
DESIGN AND
EVALUATION OF A SHAPE

RETRIEV AL SYSTEM

John P Eakins

PhD Thesis

Computing Laboratory

University of Newcastle upon Tyne

December 1990

NEWCASTLE UNIVERSITY LIBRARY,
.. ,

............................. " _"

ABSTRACT

While automated storage and retrieval systems for textual and numeric data are now
commonplace, the development of analogous systems for pictorial data has lagged behind
- not through the lack of need for such systems, but because their development involves
a number of significant problems.

The aim of this project is to investigate these problems by designing and evaluating an
information retrieval system for a specific class of picture, 2-dimensional engineering
drawings. This involves consideration of the retrieval capabilities needed by such· a
system, what storage structures it would require, how the salient features of each drawing
should be represented, how query and stored shapes should be matched, what features
were of greatest importance in retrieval, and the interfaces necessary to formulate queries
and display results.

A form of hierarchical boundary representation has been devised for stored shapes, in
which each boundary can be viewed as a series of levels of steadily increasing
complexity. A set of rules for boundary and segment ordering ensures that as far as
possible, each shape has a unique representation. For each level at which each boundary
can be viewed, a set of invariant shape features characterizing that level is extracted and
added to the shape representation stored in the database. Two classes of boundary feature
have been defmed; global features, characteristic of the boundary as a whole, and local
features, corresponding to individual fragments of the boundary. To complete the shape
description, position features are also computed and stored, to specify the pattern of inner
boundaries within the overall shape.

Six different tYPes of shape retrieval have been distinguished, although the prototype
system can offer only three of these - exact shape matching, partial shape matching and
similarity matching. Complete or incomplete query shapes can be built up at a terminal,
and subjected to a feature extraction process similar to that for stored drawings, yielding
a query fIle that can be matched against the shape database. A variety of matching
techniques is provided, including similarity estimation using global or local features, tests
for the existence of specified local features in stored drawings, and cumulative angle vs
distance matching between query and stored shape boundaries. Results can be displayed
in text or graphical form.

The retrieval performance of the system in similarity matching mode has been evaluated
by comparing its rankings of shapes retrieved in response to test queries with those
obtained by a group of human subjects faced with the same task. Results, expressed as
normalized recall and precision, are encouraging, particularly for similarity estimation
using either global or local boundary features. While the detailed results are of limited
significance until confrrmed with larger test collections, they appear sufficiently
promising to warrant the development of a more advanced prototype capable of handling
3-D geometric models. Some design aspects of the system would appear to be applicable
to a wider range of pictorial information systems.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the help and encouragement I have received from many
sources over the six years of this project. Pride of place must go to my supervisor,
Elizabeth Barraclough, for her enthusiasm to see the work succeed, her unfailing
patience, and her consistent ability to ask seemingly-innocuous questions. Thanks are
also due to Peter Hitchcock, my former supervisor, now at the University of York, for
helping to define the initial shape of the project.

Discussions with colleagues too numerous to mention at Newcastle upon Tyne
Polytechnic have provided me with valuable opportunities to clarify ideas and set them in
context. Particular thanks are due to Tony McLeod of the Department of Mechanical
Engineering, for providing a design engineer's view of the project, offering a wealth of
constructive criticism, and identifying sources of test data. The advice of Mic Porter from
the Department of Applied Social Science on the design of the human shape-matching
experiments, and of Carolyn Craggs of the Department of Mathematics and Statistics on
statistical analysis of the results, is also gratefully acknowledged.

Last but emphatically not least, lowe an enormous debt of gratitude to my wife Ann,
both for her constant encouragement, and for her work in reading earlier drafts of this
thesis, identifying areas which were inconsistent, illogical or just plain incomprehensible!

NOTE

A preliminary version of this research was presented at the British Computer Society
11 th Information Retrieval Research Colloquium held at Huddersfield Polytechnic in
July 1989, and appears in the proceedings of that meeting under the title "SAFARI - a
shape retrieval system for engineering drawings".

CONTENTS

1. Introduction .
1.1 Graphics as a communication medium .
1.2 Computers in engineering design
1.3 Data exchange in computer-aided design
1.4 Data management for CAD
1.5 The need for retrieval by feature
1.6 Automatic shape recognition in CAD
1.7 Graphical databases in other areas
1.7.1 What constitutes a graphical database?
1.7.2 Geographical infonnation systems .
1.7.3 Medical image database systems
1.7.4 Other pictorial infonnation systems .

1.8 Scope of the present project

2. Fonn and scope of object representation
2.1 Introduction
2.2 Scope of the database

2.2.1 Type of drawing
2.2.2 Two or three dimensions?
2.2.3 Input fonnat .
2.2.4 What constitutes a single object?

2.3 General principles of shape representation
2.4 Representation schemes for 2-D objects
2.5 Representation of line segments

2.5.1 What is an edge?
2.5.2 How should edges be represented?
2.5.3 Representations based on stniight-line segments
2.5.4 Circular arc representations.
2.5.5 Spline representations
2.5.6 Boundary transfonnations

2.6 Representation schemes for 3-D objects
2.7 Conclusions

3. Shape representation for retrieval .
3.1 Introduction
3.2 Choice of shape representation .

3.2.1 Outer boundary representation
3.2.2 Initial representation chosen
3.2.3 Final representation chosen.
3.2.4 The concept of the boundary level
3.2.5 Inner boundaries
3.2.6 Relative positioning of inner and outer boundaries.

3.3 Converting shapes to invariant fonn
3.3.1 Overview .
3.3.2 Extraction of geometric infonnation from IGES file
3.3.3 Joining boundary lines
3.3.4 Uncovering underlying shape
3.3.5 Generating canonical representation
3.3.6 Outer boundary representation
3.3.7 Inner boundary representation

3.4 Efficiency considerations
3.5 Concluding remarks

1
1
1
5
7
9
9

12
12
14
18
18
19

21
21
21
21
22
24
25
26
27
28
28
30
34
35
35
36
37
39

41
41
41
41
41
43
50
54
54
56
56
59
59
63
77
77
78
80
81

4. Retrieval features .
4.1 Introduction
4.2 Possible sources of shape features

4.2.1 Manual parts classification codes
4.2.2 Feature names
4.2.3 Automatic pattern recognition
4.2.4 Human visual perception
4.2.5 Information theory .

4.3 Criteria for feature selection
4.4 Features chosen for prototype system

4.4.1 Introduction .
4.4.2 Global boundary features chosen
4.4.3 Local boundary features chosen
4.4.4 Inner boundary position features

4.5 Methods of feature extraction
4.5.1 Introduction .
4.5.2 Global boundary features
4.5.3 Global level features
4.5.4 Local boundary features
4.5.5 Inner boundary position features

4.6 Efficiency considerations

5. Database design
5.1 Database requirements for CAD systems
5.2 Adequacy of existing database models

5.2.1 General observations
5.2.2 The CODASYL model
5.2.3 The relational model

5.3 Alternative database models
5.4 File organization for information retrieval
5.5 Database requirements of present project
5.6 Implementation of the prototype database

5.6.1 Logical data modelling
5.6.2 Physical implementation

6. Retrieval capabilities
6.1 Introduction
6.2 Types of shape retrieval
6.3 Mechanisms for shape retrieval

6.3.1 General observations
6.3.2 Boolean searching
6.3.3 Similarity matching .

6.3.3.1 General principles
6.3.3.2 Simple feature matching.
6.3.3.3 Matching using transformations
6.3.3.4 Stochastic methods

6.3.4 Clustering .
6.3.5 Syntactic pattern recognition .

6.4 Design criteria for a shape retrieval system
6.5 Capabilities of the prototype system
6.6 Detailed program operation .

6.6.1 Initialization and query input
6.6.2 Shape matching - general .
6.6.3 Feature matching in detail. .

6.6.3.1 Boundary feature similarity matching
6.6.3.2 Global feature matching . .

84
84
84
84
85
85
86
87
87
88
88
88
91
93
99
99
99

100
101
101
104

106
106
107
107
107
107
113
115
116
117
117
118

122
122
122
126
126
127
127
127
127
129
129
129
130
131
132
133
133
133
137
138
139

6.6.3.3 Local feature matching .
6.6.3.4 Existence matching
6.6.3.5 Penumbral matching
6.6.3.6 Inner boundary position matching
6.6.3.7 Inner boundary shape feature matching

6.6.4 Segment matching
6.6.4.1 Principles of segment matching .
6.6.4.2 The segment matching process .
6.6.4.3 Inner boundary matching

6.6.5 Accumulation and display of results
6.7 Mirror images
6.8 Efficiency considerations

7. Interface design
7.1 General considerations
7.2 Some existing systems

7.2.1 Command language-based systems
7.2.2 Menu-based systems
7.2.3 Example-based systems
7.2.4 Novel systems

7.3 Interface design criteria
7.3.1 Query fonnulation
7.3.2 Display of results
7.3.3 Applicability of existing types of interface

7.4 Interface design for the prototype system
7.5 Implementation of the query formulation module

7.5.1 Overview
7.5.2 Detailed program operation

7.6 Feature extraction
7.7 Display of results

8. Testing and evaluation
8.1 Scope of the evaluation process
8.2 Evaluation techniques used with related systems

8.2.1 Information retrieval systems
8.2.2 Expert systems
8.2.3 Image database systems
8.2.4 Pattern recognition systems.

8.3 Evaluation approach chosen for SAFARI
8.3.1 General observations
8.3.2 The test database
8.3.3 Standards for judging similarity

8.3.3.1 Selection of a suitable standard
8.3.3.2 Experimental design
8.3.3.3 Experimental results
8.3.3.4 Subjects' comments on the process
8.3.3.5 Derivation of standard similarity rankings

8.3.4 Measures of system performance. .
8.4 Evaluation of SAFARI's retrieval effectiveness

8.4.1 Design of evaluation experiments
8.4.2 Detailed results from typical queries .
8.4.3 Comparative results - outer boundary queries
8.4.4 Compar~tive results - all-boundary queries
8.4.5 ComparIson of matching techniques
8.4.6 Efficiency of matching process

8.5 Conclusions

140
140
142
144
144
146
146
149
150
151
151
152

154
154
154
154
155
155
156
156
156
157
157
158
159
159
161
164
166

169
169
170
170
173
174
174
174
174
175
176
176
176
181
187
187
188
189
189
189
194
195
200
205
206

9. Conclusions
9.1 Summary of fmdings
9.2 Further work required
9.3 Relevance to 3-D object retrieval

9.3.1 Introduction .
9.3.2 Orthographic projections of 3-D objects
9.3.3 3-D geometric models
9.3.4 Conclusions . '"

9.4 Applicability to pictorial information systems in general
9.4.1 A taxonomy of related systems
9.4.2 Relevance of the SAFARI project

9.5 Epilogue

10. References

11. Appendix A - Results of student similarity ranking experiments

12. Appendix B - Comprehensive shape retrieval results

207
207
209
209
209
210
210
212
212
212
214
216

217

226

234

CHAPTER 1. INTRODUCTION

1.1 Graphics as a communication medium

It can be argued that graphical presentation of information is one of the oldest means of
communication known to man - prehistoric cave-dwellers painted pictures on the walls of their
caves, the ancient Greeks and Egyptians drew lines in the sand while developing their ideas on
geometry, and early navigators summarized their knowledge of the seas and coasts in the form of
maps. Engineers and architects have used plans as a means of developing their designs and
communicating their ideas to others for hundreds - maybe thousands - of years.

