 47 (12 subjects) -

59 8 3 1 0 0 0 0.883

53 0 5 6 1 0 0 0.567
142 0 5 3 3 0 0 0.492

68 0 0 1 2 4 3 0.183

12 0 0 0 4 3 0 0.150
174 0 0 0 1 1 5 0.083

15 0 0 0 0 1 0 0.017

Query no 48 (12 subjects) -

54 0 7 4 1 0 0 0.600
147 0 6 5 0 1 0 0.575
164 0 0 0 2 0 2 0.067
140 0 0 0 0 2 0 0.033

38 0 0 0 1 0 0 0.025

35 0 0 0 1 0 0 0.025
185 0 0 0 1 0 0 0.025

79 0 0 0 1 0 0 0.025

76 0 0 0 1 0 0 0.025
161 0 0 0 0 1 0 0.017

78 0 0 0 0 1 0 0.017
106 0 0 0 0 1 0 0.017

34 0 0 0 0 1 0 0.017

30 0 0 0 0 0 1 0.008

Query no 49 (12 subjects) -

61 0 6 2 2 0 0 0.483

56 0 2 6 1 0 0 0.392

88 0 3 2 3 2 0 0.367
110 0 1 0 1 3 0 0.133

85 0 0 0 2 1 2 0.083

58 0 0 1 0 0 0 0.042

50 0 0 0 1 0 0 0.025
141 0 0 0 0 1 0 0.017

91 0 0 0 0 0 2 0.017
180 0 0 0 0 1 0 0.017
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Drawing

Query no 57 (13 subjects)

45
94
99
155
3
63
2
180
131
56

Query no 72

65
69
139
70
137
66

Query no 80 (13 subjects)

140
76
101
75
83
79
145
74
96
149

Exact
No matches

OCOO0OO0OOOOOOO

(13 subjects)

(oNeoNoNoNoNo

10

[oNeoNeoNoNoNoNoNel

Frequency at ranking position

1

COOO0OOOO W

OCQORrRHWWY

OOOHOORUOIUIL

Query no 89 (13 subjects) -

108
114
115
119

90
150

1

OO OOOK

1

[eNeoNeNal Vo

2

O WWikPE OCOOQOOORFRRFONN

OCOOQOOORFRRF UULO

ONWhkRLRO

Query no 100 (13 subjects) -

105
181
178
103
136
102
123

OO OOOOO

10

[eNeoNeNe]