The use of computers in handling graphical information is still not fully developed. In the early
days of computing, computers were regarded only as number-crunchers. Later their record
handling and text-processing ability was recognized, but their potential to display, manipulate
and store images was not realized until the 'Sketchpad' project (Sutherland, 1965) came to
fruition in the early 1960's. The high cost of hardware, and the difficulty of creating good
graphics software, delayed the commercial acceptance of computer graphics for over a decade. It
was not until hardware costs began to fall dramatically in the late 1970's - and a mass market
developed for home computers capable of playing arcade games - that use became at all
widespread. Since then, computer graphics have become widely used as a display medium in
such apparently diverse fields as business (Ives, 1982), geography (Nagy and Wagle, 1979), and
chemistry (Max, 1983), where graphically-presented information can often be more easily
interpreted than tables of figures.

The main use of the computer's ability to process graphical information has been in the area of
design, whether engineering (e.g. Gardan and Lucas, 1983), architecture (Rogers, 1980), fashion
(Kunii et al, 1975), or graphic art (Dietrich, 1985). Engineers, in particular, have made
substantial use of computers for years - purely as a calculating tool to start with, but increasingly
as an interactive design aid, enabling them to create, modify, and store graphic representations of
the object they were designing. Sophisticated draughting and geometric modelling packages
have been developed, providing the designer with a far wider range of facilities than the old
drawing-board could offer.

1.2 Computers in engineering design

Computers have been used in engineering design since the 1950's, though the use of interactive
computer graphics to create and modify engineering drawings has a much shorter history. The
earliest systems, growing out of research programmes in large engineering-based fmns such as
Lockheed and General Motors, were quite literally computerized draughting systems, allowing
the designer to produce drawings on a screen with the help of a light pen, or stylus and tablet.
These screen images could be selectively modified, stored for later use, or used to generate high
quality engineering drawings on a suitable plotter. Such two-dimensional (2-D) draughting
packages are still in use today. They are best regarded as a direct replacement for the drawing
board; just as with traditional engineering drawings, a number of views or projections from
different angles need to be drawn to describe an object to be manufactured. Each projection has
to be the subject of a separate drawing.

A typical 2-D draughting package is DOGS (drawing office graphics system) from PAFEC Ltd
of Nottingham. This package allows users to build up and edit drawings on a high-resolution
graphics screen, allowing input of drawing elements via keyboard or graphics tablet. A relatively
small set of primitives is used for constructing drawings - points, straight lines, circular arcs, and
text characters. More complex shapes such as ellipses are represented by chains of short straight
line or circular segments. A variety of drawing aids is provided - users can define temporary
construction lines, zoom in to magnify selected parts of a drawing, and copy one part of a
drawing to another by translation, rotation, or mirroring. The facility is also provided to associate
sets of line elements into user-defmed symbols, which can be saved in a library file, and

1

retrieved and manipulated as a unit. Drawings can be dimensioned, and drawn in a variety of line
style~. Hard copy can be provided as screen dumps or via a plotter, and drawings can be archived
on disc for later editing. For the advanced user, facilities are provided for defIDing multiple
views of a drawing, or defIDing drawings on different levels, which can be viewed separately or
together. A typical drawing generated by DOGS is shown in Fig 1.1.

-@ @ R 53

~:
I

I

I

-t- -- --- ------ -----

I

I
I

~I
I

,

@
(0 (0 20 60

Fig 1.1 Typical engineering drawing produced using DOGS 2-D draughting system

DOGS faithfully represents the geometry (i.e. the type and spatial coordinates of each element)
of any drawing it is used to construct. Each element (point, line, arc, etc.) in the drawing is
represented by an individual record in the drawing fIle, containing an indicator of the element
type, its defIDing (x,y) coordinates, and ~cillary infonnation such as line type or (for circular
arcs) angle subtended. However, there is no specific indication of the topology of the object
represented (i.e. how elements are connected), unless the designer chooses to make this explicit
when the drawing is fIrst created. Though four lines may trace the boundary of a square object,
this relationship will in general have to be inferred from the drawing(s) by the user.

Following the pioneering work of Braid (1973) and Voelker et al (1978), interest has grown in
developing software which is capable of modelling design objects directly, not via 2-D drawings.
The motivation behind Braid's original BUILD system was that since a relatively small set of
machining operations was suffIcient to manufacture components of any desired complexity, it
should be possible to carry out design in a similar manner. BUILD thus allowed the user to
construct, store and display a solid model of an object such as that shown in Fig 1.2 by
perfonning Boolean operations on shapes constructed from a set of six solid primitives (cube,
tetrahedron, cylinder, wedge, segment and fIllet). Most subsequent geometric modelling systems
have adopted this basic principle, though the range of operations provided has been considerably
enhanced. Two main forms of object representation are in common use in such systems -
constructive solid geometry (CSG), which represents solid objects as binary trees, indicating how
they were "built up" from a small set of primitives by repeated application of union, intersection,
difference or transfonnation operators (Fig 1.3), and boundary representation, in which the
geometry and topology of each bounding surface, edge and vertex are explicitly specified (Fig
1.4).

2

Fig 1.2 The part illustrated in Fig 1.1, as modelled by a 3-D system

M
~rt:h
?'X

U· TRANSLATE

/\ /"\

Fig 1.3 Representation of a solid object (shown in cross-section) as a fSG tree.
The solid primitives P 1 and P2 are combined by the union operator U ,and the
resultant solid combined again with the result of translating primitive P2 the
specified distance along the x-axis. Figure reproduced from (Requicha, 1980) by
permission of the Association for Computing Machinery. Copyright ACM 1980

3

%BODY ABC %NAME GENERATOR 8
%SURFACE $18 %PLANAR %POINT_ON_PLANE (0.0,0.0) @

%NORMAL_TO_PLANE (0.0,0.0,-1.0)
$48 %PLANAR %POINT_ON_PLANE (0.0,0.0,10.0) @

%NORMAL_TO_PLANE (0.0,0.0,-1.0)
$21 %CYLINDRICAL %AXIS_POINT (0.0,0.0)

%DIRECTION (0.0,0.0,1.0) @
%RADIUS 5.0

%TRACK $13 %CIRCULAR %CENTRE (0.0,0.0)
%NORMAL_TO_PLANE (0.0,0.0,-1.0) @
%RADIUS 5.0

$11 %CIRCULAR %CENTRE (0.0,0.0,10.0) @
%NORMAL_TO_PLANE (0.0,0.0,-1.0) %RADIUS 5.0

$46 %LINEAR
%POINT PI (-2.23607,4.47214)

P6 (-2.23607,4.47214,10.0)
%FACE FO %FOLLOWING %SURFACE $18 %HA 0.0 0.0 0.0
%LOOP
%VERTEX PI %EDGE E2 %FOLLOWING %TRACK $13
%FACE F3 %OPPOSING %SURFACE $48 %HA 0.0 0.0 0.0
%LOOP
%VERTEX P6 %EDGE E5 %OPPOSING %TRACK $11
%FACE F4 %FOLLOWING %SURFACE $21 %HA 0.0 0.0 0.0
%LOOP
%VERTEX PI %EDGE E2 %OPPOSING %TRACK $13

PI %EDGE E7 %FOLLOWING %TRACK $46
P6 %EDGE ES %FOLLOWING %TRACK $11
P6 %EDGE E7 %OPPOSING %TRACK $46

%END ABC

Fig 1.4 An example of the boundary representation of a cylindrical object. as
generated by the ROMULUS geometric modelling system. specifying both the
geometry of each sUrface. track (path followed by an edge) and point. and the
topological relationships betweenfaces. edges. and vertices.

A typical boundary representation-based geometric modelling package is ROMULUS, from
Shape Data Ltd, Cambridge. This allows users to create, modify, and store solid models, and
generate 2-D views of such models from any desired angle. The user builds up a geometric
model of the design object by specifying appropriate combinations of solid primitives (cube,
rectangular block, regular prism, cylinder, cone, sphere or torus). He can create instances of any
of these primitives at any given location in 3-space, with specified size and orientation, and can
modify their surface or edge geometry, reposition them by scaling, translation, rotation, or
mirroring, and combine them into more complex objects by using suitable Boolean operators (for
example, a block with four cylindrical holes would be generated by specifying a solid block and
four cylinders of suitable size and position, then subtracting the cylinders from the block).
"Sweep" operators are also provided, allowing 2-D shapes to be "extruded" into solid form,
either along a specified linear path, or around a given axis, generating a solid of revolution.
ROMULUS can display orthographic (top and side) views of the design object, or perspective
views from any desired angle, with all hidden edges removed. The user can also generate cross
sectional views. Again, all or part of the model can be stored on disc for later use. Facilities are
provided for the user to specify additional associations by derIDing sets of faces which make up a
common feature, share a common type of geometry, or are traversed by a given ray (a vector
with specified direction and starting-point), though the use of this facility is purely optional.

4

~ol1d modelli?g ~ystems o.f this .kind ~emand new ways of working from the design engineer,
who has to think ill three dimensIOns rather than two. They also need to handle more information
about ~h~ object .. In or?er to d~scribe ~e shape and size of a three-dimensional (3-D) object
fu~y, It IS essentlal to illc1u~e ~onnatlon about both its geometry and its topology. Concave
obJect~ such as .those sho~~ ill ~lg 1:5. cannot be represented unambiguously by geometry alone.
Some informatIOn - expliCIt or ~phClt - needs to be provided on the topological relationships
between faces, edges, and vertIces. However, solid modellers do provide considerably more

Fig 1.5 Ambiguity of shape described by vertices alone

functionality than 2-D packages - their ability to calculate mass properties such as centres of
gravity or moments of inertia, to perfonn interference analysis and to generate finite element
meshes for stress analysis means that they can genuinely be regarded as computer-aided design
(not just draughting) tools. Further developments such as automatic code generation for NC
machine tools and automatic process planning are actively being researched, offering the real
prospect of linking design and manufacture into an integrated whole (Requicha, 1988; Voelker,
1990).

1.3 Data exchange in computer-aided design (CAD)

As CAD systems have grown in popularity, the need to exchange data between different CAD
systems has grown in importance. Organizations working on cooperative projects, who in the
past would have exchanged design drawings, now wish to do the same with their machine
readable equivalents. Since the majority of commercially-available CAD systems store data in
quite different formats, direct exchange of data between independent CAD systems is virtually
impossible. To allow such data exchange requires either (a) the development of interface
software to translate directly between each pair of systems (a task which rapidly becomes
impracticable with more than a handful of systems; to create all required interfaces between n
systems requires n(n-l) separate pieces of software), or (b) the defInition of a standard
interchange fonnat, and the provision of interface software between each CAD system and this
standard format (requiring no more than 2n pieces of software to interface n CAD systems).

The attractiveness of the second option has led to several attempts at standardization, of which
the most successful to date has been IGES, the Initial Graphics Exchange Specification (National
Bureau of Standards, 1983). This was developed largely out of standardization efforts made by

5

the B?eing Corporation and other large American organizations during the 1970's, and attempts
to defme a ~oJ?ffion format fo! .e:cchange of data betw~en any pair of 2-D draughting systems. It
has some lllmted 3-D capabilItIes, but was not desIgned wIth 3-D solid modellers in mind.
Standardization for data exchange needs to address three main areas (Liewald & Kennicott
19~2): format (file structures r~ql!~ed, and bit repre~entations to be used for integer, floating~
pomt number and character defmIt1ons); representatlon (the set of geometric primitives chosen
to defme an object's shape), and meaning (how to preserve structural and other relationships
present in the original drawing).

The IGES standard addresses the first two of these issues in considerable detail. An IGES flle
describes a single drawing, and consists of five separate sections, each containing one or more
80-character records (a relic from the days of punched cards) in ASCII character format. These
five sections are:

- A start section, providing a "human-readable" file header which may be displayed by the
receiving system.

- A global section, defirling standard parameters for system· use, including flle name, date
and time of creation, number of bits used to represent integers and floating point numbers
in the sending system, and reduction scale used.

- A directory section, containing two records for each geometric entity (point, line, surface,
etc) in the drawing, which define the entity type, point to its associated parameter value
records, and indicate line type and weight, and entity status.

- A parameter section, containing a variable number of records for each entity, giving
values for whatever parameters are required to define that particular entity.

- A terminator section, consisting of a single record, holding record counts for all preceding -
sections.

The IGES standard allows a wide variety of entity types to be defined; some of the commoner
types are shown in Table 1.1. As can be seen from the table, there is considerable variety in the
choice of defirling parameters for different entities. It is also possible to defme a given geometric
entity in more than one way, e.g. straight lines as entity type 106 or 110, curves as type 102, 112
or possibly 104. This allows great flexibility in representation, and minimizes the danger of
distorting complex entities. It also unfortunately makes it virtualiy impossible to define a
"standard" IGES representation of a drawing, as so many valid alternatives exist. In general,
there will be several thousand, if not million, valid IGES representations of any drawing of
average complexity. To recognize that any two of theseactualiy represent the same drawing is a
non-trivial task.

This task is made considerably more difficult because IGES makes no serious attempt to address
the third main standardization issue - how to preserve the meaning implicit in the original
drawing. A limited amount of semantic information can be passed from sending to receiving
system by the use of the "associativity" and "property" entitieS (types 402 and 406). These allow
the user of the sending system to make explicit the topology of the object described, to specify
that certain geometric entities are grouped together to form a structural unit, or to specify certain
non-geometric properties such as materials or surface finish. There is nothing mandatory about
using this feature, however, and it remains completely up to the designer what associations, if
any, are specified. The user of the receiving system cannot assume that any such information has
been supplied.

Implementation of IGES has been patchy. A number of CAD systems now incorporate modules
for reading drawing files in IGES format. A smaller number are capable of generating IGES flIes
- though these often tum out to be extremely limited in the range of entity types they can handle.
DOGS, for example, is capable of reading IGES files, generated by other CAD systems,

6

containing entity types 100 (circular ~c), 106 (copious data), 110(line), and 112 (spline curve).
IGES files generated by DOGS contam only two types of geometric entity - 100 (circular arc)
and 106 (copious data).

IGES was never intended as more than an interim standard for data exchange; the original IGES
committee proposed that it should be replaced within two or three years by a new standard to be
~own as PDES (product De~iIlltion Exchang~ Standar~), and further extensions, involving
mterchange of both 2-D drawmgs and 3-D solid modellmg data, have been proposed in the
intervening years (Wilson, 1987). Recent standardization activity has been directed towards
drawing together as many disparate standards as possible within a new international standard
known as STEP, or STandard for Exchange of Product data (Wilson, 1989). At the time of
writing, however, IGES remains the only officially-adopted ISO standard (Wilson, 1990).

1.4 Data management for CAD

The concept of database, where data are held in applications- independent form and accessed
only via specific database management software, has gained widespread acceptance in the
commercial field. It has yet to make a great deal of impact in the engineering area - proprietary
CAD systems such as DOGS store drawing representations in a completely application-specific
form, making it impossible to use their drawing flies for any other purpose without writing
interface software. While such systems remain standalone draughting packages whose sole
function is to produce drawings, this is an acceptable situation. However, with the rise in
importance of computer-integrated manufacturing (CIM), where CAD systems are directly
interfaced with numerically-controlled machine tools, and bill of materials and production
scheduling applications, interest in database management for engineering has grown.

A unified engineering database, holding information on materials, manufacturing methods, an.d
design specifications as well as shape information, can play a central role in integrating
engineering design and manufacture (Kimura et al, 1982). There are, however, fundamental
problems in applying conventional database models to this kind of application (Eberlein and
Wedekind, 1982; Staley and Anderson, 1986). These include the need to be able to cope with
transactions lasting for several hours, and the ability to extend database schema defmitions
dynamically as the structure of the object being designed gradually emerges.

In theory, conventional DBMS can cope with the schema definition problem if one chooses
simple enough building blocks for one's database (see chapter 5 below). In practice, however,
this approach is of limited use, although at least one CAD-oriented database management system
(DBMS) designed along these lines has been described in the literature (Ulfsby et al, 1982). Its
main limitation is that it fails to capture any of the semantic information conveyed by the
original drawing, such as the relationships between assemblies and their constituent parts, and
the presence within such components of recognizable structural features.

One way to capture part-assembly relationships is to construct a database which shows such
relationships explicitly from the start. This in essence was the "Product structured data base"
approach described by Johnson and Dewhirst (1982) and adopted for their COMCAD system,
which allowed complex products such as diesel engines to be specified as a hierarchy of
assemblies and components, each identified by name, and containing a geometric description of
each named component. A more general approach to the problem, proposed by a group from
Rensselaer Polytechnic Institute, NY (Spooner et ai, 1985), lies in the creation of an integrated
design environment, in which boundary representations, CSG models, finite element meshes and
part-assembly hierarchies are represented as high-level abstract data types whose detailed
implementation need not concern the user.

7

Table 1.1 - some common IGES entity types

Type no. Name

Geometric entities:

100 Circular arc

102 Composite curve

104 Conic arc

106 Copious data

108 Plane

110 Line

112 Parametric spline

Non-geometric entities:

202 Angular dimension

212 General note

214 Leader

216 Linear dimension

402 Associativity

404 Drawing

406 Property

410 View

Defining parameters

(x,y) coordinates of centre of
circle, start and end point

Pointers to constituent curve
segments (lines or arcs)

Coefficients a .. f of defining
equation, (x,y) coordinates of
start & end points

Sets of (x,y) or (x,y,z)
coordinates forming a set of line
segments

Coefficients a .. d of defining
equation

(x,y,z) coordinates of start and
end points

Coefficients of cubic polynomials
defining x, y and z coordinates

Pointers to general note, leader
and witness lines, (x,y)
coordinates of vertex point

ASCII characters forming text
string, (x,y,z) coordinates of
start point, text angle & size

(x,y) coordinates of arrowhead,
and each segment of tail

Pointers to general note, leaders
and witness lines

Various

Various

Various

Various

8

1.5 The need for retrieval by feature

A system such as that des~ribed a?ove can be of enonnous help to design teams working on
large and complex assemblIes. Yet It has at least one significant limitation. It provides no means
of helping the designer with questions such as "What standard components do we have similar to
the one shown on this sketch, or with such-and-such a combination of design features?". Such
questions ~an be import~t t.o desi~ers, . production engineers, and their managers. Designers
have no wIsh to waste therr time remventmg standard parts, production engineers may well wish
to take advantage of featur~ similarity among parts to machine a whole family of parts in a single
run - and any cost-conscIOUS management needs to discourage the proliferation of almost
identical parts, each of which has to be separately manufactured and stocked, when a single part
would suffice. Surveys such as that reported by Schaffer (1981) have suggested that a typical
company could cut the number of new drawings it generates by anything up to 30% by adopting
such standardization.

A database that represents components purely in tenns of points, lines and surfaces is of minimal
use in such a situation. Design engineers tend to think primarily in tenns of shape features, such
as slots, grooves or pockets. (Similarly, architects think in tenus of features such as architraves,
columns, and gables). This is the language they use when talking about objects to be machined,
and there is strong evidence of a connection between the way people use language and the way
they think (Stamper, 1973). However, language is notoriously ambiguous in the way objects are
denoted - an identical object can be known by several different names. Kyprianou (1980) quotes
an illuminating example of a simple cylindrical part separately designed, made and stocked
under a dozen different names, including "arbor", "boss", "cotter", "mandrel", "pin", "pivot",
"rod", and "spindle".