OO OoOCONPE

231

3

OO O0OOrRrsMNOR O ook OCORFRPORHRNRFLEDNKEHH

OWKrHULo o

OFROHFHNWR

oOCWhROoOO

4

OO ~NINP OOOKFRHRFPONOOO

OHRPOWRERORLROO

(o eNo N el il

B ORPROOO

5

HRPOOOO HPORPROOOOOKKO

HOOOOOO

PRPOMHOOOOOO

Overall
rating

[oleNoloNoNoNoNoNoNe [eNeNo ool QOO OOOOOOO0

[eNoNeoNoNoNe

QOOOO0OOCO

.477
.454
.262
.092
.085
.038
.023
.023
.008
.008

.562
.446
.338
.308
.038
.031

.823
.492
477
.208
.192
.069
.054
.023
.015
.008

.900
.685
.285
.200
.200
.008 -

.615
377
.354
.038
.038
.023
.008



Drawing Exact Frequency at rankin iti
No matches 1 2 3 g EOSItlog Overall

rating
Query no 109 (13 subjects) -
gg 0 8 1 1 0 0 0.492
4 3 0 0 0 0.331
97 0 0 1 2 0 0 0.085
186 0 0 1 0 0 0 0.038
140 0 0 1 0 0 0 0.038
181 0 0 0 1 0 1 0 031
26 0 0 0 1 0 1 0.031
25 0 0 0 0 2 0 0.031
178 0 0 0 1 0 1 0.031
103 0 0 0 1 0 0 0.023
101 0 0 0 1 0 0 0.023
105 0 0 0 0 1 0 0.015
Query no 120 (13 subjects) -
118 0 9 2 0 0 0 0.562
129 0 4 6 3 0 0 0.515
124 0 2 0 4 4 0 0.262
128 0 1 2 3 4 "0 0.262
125 0 1 0 0 0 0 0.054
155 0 0 1 0 0 2 0.054
152 0 0 0 1 0 0 0.023
2 0 0 0 0 0 1 0.008
Query no 122 (13 subjects) =
117 0 12 1 0 0 0 0.685
116 0 1 10 1 0 0 0.462
121 0 0 2 9 0] 0 0.285
81 0 0 0 0 1 1 0.023
14 0 0 0 0] 1 1 0.023
165 0 0 0 0 1 0 0.015
188 0 0 0 0 1 0 0.015
77 0 0 0 0 0 1 0.008
153 0 0 0 0 0 1 0.008
Query no 154 (12 subjects) -
149 3 7 1 0 0 0 0.700
171 2 4 6 0 0 0 0.650
79 0 1 2 3 1 0 0.233
83 0 4] 1 4 0 0 0.142
74 0 1 0. 0 2 3 0.117
101 0 1 0 0 0 0 0.058
76 0 0 0 0 2 0 0.033
140 0 0 0 0 1 1 0.025
926 0 0 0 0 0 1 0.008
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Drawing Exact
No matches 1

Query no 159 (12 subjects)

163
158

77
162
160
143

62

81
157
152

[eNoleNoNeNeNoNoNe NN
OCOHOOKFFONNYW

Query no 175 (12 subjects)

82 0 4
27 0 5
87 0 1
37 0 2
145 0 0
31 0 0
83 0 0
24 0 0

Query no 176 (12 subjects)

12
0

179
21
177
88
61
85
110
56
180

[=NeNoloNeoNoNoNoNe
[eNeoNoNoNoNoNo]

Frequenc

2

i QOO WKFE WM | OO OONOBMNO

QOO0 OOWOMO

ORPOWRFRWEKRN

COOROMNOOHO

OrHROOrRWNHO

Y at ranking position
3

4

HOO®ROWRO HOOOMNOKFHFOWO

OCONNHRLHOO

owoorHORrHrONMO

ocooNMNUOBR O

5

HOOROWOOO

Overall
rating

[eNeNoNoNoNoNoNe] [oeoNoNoloNoeNoNoNoNe]

eReNoleNoNoNoNoNe)

.775
.292
.283
.192
.158
.125
.100
.058
.025
.017

.492
.383
.308
.225
.158
.042
.025
.017

.700
.275
.192
117
.042
.042
.033
.025
.008
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APPENDIX B - DETAILED SHAPE RETRIEVAL RESULTS

Results are presented here for all shape queries in the same format as in 1
. sections 8.4.
and 8.4.4. For each query, the rank at which each drawing judged relevantc liynlsmnfa?l

subjects was actually retrieved is tabulated for each method i
measures defined in section 8.2.1. 0d, together with the Py and Ry

B1. Outer boundary queries

Table Bl.1 - Query shape 32

Drawing Global Local Exist Segmatch
No rank rank rank rank
33 11 4 4 1
82 2 15 18 52
R, 0.9671 0.9474 0.9375 0.8355
P, 0.7442 0.6372 0.6177 0.6524

The performance of all four types of matching is mediocre here, with global feature
matching the best even though it retrieves the two relevant drawings in the wrong order.
All three types of feature matching have the same problem - the ‘horseshoe' shape of
query 32 is made up from six straight-line segments and two circular arcs, while both
drawings 33 and 82 consist of two straight-line and two circular arc segments. Matching
based on local feature counts is thus at a considerable disadvantage. One might expect

6- s matching to be less susceptible to this problem - which it is with the more similar of

the two drawings.

Table B1.2 - Query shape 44

Drawing Global Local Exist Segmatch

No rank rank rank rank
42 9 1 7 1

41 3 5 3 3

43 15 11 35 13
180 5 8 14 51
104 .2 4 2 14

40 30 3 8 17

Rp 0.9516 0.9876 0.9459 0.9122
P, 0.7822 0.9154 0.7693 0.7244

This was a query where local feature matching performed well, and other types of
matching gave adequate results. All feature matching methods'regdlly detected similarity
between the query (a scalene triangle) and other triangles of similar shape (drawings 41,
42 and 104), even where the ends were rounded off, though global matching failed with
drawing 40, where comers were rounded off to a very marked extent. The system was
less successful in finding the two right-angled triangles 43 and 180; the query shape
contained no right angles, so the system made no attempt to look for them.
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Table B1.3 - Query shape 46

Drawing Global Local Exist
Segmatch
No rank rank rank gznk
52 2 2 1
146 1 1 2 ;
51 5 9 6 26
18 4 8 7 27
13 10 4 14 13
R, 0.9906 0.9879 0.9799 0.9275
P, 0.9408 0.9228 0.8877 - 0.7529

All three feature-based methods perform successfully here. The rectangular shape
(probably a cross-section of a girder) is obviously a good source of sufficiently
characteristic features. Note that segment matching detects the two very similar drawings
(compare with query 32), but is much less successful at picking out shapes with a lower
level of similarity.

Table Bl.4 - Query shape 47

Drawing Global Local Exist Segmatch

No rank rank - rank rank
59 1 1 1 1

53 3 3 3 3
142 2 2 2 2

68 5 5 5 5

12 7 15 17 29
174 11 11 14 20

R, 0.9910 0.9820 0.9764 0.9561
P 0.9505 0.9181 0.9026 0.8647

This 'dumb-bell' shape (as it appears in silhouette) was handled reasonably effectively by
all four methods - particularly by global feature matching, where performance is quite
impressive. All methods were able to detect similarity as long as at least one end of the
object contained a circular arc of approximately the same relative dimensions as the
query (drawings 53, 59, 68 and 142). Drawings 12 and 174, with differently-shaped end-
pieces, have fewer specific features in common with the query, and hence present the
system with more of a problem.

Table Bl1.5 - query shape 57

Drawing : Global Local Exist Segmatch
No rank rank rank rank
94 6 10 7 2
3 22 25 16 22
99 2 2 2 30
Ry, 0.9470 0.9316 0.9581 0.8940
PL 0.7155 0.6674 0.7278 0.5944
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An apparently simple query, for an L-shaped bracket, that nearly defeat

none of the four methods gave really adequate performance! The }slhape’i1 sei?n]tpliiccist};rsfzmat
the root qf the problerr_l; since the query shape generated only a few, very Commyon
features, it matched with virtually every rectangular part in the datzibase. The p001i
performance of segment matching was equally disappointing, though this was almost

certainly because the relative dimensions of drawings 3. 94 .
from those of the query shape. gs 3, 94 and 99 \fvere very different

Table Bl1.6 - query shape 62

Drawing Global Local Exist Segmatch

No rank rank rank - rank
143 1 1 2 1
158 2 2 1 2
160 11 7 12 4

81 12 29 40 25
152 25 37 44 19

R, 0.9517 0.9181 0.8872 0.9517
P, 0.8029 0.7625 0.7116 0.8301

One of the few cases where segment matching yielded better results than feature
matching. The system matched the query shape (a simple rectangle with rounded comers)
reasonably well with drawings of similar length/width ratio (143, 158 and 160), but was
markedly less successful with much narrower (152) or wider (81) shapes.

Table Bl.7 - query shape 67

Drawing Global Local Exist Segmatch
No rank rank rank rank
71 2 1 1 1
144 1 2 2 2
R, 1.0000 1.0000 1.0000 1.0000
P, 1.0000 1.0000 1.0000 1.0000

A relatively easy test of the system - the only two drawings remotely §1m113: to the query
shape were readily retrieved by all methods. Note that drawings 71 and 144,
respresenting the same part, were made on two different CAD systems. The fact that D
values for both drawings were almost identical is encouraging evidence that SAFARI is

indeed capable of retrieving drawings from a variety of sources.
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Table B1.8 - query shape 72

Drawing Global Local Exist Segmatch

No rank rank rank rank
65 4 5 5 32

69 3 4 4 31

70 2 3 3 47
139 5 6 2 25

R, 0.9933 0.9867 0.9933 0.7917
Py 0.9049 0.8400 0.9049 0.3626

This query shape, made up entirely of smooth curves, provided some unexpected results.
Since there were no sharp comers, boundary segments merging imperceptibly into each
other, one might expect feature matching based on the number and type of individual
segments to produce poor results, while 6-s matching would be less sensitive to
variations in the size and curvature of individual segments. In fact the reverse effect was
seen - feature matching proved surprisingly robust in this situation, while segment
matching failed hopelessly. In retrospect, the problem with segment matching was
obvious; when a boundary is made up of a large number of smooth curved segments, the
position of the longest segment is somewhat arbitrary. Even if query and stored shapes
are virtually identical, their similarity will not be recognized if they have their longest
segments (always chosen as the start point for similarity matching) in different positions.