Engineers have in the past responded to the need to recognize components by structural feature
through classifying parts into families on the baSis of shape features. A number of standard parts
classification schemes have been put forward, the main impetus being the rise during the 1960s
and 1970s in the importance of group technology, which involved grouping together small
batches of parts requiring similar machining steps, in order to increase batch size and reduce unit
costs. One of the best known coding schemes is the Opitz code (Opitz et al, 1969). This was
devised, according to the author, to provide a widely usable coding system capable of providing
a means for quick retrieval of drawings and working plans, the selection of similar groups of
components, and surveying the types of components suitable for a given machine tool. It
classifies parts, first on overall shape (rotational/non-rotational; length/width ratio, etc), then on
the presence, type and orientation of machined features such as slots, grooves, or holes. Fig 1.6
shows an example of the Opitz code for a simple machined part.

While codes of this kind have proved successful in use, they have significant limitations. Firstly,
there is the overhead of manually classifying each part. The need to make manual encoding as
easy as possible imposes severe limitations on the number and specificity of features that can be
coded. Secondly, human classifiers will not always agree on the coding to apply to a given part
(some categories involve an element of subjective judgement), and will on occasion inevitably
make mistakes. Thirdly, manual classification systems lack flexibility - they take account only of
those features their original authors considered important. This problem has been tackled in
many classification systems by making provision for local extensions and variations.
Unfortunately, this brings· its own problems if firms wish to share their design data -
classification codes assigned in one centre may be meaningless in another. There is thus a
demonstrable need for more economical, reliable and flexible systems.

1.6 Automatic shape recognition in CAD

The question of how shape features can best be defined and represented is central to this whole
investigation. What constitutes an important shape feature, how can it be recognized, and what
fonn of representation is most suitable? At the simplest level, the problem could be thrown back