Table B1.9 - Query shape 75

Drawing Global Local Exist Segmatch

No rank rank rank rank
83 1 1 1 9

140 3 2 i3 3
74 20 12 8 1
76 2 6 5 7
R, © 0.9733  0.9817  0.9717  0.9833
P 0.9049 0.8942 0.8183 0.8781

Generally good performance, though each method had at least one flaw. Students judged
four stor)écflg sha;}:es similar to thegquery, a circular disc with four rectangular notches
equally spaced around its circumference. All were basically circular, but 83 (like 75) had
four notches, 140 had two, 74 was a perfect circle, and 76 had two rectangular
protrusions on its circumference. Both global and local feature matching pexforr?ed
adequately, though giving too low a rank to the perfect circle (which generated few
feature types). Existence matching (based on a search for arc angle mplets and parent
features) ranked drawing 140 too low, and segment matching retrieved drawings 1n

reverse order of similarity!

237



Table B1.10 - query shape 103

Drawing Global Local Exist Segmatch
No rank rank rank rank
105 3 1 7 4
100 2 4 1 2
86 1 2 3 1
R, 1.0000 0.9978 0.9890 0?9978
P, 1.0000 0.9784 0.9058 0.9784

This pentagonal shape gave the system little trouble - though existence matchin
litth less successful than the other methods in finding dra%ving 105, probably %e‘:::sg
(unlike the query shape) it contained no right angles. o

Table Bl.11l - query shape 115

Drawing Global Local Exist Segmatch
No rank rank rank rank
90 1 3 3 4
119 6 1 1 1
114 2 2 2 12
R, 0.9934 1.0000 1.0000 0.9757
P, 0.9479 1.0000 . 1.0000 0.8436

A complex - though basically rectaﬁgular - shape, well handled by the three feature
matching methods. Segment matching successfully retrieved the two most similar shapes,
though it ranked the less complex drawing 114 rather too low.

Table B1.12 - Query shape 120

Drawing Global Local Exist Segmatch
No rank rank rank rank
129 2 1 4 83
118 1 2 2 118
124 21 21 1 141
128 3 8 3 1
R, 0.9717 0.9633 1.0000 0.4450
P, 0.9021 0.8441 1.0000 0.3526

An excellent result for existence matching, fair for global and local feature matching, but
hopeless for segment matching. Students’ judgements here seemed to have been based
purely on angular similarity. In response to a query in the form of an E-shaped bracket
with the central arm significantly shorter than the others, they retrieved shapes with
equal-length arms (129), with an almost non-existent central arm (128), and with a
central arm longer than the others (124). Existence matching using arc angle triplets and
parent features proved most successful here (alone proving able to retrieve drawing 124
at a reasonable rank), almost certainly because this emphasized angular similarity rather
than similarity in feature size.
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Table B1.13 - query shape 170

Drawing Global Local Exist
S
No rank rank rank egt:f;;ch
167 1 1
2 1
169 2 2 1 158
166 3 3 3 157
168 7 13 5 111
172 4 5 4 67
R, 0.9973 0.9879 1.0000 0.3570
Py 0.9835 0.9420 1.0000 - 0.2993

This query retrieved a group of shapes originally drawn as a family, sharing simi
features and differing only in relative dimensions. Just as with the):, ’previougs s(l;;;ﬂr;r
existence matching (with its emphasis on angular similarity) proved the most successtul,
and segment matching (sensitive to changes in boundary start point as relative segmen;
lengths alter, as for query 72) the least. Segment matching in fact gave worse results than
one would expect by pure chance.

Table Bl.1l4 - query shape 175

Drawing Global Local Exist ‘Segmatch

No rank - rank . rank - rank
27 1 1 3 1

24 6 26 12 14

37 4 14 11 6
102 12 31 9 18

82 2 . 2 2 2

R, 0.9866 0.9208 0.9705 0.9651
P, 0.9228 0.7424 0.7991 0.8413

Like other simple shapes, query 175 (a semicircle) proved quite tricky for the system.
There were few problems in retrieving drawings closely based on a semicircle (27, 82),
but shapes based on more (24, 102) or less (37) than a complete semicircle proved quite
hard for local feature matching in particular to recognize as similar. In this case, the more
general approach of global feature matching (less dependent on the presence or absence
of specific features) provided the best results. :

Table B1.15 - query shape 176

Drawing Global Local Exist Segmatch
No rank rank rank rank
179 1 1 4 1
21 2 2 3 4
177 21 11 19 43
Ry 0.9603 0.9823 0.9558 0.9073
P 0.8537 0.9023 0.7265 0.7477
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The system readily retrieved two of the three most similar
irregular hexagonal shape, whichever method was used. Th
regular hexagon, proved much more difficult to find, almos

regularity. Almost the only feature it shared with the query
sides!

shapes to this query, an
e third shape, an aimost
t certainly because of its
shape was the number of

Table Bl1.16 - query shape 183

Drawing Global Local Exist Segmatch
No rank rank rank rank
182 1 2 2 18
184 2 1 1 10
107 7 3 5 21
185 5 5 3 1
R, 0.9917 0.9983 0.9983 0.9333
P, 0.9368 0.9868 0.9868 0.7012

This 'daisywheel' query proved very easy to distinguish from the majority of circular
shapes, though none of the methods was quite able to reproduce human judgements. As
usual, segment matching performed less well than feature matching. ‘

B2. All-boundary queries

Table B2.1 - query shape 9

Segmatch Segmatch

Drawing Global @ Local Exist rank rank
No rank rank rank (position) (shape)
8 1 1 1 1 1
6 2 2 2 7 7
7 3 3 3 17 17
1.0000 © 1.0000 1.0000 0.9623 0.9623
?n 1.0000 1.0000 1.0000 0.7806 0.7806

n

. . . . din
All three feature-matching methods performed well with this query (already Hlustrate
Fig 8.11), though segmerglt matching failed to identify thg less similar members of the
family with any reliability - a situation very similar to queries 120 and 170, above.
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Table B2.2 -

query shape 47

) Segmatch
Drawing Global Local Exist g:.nk Seg::;ch
No rank rank rank (position) (shape)
59 1 1 1 1
1
53 3 3 3 3 3
142 2 2 2 2 2
68 5 5 5 5 6
12 6 16 15 30 19
R, 0.9976 0.9855 0.9867 0.9687 0.9807
P, 0.9806 0.9335 0.9366 0.9166

0.9034

This query occurred in both outer-boundary and all-boundary lists, and it is perhaps
instructive to compare the way in which its two versions were handled. Student similarity
rankings were almost, but not quite, identical in the two cases (students shown only the
outer boundary silhouettes also included drawing 174 in their lists of similar drawings).
SAFARI performed marginally better when matching on the entire shape than when
matchmg outer boundaries only, whichever method was used, suggesting that
information on inner boundary position and shape was being constructively used. The
relative performance of different matching methods was again similar; so too was the
relative difficulty experienced by all methods except global feature matching in
retrieving drawing 12. :

Table B2.3 - query shape 48

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank: rank (position) (shape)
54 1 1 1 1 1
147 2 2 2 2 2
Ry 1.0000 1.0000 1.0000 1.0000 1.0000
Pn 1.0000 1.0000 1.0000 1.0000 1.0000
This query, a shape in the form of a circular gasket, was readily matched to the only two

really close shapes in the database by all five methods - not a very severe test of the

system, but a successful one nevertheless.

Table B2.4 - query shape 49

Segmatch Segmatch.