9

C~assification number:-

1 st Digit Z nd Digit 3 rd Digit

component class Internal shape,
Internal shape elements

External shape,
externa I shape elements

0 1I D • 0·5 0 smooth, no shape
elements 0 no hole,

no breakthrough

~~~.5<UD <~ 
1:: 

2 ~l LlDq 
-~, 
3 ,g! 

"' I - ~ 

~ ~ ~Ioshap~ Co elements % Co 
.... -0 
-c: "' .... 

Z ~~ thread 
r-~~ 
3 functional 

E groove 
'" 

-0 no shape 1 C 

'" elements 

~ 
'" C 
0 

~E~ .2 
~ I 

E 'h 

3 :: functional 
v; o groove 

4 
~ no shape 4 -0 
C elements .... 

4 .:g no shape 
c: elements '" I--

5 
- :5 

0 
thread 5 .Q 

.2 

- .c 

5 
0 

thread .Q 

.2 

6 ..I 
I-- 1::' 

7 :!. 

"' 

r- -0 .... 
Co functional 

6 c. 
~ groove 
'" 

7 functional cone 

- II functional 
6 groove 

'" 
7 functional cone 

c 
I-- .2 
8 

';;; 
0 
~ 

8 operatJ ng th read 8 operating thread 
r- r: 

0 
9 c 9 all others 9 all others 

1 2 1 3 2 

4 th Digit 

Surface machining 

6 Ii nternal plane surface 
and/or slot 

7 internal spline 
(polygon) 

8 

9 all others 

5 th Digit 

Auxiliary holes 
and gear teeth 

0 noauxillary hole 
-
1 axial, not on pitch 

circle diameter 

~ :§ ~axial on pitc~ 
~:: circle diameter~ 
3 ~ rapial, not on EltCh 

o I Circle dlame er 
>-1 C aXial and/or radial 
4 and/or other 

direction 
r- aXlal.al).Q/or ~dlal 
5 on PCDand/or 

other di rectlons 

6 spur gear teeth 
r- .c 

7 ~ I bevel gear teeth 
r- ! 
8 .c other gear teeth 

t--;- ~ 
9 all others 

Fig 1.6 Opitz code as applied to a typical machined part (from Opitz, 1969) 

10 



on the ?esigner. It would be quite feasible to a~k designers to indicate on their completed designs 
the mam shape features pos~ess~d by each ~aJor component ("part XYZ1000 is cylindrical, with 
a centre hole, and one longItudinal groove ); such text descriptions could readily be used as the 
basis of a retrieval system. Without careful training, however, it is most unlikely that designers 
even in a single location would agree on the naming of standard shape features. The chances of 
such a system achieving any widespread application are minimal. Designers are far too proud of 
their individuality. 

A more feasible variant of this idea is the concept of feature-based design (Patel, 1985). Here 
the designer is provided with a "front-end" to a CAD system, which allows him to select desired 
structural features from a menu. A design drawing or geometric model is then prepared 
incorporating the desired features. Details of the features chosen could readily be extracted fro~ 
such a system to provide the basis for feature retrieval, with the advantage that the "front-end" 
imposes a large measure of standardization on the name and type of features chosen, thus 
overcoming one of the main problems highlighted above. Unfortunately, such systems are still 
experimental, and it is too early to tell whether they will achieve any widespread use among 
designers. The choice of "standard" features and how they are defmed is also likely to vary from 
system to system. They are in any case designed for ease of use rather than with retrieval 
usefulness in mind, so that it is generally possible to design the same resulting shape in more 
than one way. This problem is discussed in more detail in the next chapter. 

The two approaches outlined above are thus severely limited in their applicability. To provide a 
shape retrieval system capable of widespread application, it is necessary to use the power of the 
computer to seek out and identify features in each design object, using the only representation 
that one can guarantee to be available - engineering drawings or geometric models from existing 
CAD systems. Since these in general provide no means of identifying structural features, each 
drawing requires a considerable amount of preprocessing by suitable shape recognition software. 
The design of such software represents a considerable challenge. 

Kyprianou (1980) has made a detailed study of this problem. The aim of his investigation was to 
devise an automatic parts classification system, free from subjective bias or error. To do this, he 
needed an objective way of recognizing important morphological features, such as protrusions 
and depressions. As his starting point, he took geometric models created using the Cambridge 
University BUll.-D system referred to in Section 1.2. These were systematically analysed in 
order to uncover major structural features. The structural primitives available in BUll.-D (the 
loop, defining the boundaries of a surface, edge and vertex) defined too small a portion of an 
object to denote structural features of any importance on their own. They could, however, be 
used as the building-blocks of a feature language which did. Kyprianou was able to define this 
language in terms of a regular shape grammar, which could be shown to belong to the general 
class of context-free grammars, and could therefore be parsed without undue difficulty. For a 
detailed discussion of the underlying theory and its application to picture parsing, see Fu (1982). 

The fundamental building-blocks of Kyprianou's shape grammars were !acesets, connected sets 
of faces defming important morphological features, which could be recognized locally either as 
protrusions or as depressions. He constructed a feature recognizer which systematically "parsed" 
the BUILD boundary representation of each object, one face at a time, in order to identify all 
facesets. The process of generating facesets involved two main stages. Firstly, each loop, 
defining a face boundary, was marked as convex or concave. Then each loop was examined in 
tum, starting with the loop enclosing the largest number of interior loops, and faces aggregated 
into face sets (Fig 1.7) according to criteria defined by the shape grammar. The overall structure 
of the object could thus be represented as a graph (normally a tree), with nodes representing 
facesets, and arcs the relations between facesets. The shape of the part itself could then be found 
by matching each faceset in tum with a suitable template - planar parts against regular prisms, 
rotational parts against cylinder, cone and sphere. Once the nature of each faceset was known, 
the whole object could be recognized and classified. 

Unfortunately the project never came completely to fruition. The shape recognizer was unable to 
recognize facesets under all circumstances. The proposed classification method could be applied 

11 



only to one small class of parts. The major importance of Kyprianou's work is probably the 
concept of the faceset, an objective means of defIning and representing shape features of 
importance. Facesets do seem to coincide remarkably well with a subjective impression of 
structural features - in the majority of cases. There are, however, important exceptions, il 
particularly where a depression or protrusion overlaps two or more faces (Fig 1.8). According to I 
Kyprianou's rules, a single face set describes this object: the depression is not recognized as a 
separate feature. 

Further work on feature recognition has been reported by a number of groups. Staley et al (1983) 
have taken the 2-D shapes resulting from manual cross-sectioning of holes of different types 
from geometric models produced by ROMULUS, and developed a chain code representatiOn 
similar to that first described by Freeman (1974). They then devised separate shape grammars to 
describe each of 13 possible classes of hole - fiat, tapered, chamfered, and so on. A string parser 
was then used to classify "unknown" hole descriptions into one of the 13 classes. Choi et al 
(1984) have developed a series of PASCAL programs to recognize instances of circular holes, 
rectangular pockets and similar machined features in ROMULUS boundary representations of 
simple parts. Although fheir method is not based formally on the use of a shape grammar, shape 
features are defined according to a rigid syntax. Henderson and Anderson (1984) have used a 
rule-based approach to feature recognition. Their FEATURES system, designed to generate 
feature descriptions for process planning from ROMULUS part descriptions, represents shape 
features such as holes and slots as Hom clauses in the artificial intelligence programming 
language PROLOG. Lee and Fu (1987) have devised algorithms to transform CSG trees into a 
standard form for feature recognition, and Dong and Wozny (1988) have described a frame
based system, linked to the PADL solid modeller (Voelker et al, 1978), which will recognize and 
characterize named features such as pockets, bosses or slots. While these systems have 
automation of manufacturing process planning, not database construction, as their ultimate aim, 
the techniques used are clearly of wider relevance. 

1. 7 Graphical databases in other areas 

1.7.1 What constitutes a graphical database? 

Increasing interest has been shown over the last decade in what are variously called pictorial 
information systems or image database systems. Such systems have in common that they hold 
machine-readable representations of pictorial data of some kind, available for retrieval, display 
or further processing. Unfortunately they have remarkably little else in common. huage records 
may be large (over 20 MB for LANDSAT images) or small (a simple line drawing requiring 
only 100 bytes or so of storage). The numbers of images held in such "databases" may range 
from less than 10 to thousands (though large databases of this kind are extremely rare). Each 
image may describe a single object, or hundreds of objects of different types. Data retrieval 
facilities may range from the primitive (simple retrieval by name or record number) to the 
sophisticated (use of relational query languages). While earlier reviews (e.g. Tamura, 1980) 
attempted to create a taxonomy of such systems, more recent reviews have suggested that such 
an exercise is not helpful, and in fact question whether more than a small fraction of so-called 
"image databases" deserve the name: 

"It does not seem that the significant concepts of lOB (image data base) have been 
established yet, because there exist too few systems that we can call a true lOB" 
(Tamura and Y okoya, 1984) 

"Our own impression is that much of the work appearing under the heading 'image 
database' describes either image nondatabase systems ... or nonimage database 
systems" (Nagy, 1985) 

12 



M -!!i/ -:: -::; -
;:~--F 2 

Fig 1.7 Three facesets (F 1, F2, F 3) generated from a simple shape by 
Kyprianou's method, corresponding well to intuitively recognized features. 

Fl 

Fig 1.8 A case where a morphological feature is not distinguished as a separate 
faceset by Kyprianou's method. The faceset F1 covers the entire surface of the 
object. 

13 



To. attempt ~ strict defmi!ion of an image datab~e system under such circumstances is clearly 
pomtless. It IS, however, tmpo~ant to form some Idea of the distinguishing characteristics of an 
mage data~ase syst~~. A true tma¥e dat~base system can be regarded as a collection of images, 
!ogether wIth descnptIve dat~ derzved dlr~ctly from those images, maintained in applications
mdepe~dent form, ~d orgaruzed ~or efficIen~ storage and retrieval. This excludes specialized 
collectIons o.f test tmages u~ed m d~velopmg pattern-recognition algorithms, databases of 
manually-assIgned text descnptors ?f tmages, and data compression systems which provide 
compact storage of large or complex tmages, but no retrieval facility. 

Some examples of image database systems which meet at least some of these criteria are 
described below. The review deliberately omits consideration of the many "image databases" 
which retrieve images purely on identifier or manually-assigned key words. 

1.7.2 Geographical information systems 

Much of the pioneering work in image database development has been in the geographical area. 
One early system of note was IBIS (Image-Based Information System), developed at California 
Institute of Technology's Jet Propulsion Laboratory during the mid-1970's (Zobrist and Bryant, 
1980). Its aim was to integrate data from satellite photographs with census and land use data, 
generating a single spatially-oriented database which could handle a wide range of queries, such 
as the likely health impact of a new chemical plant. All data were stored as two-dimensional 
arrays of cells, each of which could contain image data (brightness, colour, etc. of a single image 
pixel), physical variables (rainfall, population or pollution levels), or identifiers (codes for 
geographic region or land use, or identifiers for the nearest of a set of specified points or lines -
which could be named cities or roads). Any individual cell could be directly addressed from its 
spatial coordinates, and different categories of information coordinated. A command-based 
query language was provided, allowing users to aggregate_ or cross-tabulate different data types, 
and report the results of such operations either in tabular or graphical form. Queries put to actual 
IBIS databases have included correlating land use with highway provision, popUlation density 
with pollution levels, and even rooftop area with electric power consumption (part of a solar 
power study). 

Much of the development effort in the IBIS project was directed towards automating data entry -_ 
a major problem for any large database. The problems of aligning administrative boundaries with 
LANDSAT satellite photographs were successfully overcome, though human intervention was 
required with non-geometric information such as district names and highway numbers. The use 
of a single grid format for referencing all types of data was a key feature of the system, ensuring 
the compatibility needed to allow complex cross-tabulations. From the examples quoted, one 
suspects that the system was somewhat cumbersome to use by present-day standards, and 
required users to understand the structure of the database in considerable detail. However,the 
general principle of reducing all data to a common grid-based format has clearly been found 
useful by designers oflater systems (e.g. Chock et al, 1984). 

Another system dating from a similar period was GRAIN (Graphics-oriented Relational 
Algebraic INterpreter), which aimed to separate out image features and the images themselves 
into separate data stores (Chang et al, 1977). This was achieved by coupling together two 
systems: ISMS (Image Store Management System), which held digitized representations of the 
images themselves, and RAIN (Relational Algebraic INterpreter), a relational database holding a 
series of relations which together formed a logical description of each picture. In its original 
version, RAIN held three types of relation - picture object tables, naming each significant o~j~ct 
in a picture and showing its relationships with other objects; picture contour tables, glvmg 
coordinates of each object's bounding polygon; and picture page tables, indicating where in the 
physical image file each object could be found. All queries were handled by RAIN; the resulting 
pictures could then be displayed by ISMS. The system's query language (also called GRAIN) 
provides the user with commands to display a named picture, sketch a line drawing or paint an 
image of an object retrieved by name, spatial attribute or similarity with another picture object. 
Some examples of GRAIN queries are shown in Fig 1.9. 

14 



(i) draw a line diagram of all highways in the picture 

sketch picture; name equa1 'highway' 