Drawing Global Local Exist r§nl'c rank
No rank rank rank (position) {shape)
61 4 2 1 8 5
88 1 3 20 14 8
56 3 1 2 12 6
110 2 4 7 7 3
1.0000 1.0000 0.9701 0.9536 0.9820
gﬁ 1.0000 1.0000 0.8584 0.6559 0.8040
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Shape 49, a rectangular plate with one corner

demonstration of the system's power to distinguish b:t?waé:rfnef:?gse(l))ff,shgﬁ)a\fgh . us%;ul
feature matching methods (particularly global and local feature matching) zlixp'ceis.l‘ttle
dlfﬁqulty in .1dent1fylng tl}e four desired shapes from over 60 similar st%ai lilt d1 g
drawings. Existence matching performed less well, though the low ranking of drgaw_i; g868
(and to a lesser extent drawmg_ 110) was in fact a problem caused by the feature set : d
rather than by existence matching per se. As shown in Fig 8.13, drawings 56 and 6111?);
not 88 or 110) are fundament.ally rectangular. Hence the top-level shapes of drawings 56
and 61, and the status of their low-level line segments, are quite different from thogse of
drawings 88 and 110. The feature set used here for global and local matching emphasized
line curvature and discontinuity angle, with successful results. Existence matching, b
contrast, used more complex parameters such as arc angle triplet and parent fe%x,uuz
composition, emphasizing the difference between those shapes which were basicall
rectangular (56 and 61) and those which were not (88 and 110). Segment matching Waz
not conspicuously successful, though the addition of inner boundary shape matching
markedly improved its performance, successfully rejecting shapes whose inner
boundaries were not all circular. '

Table B2.5 - query shape 57

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
45 9 22 | 18 2 5
%94 10 23 16 3 6
99 1 1 o1 38 29
R, 0.9722 0.9206 0.9425 0.9266 0.9325
Py 0.8011 0.6743 0.7157 0.7328 0.6345

This shape again figured in both "outer-boundary” and "all-boundary"” query lists, though
student similarity rankings in the two cases showed significant differences (drawing 3,
for example, was well below the threshold score of 0.1 in the "all-boundary"” rankings).
The presence of inner boundaries clearly influenced students’ judgement, though not in
any obvious way - neither drawings 94 nor 3 contained inner boundaries, yet one was
chosen, the other rejected. SAFARI performed almost as poorly with the all-boundary
version of this query as with the outer-boundary version discussed earlier, for the same
reasons. It is interesting to note that the feature matching methods performed best on the
shapes on which segment matching performed worst, suggesting that for this query at
least, a combination of both methods might prove beneficial.

Table B2.6 - query shape 72

Segmatch Segmatch .

Drawing Global Local Exist rank rank

No rank rank rank (position) (shape)
65 4 5 5 40 42
69 3 3 4 41 48

139 5 4 2 37 39
70 2 2 3 55 63
R, 0.9940 0.9940 0.9940 0.7560 0.7275
P, 0.9073 0.9073 0.9073 0.3176 0.2948
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The results of matching this query in its all-boundary form were almost i i

obtained by outer boundary matching: good witharghc three feature ma?cetxxlitri;aln:gtlt]%%?
poor with both forms of segment matching. The fact that inner boundary shape matching
yielded worse results than position matching alone suggests that the system ma bi
giving too much weight to inner boundary shape similarity, over—emphasizingy the

g;gf‘;riix;c;s in inner boundary shape between the query shape and Fhe four retrieved

Table B2.7 - query shape 80

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
140 2 1 2 1 1
76 1 3 3 18 16
101 21 9 16 2 2
75 3 2 11 10 6
83 5 8 1 11 10
R, 0.9795 0.9904 0.9783 0.9675 0.9759
P, 0.9205 0.9386 0.8958 0.8324 0.8671

All shape matching methods handled this query (a notched circular disc) adequately, with
local feature matching performing particularly well. Global and existence matching failed
to rank drawing 101 (with a completely circular outer boundary, which generated few
feature types) as high as human judges, a problem similar to that seen with query shape
75. Segment matching readily retrieved drawing 101, though (perhaps reasonably) it gave
a low ranking to drawing 76, which contained local shape features standing proud of the
circumference. : ’

Table B2.8 - query shape 89

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)