(ii) draw a line diagram of all railways with gauge 
over 120 cm 

sketch railroad; rgage greater than '120' 

(iii) display a digitized image of all forests in a 
given area 

paint picture; name equa1 'forest'; 
forest.x 1ess than '40' 
and forest.x greater than '20' 
and forest.y 1ess than '70' 
and forest.y greater than '30' 

(iv) display all cities similar to a given city (according 
to a set user-defined procedure) 

paint city; simi1ar (city.name equa1 'Detroit') 
using 'PROe1' 

Fig 1.9 Examples of pictorial queries in the GRAIN language 

15 



~ile .~RAIN - also known as DIMAP (C.hang, 1~80). - clearly embodied some sophisticated 
l~eas, It IS far from clear whe~her any of ~he. informat1~n m GRAIN was derived directly from the 
pIctures themselves. If the pIcture descnptlOns were mdeed laboriously extracted by hand (and 
eye!), and entered into RAIN just like text descriptors, one could argue that all that was 
achieved, in Nagy's terms, was to link a nonimage database system to an image nondatabase 
system. 

One system which, according to its designers, did successfully extract semantic information from 
satellite images into a data base was REDI (RElational Database for Images), also known as 
IMAID (Chang and Fu, 1980). Like GRAIN, it incorporated a separate image store and 
relational database; in addition, it contained powerful feature recognition software capable of 
processing LANDSAT images using syntactic pattern recognition techniques. The software 
identified specified objects in LANDSAT images, including roads, rivers, cities and meadows, 
creating database entries showing the position and orientation of each instance of these objects 
found, and producing line drawings showing the results of this operation in graphical form. 
Human intervention was still necessary to add identifying names for cities, roads and rivers -
otherwise the degree of automation was almost complete. 

Another striking feature of REDI was the query language chosen. Rather than use a conventional 
command-based language, Chang and Fu used an extension of the menu-based QBE (Query-By
Example) language (Zloof, 1975), which they designated QPE (Query-by-Pictorial-Example). 
The reasoning behind this was that unskilled users would find this easier to use than a command
based language, particularly for complex queries. Its mode of operation was very similar to 
QBE; the user was presented with a screen displaying a blank table, on which the name of the 
relation(s) likely to contain the answers to the query could be entered. The system then filled in 
the column headings on the screen table(s) with domain names from the specified relations, _and 
the user typed in an example of the answer required (Fig 1.10). The system then responded by 
displaying actual answers in the format specified by the user - a table of results, a sketch, or a 
display of part of the original image. The range of queries handled was quite extensive: as well 
as retrieving named entities such as cities, the availability of additional spatial operators (such as 
DISTANCE, SLOPE, AREA, PERIl\1ETER, and INTERSECTION) meant that questions such 
as "fmd the length of highway 65 within Lafayette city" could easily be answered. As with 
GRAIN, a similarity retrieval operator was provided, though nothing was reported about how (or 
even whether) this feature had in fact been implemented. 

While the ease of use of QPE cannot readily be assessed (from the examples given, complex 
queries appear just as difficult to express in QPE as in any other command language),REDI was 
definitely the most impressive of the early systems. It provided automated processing of image 
data, generating a database capable of answering a wide range of queries. Clearly its feature
recognition capabilities were limited to those few features for which recognition algorithms were 
constructed. It remains, however, the closest approach to a true "image data base" of any of the 
geographic information systems reviewed here. 

Although not a geographic information system in the strict sense, the recently-report~d 
"intelligent image database system" of Chang et al (1988) falls into the same general category m 
that it was designed primarily to answer spatial queries of the type "find me a picture with a car 
to the east of a house". In the present version of the system, pictures are encoded (manually!) as 
2-D character strings indicating the position and type of each significant picture object. The 
resulting iconic index can be queried in a variety of ways, and pictorial representations of 
retrieved scenes displayed on the screen. Future versions of the system are planned to have the 
capability to extract 2-D indexing strings directly from the images themselves. Not until then 
will this (admittedly ingenious) system qualify as a true image database. 

16 



(i) print the names of roads ~n the same frame as the 
city of Lafayette 

CITYNAME FRAME CITY ID NAME 

10 Lafayette 

ROAD NAME FRAME ROAD ID NAME 

10 P.X99 

(ii) sketch the part of interstate highway 65 falling 
within a given geographical area 

ROAD NAME FRAME ROAD ID NAME 

4 17 H65 

ROADSEG FRAME ROAD ID Xl X2 Y1 

S. 4 17 22 32 41 

Y2 

49 

Fig 1.10 Examples of queries formulated using QPE. The user enters search 
terms in the appropriate columns of the query tables ("Lafayette" in the first 
query, "H65" and (x,y) coordinate values in the second), and then gives dummy 
examples (underlined) of the type of answer he requires, together with the 
command "P" (print) or "s" (sketch), depending on the form of output required 

17 



1.7.3 Medical image database systems 

Recognition of abn<?nnal fea~res h~ always been a key aspect of medical diagnosis: this 
century has seen rapid growth m .the Impo~ance of techniques such as radiology (the use of x
ray photography and other sc~g techmques) and cytopathology (identification of abnonnal 
cell types). The advent of tec~ques such as computerized tomography (CT), where a computer
guided scanner prod~c.e~ a se!les of cro~s-sectional images of a patient's anato,my, has generated 
large numbers of digItiZed Images sUItable for automatic processing. While many so-called 
medical IDBs are really no .mor~ than c?llections of images !etrievable by patient name and date, 
some of the systems descnbed m the lIterature do automatically derive descriptive infonnation 
from the images then:selves. Huang et al (1980) describe a system to extract geometric features 
of body segments or mternal organs from CT scans, and save these for future retrieval. Toriwaki 
et al (1980) have presented det~s of a feature extraction system for chest X-rays, which derives 
annotated sketches from each Image, showing the rib cage, lung borders, and any suspicious 
shadows (abnormal blood vessels or tumour fragments). Medical staff can use such sketches for 
quick review, allowing them to select radiographs of interest. The system can also compute 
certain infonnation about the image, such as the size of the heart shadow, and select images on 
that basis. Yokoya and Tamura (1982) describe a cytopathology database, where slides can be 
retrieved by a combination of image and non-image features. It uses a relational approach similar 
to that of GRAIN. Frasson and Er-Radi (1986) describe a partly-implemented icon-based query 
system designed to identify and characterize examples of diseased organs. Like most of the 
geographical systems described in the previous section, however, few of these systems can be 
called true image databases, as their ability to derive indexing features directly from stored 
images is in most cases very limited. 

1.7.4 Other pictorial information systems 

Some of the most sophisticated pictorial infonnation systems described to date are -the 
fingerprint matching and retrieval systems developed for use by police forces in the UK and 
America. Systems of this kind are among the very few that qualify unequivocally as image 
databases, as retrieval features are extracted automatically from images without human 
intervention. Though few details are available on the inner workings of such systems, a brief 
description of one such system (IEEE, 1985) indicates that pattern recognition techniques are 
used to identify the number, position and orientation of minutiae, parts of the fingerprint where 
ridges begin and end. A similarity measure can then be computed between an "unknown" print 
and each print in the database, and the ten most similar prints displayed for human examination. 
The search process is slow, as the entire database is searched sequentially, though the use of 
parallel processors is expected to improve system perfonnance substantially. 

A further example of what appears to be a true image database came to the author's attention 
shortly before the completion of the present project. This is the GRIM_DBMS system reported 
by Rabitti and Stanchev (1987b, 1989), which aims to provide retrieval of specific types of 
diagram (such as charts and graphs in business reports, or office floor plans) on the basis of the 
objects contained within it. Although the system is claimed to be of general applicability, any 
given instance of the database can handle only a limited domain of drawings. Drawing elements 
(lines, arcs, points, text strings) are analysed, and used to infer the probability that the drawing 
contains instances of certain specified objects, such as titles from bar charts in a business 
graphics context, or desks and chairs from office floor plans. These probability values are then 
used in two ways; firstly, the techniques of cluster analysis (Everitt, 1980) are used. to group 
together images with similar content, and secondly, indexes are created for each object type, 
indicating the images in which they are most likely to be found. A relational-type text-b.ased 
query language is provided for retrieval. ~ile no details of sy~tem effectiven~s.s. are. prOVIded, 
the concepts involved seem sound, even If the system as descnbed lacks fleXIbilIty m that the 
data base designer would have to specify to the system in advance what types of object were of 
interest, and provide the system with detailed inference rules for recognizing that object from 
primitive picture elements. 

18 



1.8 Scope of the present project 

There appears to be evidence, both from the literature, and from discussions with designers and 
users. of CAD systems, tha~ .data man~gement for CAl? is likely to play an increasingly important 
role ~ the future. ~e ability t~ retneve by feature IS at present in its infancy - yet there is a 
grow~g bod~ of eVIdence that .It woul? prove a useful. adjunct to future CAD/CAM systems, 
allowmg deSIgners ~d p~o~uctIOn eng~eers to recogruze when a "new" design shared major 
struc!U.ral ~eatures WIth eXlstmg parts. wlt~ou~ the nee? to. resort to time-consuming manual parts 
c1as~I~ICat10n. In ot.h~~ fields where plctonal informatIOn IS handled, especially in geography and 
medicme, the feasIbilIty of such systems has been demonstrated, though it has to be admitted 
that few such systems are operational outside the research laboratory. The fact that several 
systems have used pattern recognition techniques for feature identification, and relational 
database for data storage and retrieval, is noteworthy - though it is not immediately clear whether 
this is because of the overwhelming superiority of such techniques, or is just a bandwagon effect. 
The use of alternative data models deserves more investigation than it has so far received. 

The design of an engineering database with shape feature retrieval capabilities is clearly a 
feasible proposition. However, it requires careful investigation of a number of alternative 
approaches before design decisions are made. The key issues to be faced in designing an 
engineering database capable of feature retrieval can be grouped under the following headings: 

(a) Scope of the database: what type of model should be included (2-D or 3-D), and what 
should constitute a basic pictorial entity in such a database? In what input format(s) 
should drawings or geometric models be accepted? 

(b) Storage structures: is the entire object representation to be stored, or just a description of 
its shape features? How exact a representation is required? To what extent is it_ 
necessary to represent each object in a strict canonical form? How does one choose the 
most suitable format to represent the geometry, topology and shape features of an 
object? What is the most appropriate database model to support such representations? 

(c) Feature extraction: what types of feature are likely to be most useful for retrieval? How 
can they most effectively be extracted? 

(d) Retrieval capabilities: what level of retrieval should be provided? Is a simple indication 
of part family sufficient, or are Boolean combinations of features or sophisticated 
similarity matching required? What kind of matching algorithms are necessary, and to 
what extent are they provided in existing database management or information retrieval 
systems? How should retrieval by geometric feature be combined with retrieval of non
geometric items such as text descriptors? 

(e) Interface design: what kind of query language is most appropriate: something 
completely novel, or an adaptation of existing languages, such as QPE? How should 
graphical input of queries be managed? What level of interaction with the user is 
required? What constitutes the answer to a query - listing of tabular information, display 
of a drawing, highlighting key parts of a geometric model, or making available a copy 
of the original design file? 

(f) Evaluation: what kinds of performance measure should be applied to a system such as 
this, and how does one construct appropriate benchmarks? 

Although listed separately, these design problems all interact. The form of object representation 
chosen, the processes of feature extraction and similarity matching, the retrieval capabilities 
offered, and the type of interface provided are all mutually dependent decisions which cannot be 
taken in isolation from one another. The aim of this project is to investigate this complete range 
of problems, by designing, implementing and evaluating a database of engineering drawings 
capable of retrieving objects by shape feature, and allowing graphical formulation and 

19 



refmement of queries. Later chapters of this thesis examine these design issues, their interaction, 
and their influence on the eventual system design, in some detail. 

As far as is known, this project, with its emphasis on the totality of the problem and the mutual 
interaction of its sub-problems, is unique. Most other reports of graphics-oriented databases in 
the literature have focussed on different issues. The engineering databases discussed in section 
1.4 are generally aimed at improving security and integrity of data, not providing users with 
additional retrieval capabilities. Indeed, the trend seems to be to pass semantic retrieval problems 
back to the original designer, rather than to design systems capable of tackling them directly. 
The geographical databases outlined in section 1.7 provide retrieval on the basis of an item's 
position and function, not its shape, and most still rely heavily on text-based query languages. 
The question of generating canonical representations of stored objects has not been raised, and 
may not even be relevant in this field. Medical image databases such as that described by 
Toriwaki et al (1980) are closer in concept, in that graphical input and output are considered an 
integral part of the overall design. However, little consideration seems yet to have been given to 
shape retrieval, and none to the question of canonical shape representation (which one might 
expect to be more relevant in this field). None of the systems described have been subjected to 
any systematic evaluation, even the recent work of Rabitti and Stanchev (1987b, 1989), which is 
probably closest in concept to the present study. 

The remainder of this thesis describes in detail the development and evaluation of a prototype 
shape retrieval system for engineering drawings, to be known as SAFARI (Shape Analysis For 
Automatic Retrieval of Images). Chapter 2 discusses the problem of drawing representation for 
shape retrieval, arriving at conclusions whose implementation is described in Chapter 3. Chapter 
4 analyses the problems of feature selection and extraction, and chapter 5 discusses the 
applicability of different data models to support the required drawing and feature rep
resentations. Chapter 6 analyses the retrieval capabilities needed by any such system, and 
describes the matching processes adopted for the prototype. Chapter 7 examines the question of 
interface design. Chapter 8 presents an evaluation of the system's retrieval effectiveness; finally, 
chapter 9 discusses the implications of the project's findings for 3-D shapes, and for pictorial 
information systems in general. 

20 



CHAPTER 2. FORM AND SCOPE OF OBJECT REPRESENTATION 

2.1 Introduction 

This chapter e~plores two of the .most fundamental issues in the design of a shape 
database: ,,:hat IS the most appropnate scope for. such a data~ase; and how can objects 
stor~d wlthm the database best be represented? Like many desIgn Issues, these questions 
are mterrelated. A database of sculptured parts such as body panels for cars or aircraft 
woul~ require more I?owerful reI?resentation techniques than a database of simple 
machined parts. Essentially 2-D obJe~ts such as sheet metal parts or VLSI designs could 
be adequately handled by much srrnpler forms .of representation. The scope most 
appropnate for a prototype database used as a vehicle to explore design problems is in 
any case unlikely to be appropriate for an operational database for use in a design office. 

2.2 Scope of the database 

2.2.1 Type of drawing 

A fundamental - and universally relevant - distinction needs to be made at the outset 
between drawings (or models) on which the designer is still working, and completed 
drawings, describing objects which are past the design stage. (Libraries of standard parts 
as described by Ketabchi and Berzins (1987) fall into the second category). The database 
requirements of these two types of drawing are quite different. In the first, the designer's 
prime requirement is to retrieve a specified drawing or model in orderto add, modify or 
delete drawing elements. He or she therefore needs easy access to each individual 
drawing or solid modelling primitive. Implicit shape features are of minimal importance 
to the designer at this stage, so shape retrieval is unlikely to be a worthwhile facility to 
offer. For such purposes, the database models outlined in Section 1.4 are likely to prove 
perfectly satisfactory. The main function of a DBMS here is to maintain the security and 
integrity of "live" design files, and aid in version control. 

The second type of drawing (or, more properly, the second stage in the life of a drawing) 
poses different requirements. It is not expected that further design work will be 
necessary, so that rapid access to each individual line and point is of much less 
importance. The main requirement here is that the drawing should be retrievable from the 
archives (whether paper or computerized) whenever there is a need for a component with 
specified design features. A design database set up for these purposes thus needs above 
all to be able to provide retrieval by feature. Security is still important; completed 
drawing files should normally have 'read-only' status. 

So far, most of the database development work reported (see Section 1.4) has been 
concerned with "live" drawing files, with the prime aim of improving ease of access to 
individual components in large dr~wings. The investigation. of ";',ays of. meeting ~he 
special requirements of databases sUltable for completed drawmgs ( consohdated deSIgn 
files" in IBM parlance) has received much less attention. This balance needs to be 
redressed. 

There is an interesting parallel here between the needs of a design engineer and a 
software designer using an integrated programming support environment (IPSE). IPSE's 
have very similar requirements for access control and integrity maintenance for softw~e 
modules under development. Just as the design engineer requires access to each drawmg 
element in a "live" drawing file for modification, the software developer needs access to 
programs under development at the level of the individual line of code, via a text editor. 
If engineers feel a need for retrieval of completed drawings by feature, perhaps 
programmers might be interested in retrieval of completed program modules by overall 

21 



function. The question of how to define 'function' in this context is even harder than it is 
for drawings. 

2.2.2 Two or three dimensions? 

To be of real usefulness to the majority of design engineers, a database offering retrieval 
by feature needs to operate on 3-D models. Few, if any, genuine two-dimensional objects 
exist (the closest approach, as ?bserved. above, being. sheet metal parts or VLSI layouts), 
thou~h these are the only. o~Jects whi~h can be directly represented in a single 2-D 
drawmg. For the vast maJonty of objects, key aspects of feature similarity are not 
obv~ous from a single drawing, .becoming.ap~ar~nt .only when 3-D models are compared. 
Designer~ are clearly far more mterested m similarIty between two objects than between 
the drawmg~ that represent them. ~ow~ver, the use of 3-D geometric modelling is still 
far from wIdespread; many engmeenng ftrms seem likely to continue using 2-D 
draughting packages for I?erh~ps years to come. This suggests that a storage and retrieval 
system capable of handlmg mput from both 2-D drawings and 3-D geometric models 
would be desirable - though (as discussed below) the difficulties of interpreting 3-D 
shapes from 2-D drawings are considerable. 

For the present study, however, it was decided to restrict the database to 2-D drawings of 
essentially two-dimensional objects. This was done for two reasons. Firstly, the IGES 
standard (the only interchange format in which drawings were readily available at the 
outset of the project) provides an adequate description only for 2-D drawings. Any 3-D 
database would therefore have to be linked to a specific geometric modelling system such 
as ROMULUS, reducing its general usefulness (see section 2.2.3, below). Secondly, the 
complexities of casting 2-D object representations into standard form and devising 
suitable forms of query input were felt to be sufficient to provide a more than adequate 
vehicle for exploring the relevant design issues. The solution of the design problems for 
2-D objects was felt to be a necessary precondition to tackling the more difficult case of 
3-D objects. 

The domain of objects to be included in the test database was thus limited to the simplest 
class of genuine CAD drawings - 2-D objects that could potentially have been stamped 
out of sheet metal. The set of picture processing algorithms developed to cast these into 
unique form is valid only for such objects. Each drawing consists of a continuous outer 
boundary made up of a sequence of one or more contiguous line segments. This boundary 
may enclose zero or more internal shape features, voids defmed by continuous inner 
boundaries made up of one or more line segments. Each boundary line segment can be 
either a straight line or a circular arc, and is contiguous with precisely one neighbouring 
segment at each end. Voids cannot themselves enclose further shape features, and no two 
boundary segments may touch (other than as specifted above) or intersect. The 
composition of such shapes can be defmed in Backus-Naur form as follows: 

<shape> 
<outer boundary> 
<inner boundary> 

<boundary segment> 

<outer boundary> {<inner boundary>} 
<boundary segment> {<boundary segment>} 
<boundary segment> {<boundary segment>} 
<straight line> I <circular arc> 

where { } indicates zero or more repetitions of the enclosed symbols, and I indicates a 
choice between alternatives. Typical shapes conforming to these rules are illustrated in 
Fig 2.1. 

Such shapes, while representing a very limited subset of those in engineering use, should 
provide a sound basis for subsequent generalization to boundary representations of 3-D 
objects. Generalization to "two-and-a-half'-dimensional (2.5-D) parts - objects where 
every principal face is either parallel or perpendicular to every other (Fig 2.2) - is simply 

22 



o 
o 
o 

o 
o o 

Fig 2.1 Examples of some of the 2-D shapes included in the scope of the 
test database. Note the restriction to objects (such as sheet metal 
stampings) that can be accurately represented by a single 2-D drawing 

o 0 

o 0 

~-------

1--------------l 
L 

,-
___ I-' 

1---------
1---------

Fig 2.2 Examples of "two-and-a-half' dimensional objects 

23 



a matter of indicating the height or depth of each interior feature and relaxing the 
restricti(:m ~hat inner boundaries cannot .themselves enclose furth~r shape features. 
GeneralIzatIOn to 3-D boundary representatIOns can be achieved for most but not all true 
?-~ ol;>jects by def~g eac~ fac~ of the object in the manner shown above, and 
md1catmg the tOPOlOgICal relatIonships between faces. (The main exception to this is the 
cla~s .of s~ulptured.parts, where the ge.Ol!letry of a face cannot be specified completely by 
defmmg Its boundmg. edg~s) .. The valIdIty of ~xtending the approach developed here for 
2-D shapes to 3-D objects IS dIscussed further m section 9.3. 

GeI?-er~ization of thes~ restricted 2-D shapes to conventional engineering drawings (2-D 
projectIOns of 3-D objects), such as that shown in Fig 1.1, is simple at one level but 
much more difficult at another. The only difference between drawings of the restricted 
set of shapes ~hown in Fig 2.1 ~d ordinary en~ineering drawings is that boundary lines 
can touch or mtersect, and that mner boundarIes can enclose further drawing features. 
Extending processing algorithms to cope with such drawings - and therefore to assess 
whether t:v0 drawings shared a .gi,:en feature - would not be a difficult task (though the 
computatI?n~ e~fort would be SIgnificantly gre~ter). However, this would not necessarily 
uncover slffiilanty or common shape features m the objects themselves. Shape retrieval 
of a 3-D object represented by 2-D orthographic projections is possible only if its 3-D 
geometry can be reconstructed automatically from the drawings. As discussed later 
(section 9.3), this is a major problem in itself. 

2.2.3 Input format 

The choice of input fonnat for objects included in the database is also important, 
irrespective of the scope and type of object representation chosen. Three main 
alternatives are available: (a) input by scanning of existing (paper) drawings, (b) input 
from drawing files of proprietary CAD systems such as DOGS or ROMULUS, or (c) 
input in a standard exchange fonnat such as IGES. 

Input by scanning pen-on-paper drawings has the advantage that virtually all engineering 
drawings are available in this fonnat, whether computer-produced or drawn by hand. But 
it hardly seems appropriate to make this the main fonn of input to a database of 
computer-generated drawings, particularly when it renders direct input of 3-D models 
impossible. (As indicated above, 3-D structures would have to be inferred from 2-D 
projections - a process still not well understood). An additional input module to accept 
pen-on-paper drawings could be of benefit to any operational system, but hardly warrants 
study as a research topic, as the tasks involved in converting 2-D drawings to machine
readable fonn are well-characterized, and several pieces of proprietary software capable 
of digitizing engineering drawings (though not capable of recognizing shape features) are 
already on the market. 

Input from drawing files of a draughting or geometric modelling package has the 
advantage that full advantage could be taken of any structure present in that system's 
files. Thus a system taking its input from ROMULUS would have the advantage that all 
models would have been checked for structural integrity, and that the topology of the 
entire object was explicitly specified. This would make the identification of facesets or 
other features of structural significance a relatively straightforward task. However, it 
does limit the database to models generated on a single host system. There is also the 
problem that details of the internal data structures of systems such as ROMULUS are not 
fully-documented - and are in any case liable to change in the future. 

To be of general usefulness, a computer-based drawing archive needs to be able to take 
input from a variety of draughting and geometric modelling systems. It can in fact be 
argued that the main justification for such a system lies in its ability to store and compare 
designs that have been produced over a long period of time, perhaps on several different 
CAD systems. This implies that it must accept input in a widely-used standard fonnat. 

24 



The only existing fonnat in widespread enough use to meet these criteria is IGES 
described in detail in Section 1.3. Any system which accepts input in standard IGES 
fonnat is capable of incorporating drawings from a wide variety of CAD systems. 

Using IGES as principal fonn of input has its disadvantages. Its major problems are (a) 
lack of consistency in representing geometric infonnation (see section 1.3 above), 
particularly where curved segments are concerned, and (b) failure to make the inclusion 
of topological ~oI?TIation manda~ory. Tog.ether, these mean that the receiving system 
has to standardIZe Ime representatIOn, and infer topology, before processing to uncover 
shape features can begin. For future extensions to 3-D models, it needs to be remembered 
that ~th.ough .more ~ecent versions of .IGES h~ve been exte.nded. to cope with 3-D object 
descnptlons, Its baSIC fonnat was deSIgned wIth 2-D drawmgs ill mind, and has limited 
capacity to hand1~ ~opological inf~nnati~n. In particular, it has no way of specifying 
checks on the valIdity of the resuhmg object. As a standard, IGES is now obsolescent, 
though its influence can be. clearly seen in some later standards proposals - for example, 
the XBF standard for soIld model exchange shares IGES' five-section structure its 
numeric identifiers for entity types, and its use of 80-character card image fo~at 
(Mason, 1985). For these reasons, it was felt that IGES represented a better choice than 
any other alternative as the input medium to the prototype version of SAP ARI. Adapting 
input routines in the future to cope with IGES' successor standards should not pose any 
major problems. 

2.2.4 What constitutes a single object? 