108 1 1 1 1 1
114 2 2 3 2 2
115 5 3 6 22 17
119 3 4 5 12 8
90 24 10 16 29 26
0.9759 0.9940 0.9807 0.9386 0.9530

gﬁ 0.9141 0.9668 0.8809 0.7676 0.8046

. . . .. the query. a
All methods successfully identified the two drawings most similar to query,
rectangular part with a fZirly simple pattern of features machined out of one side. The

remaining drawings, similar but with a much more complex pattern of features, proved

- i ds readily retrieved
more of a test of the system, though the three feature-matching metho

all but drawing 90, they most complex. Segment matching failed to rank any of these three
shapes sufficiently highly.
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Table B2.9 - query shape 100

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
105 1 2 5 92 4
181 6 1 19 33 25
178 71 4 20 32 15
R, 0.8571 0.9980 0.924¢6 0.7004 0.9246
P, 0.6869 0.9789 0.5771 0.2881 0.5945

An unusual seven-sided shape which caused the system some difficulty. Only local
feature matching proved really equal to the task of identifying all three shapes
(containing five, ten and eight sides respectively) deemed similar by student judges.
Global matching failed dismally with drawing 178, almost certainly because this shape
was much more regular than the other two, and hence had much lower values for length
and discontinuity angle variances. Existence matching also performed poorly, ranking
drawings 181 and 178 too low because they contained too few of the required types of
arc angle triplet or parent feature composition. Segment matching proved the worst
method of all, almost certainly due to differences in outer boundary starting point, at least
where inner boundary matching was based solely on position. Where inner boundary
shape was taken into account, performance improved markedly - to be expected given the
close similarity of inner boundary shape between the query and all retrieved drawings.

Table B2.10 - query shape 109

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
22 1 1 1 49 50
23 2 2 5 38 35
64 10 5 16 163 159
R, 0.9861 0.9960 0.9683  0.5159  0.5278
P, 0.9116 0.9625 0.8098 0.2045 0.2109

i i i local feature matching to
A partly rectangular, partly circular shape, which again showed
ad\r:antgge. Global and existence matching ranked drawing 64 much lower than student
judges, and segment matching gave rankings little different from those expected by pure
chance. Investigation of these discrepancies suggested that the causes were the same as

for query 100 above.
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Table B2.11 - qQuery shape 120

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
118 1 1 2 116 86
129 3 2 6 107 9
124 4 8 1 124 . 42
128 2 3 3 1 1
1.0000 0.9940 0.9970 0.4940 0
. . .8084
P, 1.0000 0.9601 0.9766 0.3622 0.5844

Compagison of these results with those for query 120 in outer-boundary mode is quite
instructive. Drawing .124, previously difficult to retrieve by all except existence
matching, is now readily retrieved at a reasonable rank by all three methods of feature
matching because its pattern of inner boundaries is very similar to that of the query
shape.. There is even some improvement in segment matching performance, particularly
when inner boundary shapes as well as positions are taken into consideration.

Table B2.12 - query shape 122

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
117 1 1 1 1 1
116 2 : 2 2 2 2
121 22 4 3 5 3
R, . 0.9623 0.9980 . 1.0000 0.9960 1.0000
P, 0.8537 0.9789 1.0000 0.9625 1.0000

Another case where all three retrieved drawings were very similar to the query shape, and
all matching methods performed well. The only exception was the failure of global
matching to rank drawing 121 (the most complex shape of the three retrieved)
sufficiently highly. The greater complexity of this shape meant that values of global
parameters such as segment length and arc angle variances differed markedly from those
for the query or the other two retrieved shapes. Local and existence matching proved
more robust here, as positive matches could be made on the features which query and

stored shapes did have in common.

Table B2.13 - query shape 154

Segmatch Segmatch

Drawing Global  Local Exist rank rank
No rank rank rank (position) (shape)
149 1 1 1 2 9
171 2 2 2 1 1
79 3 3 5 5 8
83 6 7 4 19 22
74 4 4 8 6 3
0.9988 0.9976 0.9940 0.9783 0.9663
ﬁg 0.9913 0.9839 0.9530 0.8921 0.8237
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An exercise in inner boundary matching, as illustrated in Fi

most retrieved shapes, were circular dis%s with complccie;n pI:tltgcaisl tf};lllrfe?llazrl};r’lc?n e
three feature-matching methods performed well, and segment matching erfonnarc;elj' o
than on many queries. Its only real "failure" was with drawing 83 whic% did net h e
completely circular outer boundary, and was thus ranked below ’many drawin0 aﬁf h
did - possibly indicating that the relative weighting given to outer bound o Wh o
similarity was too high here. The fact that segment matching using inner boundary tsx bos
gave poorer results than when using position matching suggests that there mz;ysstﬂ?pg:

room for improvement in selection of the order in which i
. . ch inner ari
drawing are matched with each other. boundaries from query and

Table B2.14 - query shape 159

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
163 1 1 4 1 1
158 2 4 1 2 2
77 38 46 41 18 15
162 13 9 16 4 3
160 20 14 17 5 4
143 3 2 2 7 8
62 4 3 -3 8 7
R, 0.9538 0.9556 0.9512 0.9852 - 0.9895
Py 0.8591 0.8787 0.8547 0.9239 0.9493

This query, again largely an exercise in inner boundary matching (though this time within
rectangular outer boundaries) was another of the few cases where segment matching
seemed superior to feature matching. While successfully retrieving rectangles of similar

length/width ratio (163, 158, 143), the feature-matching methods were relatively less
successful with rectangles having markedly different length/width ratios (77), or where
additional inner boundaries were present (160, 162). The segment-matching strategy of
matching inner boundaries individually, rather than simply looking for the presence or
absence of the inner boundary pattern features defined in section 4.4.4, seems to be more

appropriate here.

Table B2.15 - query shape 175

Segmatch Segmatch

Drawing Global Local Exist ran@ rank
No rank rank rank (position) (shape)
82 1 1 1l 2 2
27 3 3 3 1 1
87 2 2 2 3 3
37 4 15 12 12 12
145 39 16 16 149 121
0.9590 0.9735 0.9771 0.8169 0.8506
?2 0.9015 0.8809 0.8916 0.7846 0.7946
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It is interesting to note that students’ similarity rankin s for thi i

from those for its outer-boundary version above. Thge prese}:llllscefl uoefrjzl d&lfsftei;ec(:iirna{kedly
boundary pattem (four circular holes with centres lying on the same circular ar:) ?tir-
query shape clearly .inﬂuencgd students' choice, moving drawing 82 up from fifth to fi s‘:
position, and including drawings 87 and 145 (all of wich shared the same pattern of mg
boundarles)'m the list .of those retrieved in place of 24 and 102. On the whole, the syst ™
rpﬂected this change in emphasis well. Drawings 82 and 87 were retrieved ’hi h zicﬁ
!1sts; SO too was drawing 27, lacking the required inner boundary pattern butgvirtuall
identical in external shape. Drawing 37 was less well recognized, for the ' X
discussed in the previous section. ' ’ reasons

The system's failure to retrieve drawing 145 was more unexpected. It

traced to a problem with the original drawing. The outer boundap}y had bee‘:abfacei:l‘;eg?zﬁily
preventing program SKELETON from building the expected shape feature hierarchy and
hence preventing later programs from generating the required range of shape features.
While the drawing could simply have been corrected and the shape-matching
experiments re-run, it was decided to leave it in place, as a demonstration of the severe
problems that could occur if stored shapes were incorrectly drawn. Some form of
integrity checking would clearly be needed for any operational shape database.

Table B2.16 - query shape 176

Segmatch Segmatch

Drawing Global Local Exist rank rank
No rank rank rank (position) (shape)
179 1 1 3 1 1
21 7 2 4 3 4
177 13 - 28 21 58 27
88 9 3. 9 7 2
R, 0.9701 0.9641 0.9596 0.9117 0.9641
P, 0.7966 0.8879 0.7379 0.7737 0.8734

Unlike the previous query, students' similarity rankings were very similar for both outer-
boundary and all-boundary versions, the only difference being that drawing 88 was
included in the all-boundary list, presumably on the strength of its inner boundary
pattern. The system's performance was little different from that described for the outer-
boundary version of the query above; drawings 179, 21 and 88 were retrieved reasonably
easily, but 177 again proved more difficult, for the reasons outlined in the previous

section.
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