In the long run, a decision also has to be made on what constitutes a single retrievable 
entity in a database of drawings. In most CAD systems, a drawing or geometric model 
occupies an entire file, with a separate record for each drawing or modelling primitive. 
Thus storage and retrieval facilities are geared to fmding individual lines in a given 
drawing. As discussed in Section 2.2.1, this meets the needs of the designer working on a 
"live" drawing - but is much too Iowa level for completed drawing files. Here, the unit of 
retrieval needs to be an entire drawing or geometric model; this implies that a drawing 
should occupy a single record, and that files should in general contain a number of 
drawings - though if a database management system is used, a wider range of structures 
is possible, and the distinction is less important. Even here, as the previous discussion on 
object-oriented database models makes clear, it is important for users of the system to 
have a way of identifying an entire drawing as a single object, rather than having to 
synthesize it afresh from its constituent lines, faces or shape features each time they wish 
to retrieve it. 

The situation is complicated by the fact that there is not necessarily a one-to-one 
correspondence between drawings and the objects they represent. Two or more 
orthographic views of an object may well be provided - possibly on different drawings. 
The fme detail of part of a complex object may be shown separately on a larger scale. 
Again, the presumption must be that designers are primarily interested in kn?wing about 
objects themselves rather than their drawings. In a database of 2-D drawmgs of 3-D 
objects, drawings representing different views of the same object would need to be linked 
together, at least at the logical level, so that if a part has features of interest, all relevant 
drawings can be displayed. 

The problem can be avoided by choosing a representation appropriate to the objec~s in 
the database. In collections of 2-D objects represented by 2-D drawings, and 3-D objects 
represented by 3-D geometric models, there is always a one-to-one correspondence 
between object and representation - one respect in which the restricted domain of 2-D 
shapes chosen for the present study fonns a good model for eventual 3-D database 
design. 

25 



2.3 General principles of shape representation 

One fairly fundamental consideration concerns the amount of infonnation from the 
original drawing to include in the database. Is it necessary to store a representation of the 
entire object (either in its original or a condensed fonn), or is it sufficient to store a set of 
shap~ descriptors, together with a re~e!ence to ~he location of the original object or 
drawmg? This closely parallels the decIsIOn made m a text retrieval system on whether to 
incorporate just the title of a do.cument, an abstract summarizing its contents, or the entire 
text. Storage of a representation of the complete object (rather than a set of shape 
de~criptors) c~uld be valuat;>le for two reasons. Firstly, it would allow an image of the 
obJe~t to be dIspla~ed readily on demand, .a .~seful feature during an interactive query 
seSSIOn. Secondly, It would allow the possIbilIty of generating retrieval features at run 
t~e if this were. r~quired. Whil.e .it is. not known at present how important such a facility 
mIght be, the diffICulty of antICIpatmg all types of queries put to a pictorial retrieval 
system suggests at the very least that the possibility of run-time feature generation 
deserves investigation. 

There is, of course, no compelling reason why the same fonn of representation should be 
chosen for the object itself and its feature set. The GRAIN and REDI systems both use 
two distinct data stores - a feature database and an image file, used respectively for query 
handling and picture display. Such a solution clearly makes sense when one considers 
that one is handling two quite distinct types of data, with different access requirements. 
The feature database consists of (relatively) well-structured data, rich in semantic 
infonnation, with a requirement for access by a variety of routes. The image store 
contains largely unstructured data, and requires only a single access path. The same 
distinction can be applied to engineering drawings and their shape features, so a similar 
solution could well be appropriate for an engineering design database. One could for 
example retain IGES fonnat files for display purposes, but link these to a shape feature 
database that allowed users to search for objects with desired feature characteristics. In 
practice, as shown below, far more compact representations than IGES exist; the general 
principle of separating display images and shape features is still valid. (Note that it could 
in any case be necessary to retain IGES-format flles to allow regeneration of "working" 
drawings to use as the starting-point for a modified design). 

The choice of representation adopted for design objects is crucial, as it affects both the 
processing required to extract shape infonnation and the type of infonnation that can be 
derived. The question of computer representation of design objects has been discussed in 
depth by Requicha (1980); while his discussion focuses on 3-D objects, much of it is also 
relevant to representations of objects that are essentially 2-D in nature. Mathematically, 
one can regard any representation scheme as the mapping from domain D, the set of 
representable objects, to range V, the set of valid representations of objects in D. The 
scheme is unambiguous or complete if each representation in V corresponds to a single 
object in D; it is unique if each object in D has but a single representatio~ in ~. (Such a 
unique representation is often referred to as canonical fonn). It IS umque and 
unambiguous if there is a one-to- one mapping between every object in D and every 
representation in V. 

Different representation schemes can be ev~u.ated by these a.r:td other p:operties .. The 
domain of a scheme is a measure of its descnptIve power, denotmg the varIety of objects 
for which it can be used. The extent to which the validity of each representation can be 
ensured, by syntax checking or other means, is important when considering database 
integrity. Completeness or lack of ambiguity, at least within a restricted domain, is 
essential if a representation is to be of practic al use in communicating an engineer or 
architect's ideas. Conciseness is clearly an important consideration if a large database is 
to be maintained, as is the efficiency with which representations can be created and 
manipulated. 

26 



Unique~ess is ~ diffe:ent matter. For m<?st p~rposes, there is no advantage in ensuring 
that a gIven object will always have an IdentIcal representation, as long as its different 
repres~ntations (dra~ings at different ~cales or orientations, for example) can always be 
recognIZed as refernng to the same object. Most representation schemes in actual use are 
not in fact unique. 

There are, however, cases where uniqueness might be important, such as when a database 
needs to be searched to identify whether two objects are identical. Only where it is 
certain that an object's representation is unique is this a computationally simple task. If 
mUltiple representations of the object are possible, such a question can in gene:ral be 
answered only if all possible object representations can be generated and matched in tum 
with the query representation. Similarly, the task of deciding whether two objects share a 
specified shape feature can ?e made n:uch simpler if both are known to be uniquely 
represented. A database specIfically desIgned to answer such queries might well depend 
for efficient operation on a unique representation scheme for stored shapes. Since no 
widely-used scheme has this property, this implies that a new form of representation may 
need to be developed. 

There is however one problem with this approach. While it is perfectly valid to use the 
concept of canonical representation in the context of shapes that can be defmed with 
complete precision, actual engineering parts can only be defined within a specified range 
of tolerances - for example, a given side may be 30 ± 0.01 cm long, an angle 45 ± 0.10. 
This renders uniqueness a somewhat elusive concept, since each stored drawing in fact 
represents the set of all objects falling within the specified tolerances. In this context, a 
truly unique object representation would imply that for every set of objects, identical 
except that their dimensions could vary within specified tolerances {to}, a corresponding 
set of representations exists, identical except that their defming parameters fall within 
correspondingly small tolerances {tr}. This cannot in practice be fully achieved; some of 
the inherent difficulties approach are discussed in chapter 3 below, though a full 
treatment of the subject is beyond the scope of this thesis. (As indicated in Requicha & 
Chan (1986) and Turner & Wozny (1987), the question oftolerancing in CAD systems is 
a major research topic in its own right). 

This does not however rule out the possibility that a more restricted definition of 
uniqueness could have value in the situations described above. If it is known that shape 
elements are always represented and stored in a standard order, the process of comparing 
shapes to determine whether they are the same is in principle a simple matter of 
sequentially comparing corresponding shape elements - an O(n) process. If no such 
standard ordering exists, so that corresponding shape elements could appear anywhere 
within their stored representations, each shape element in one representation has to be 
compared with every corresponding element in the other, an O(n2) process at best. At the 
very least, then, a scheme which attempts to define a standard order for individual shape 
elements should be able to reduce the complexity of the matching process - at the risk of 
failing to match a certain (hopefully small) proportion of shapes for which the ordering 
rules give anomalous results. It can thus be regarded as a heuristic whose usefulness can 
be empirically tested. 

2.4 Representation schemes for 2-D objects 

As noted above, few, if any, genuine two-dimensional objects exist, though some have 
virtually no 3-D component, and others (principally geographic features such as 
coastlines, river basins, road and rail layouts) have a third dimension can safely be 
ignored, and the 2-D image of the feature treated as the prime object of interest. Two 
main representation schemes have been used for 2-D images: (a) line or vector fo~at, 
where each object is represented by a series of line segments (straight or curved) formmg 
its boundary, each line segment in turn being represented by the coordinates of its end
points, its defining equation or by an appropriate code; and (b) raster format, where each 

27 



display .ele~e~t o~ pix~l fonning the ~age is represented by an element of computer 
storage. m~hcatmg Its bngh~ess ~d po~sl?ly colour. ~aster format is of prime use where 
the mam mterest of the p1c.ture hes WIthin ~ach regIOn of the image (for example, the 
overall colour, texture or bnghtness of a regIOn are important), and for this reason it has 
been widely u~ed. in geographic~ infon;nation systems, from IBIS (Section 1.7.2) 
onwards. Its prmc1pal advantage IS that It provides a simple means of representing 
surface texture, co~our and ~hadow, and also allows ready correlation of different types of 
data (e.g. populatIon denSIty and land use) relating to a given point or area within a 
region. Its main disadvantages are its verbosity (pixel values have to be listed for an 
entire image, even for blank: regions, though techniques such as run-length coding can 
alleviate the problem), and the difficulty in recognizing object shapes. Even to identify a 
straight line embedded in ~ raster ~age is far from simple; the identification of complex 
shape features from such lffiages IS a task that has been occupying the computer vision 
research community for many years. (It is interesting to note that the first step in picture 
processing for computer vision applications often involves extracting all boundary lines 
in the image, reducing it to a line diagram which can be more easily manipulated). An 
interesting variant on raster format is quadtree representation (Klinger and Dyer, 1976), 
which produces a hierarchical representation of an image by taking an n x n pixel array, 
and dividing it progressively into quarters until leaf nodes contain pixels which are all of 
the same colour or density. Such a format is generally much more compact than pixel 
enumeration, and it is claimed that object boundaries can easily be identified. However, 
neither this format nor its 3-D analogue, the octtree, have found any favour with 
designers of CAD systems. Its strength lies in its ability to represent irregular shapes such 
as those generated by computer vision systems. Faced with regular objects defined by 
smooth curves and straight lines, it generates unnecessarily complex and inelegant 
representations compared with those described below. 

Vector format is the most appropriate representation where objects' boundaries are the 
main focus of interest - invariably the case with engineering drawings, where objects -are 
defined by the set of line segments making up their boundaries. All CAD systems, as far 
as is known, use line format as the basis of their 2-D representations. Drawings in line 
format provide an unambiguous, relatively compact representation for parts which are 
essentially 2-D, though representations are not in general unique. (Coordinates of line 
end-points and coefficients of defming equations are both sensitive to translation, rotation 
and scaling). An ideal representation scheme for objects in a design database would 
almost certainly be based on line format; considerations of efficiency dictate that it 
should provide a unique representation for each object, and therefore for its constituent 
line segments. This is in fact a crucial design issue for both 2-D and 3-D objects, as line 
segments are key components of boundary representations of 3-D objects. It is therefore 
necessary to examine methods for representing line segments in some detail. 

2.5 Representation of line segments 

2.5.1 What is an edge? 

At first sight, this may seem a trivial question, at least for 2-D object representations; an 
edge is a line segment forming a subset of the object's boundary. The union of all such 
segments thus defmes the object's boundary. An ~dge may be a. straight line, o~ an 
analytic or parametric curve. Thus a rectan~lar object can be defmed by f?ur stratght 
lines, as in Fig 2.3. However, the same object could have been drawn usmg a C~D 
system's "mirroring" facility, and hence represented by six (Fig 2.4) or eight (Fig 2.5) lme 
segments. Does each of these constitute an edge? Most observers would answer "no"; the 
rectangular object is bounded by four edges, however its drawing may have been 
constructed. It is not difficult to come up with an intuitively satisfactory definition of an 
edge in this case; an edge is the union of one or more continuous line segments. Two 
edges meet at a vertex, where there is always a discontinuity. Under this defmition, it is 

28 



Fig 2.3 A rectangular shape, naturally segmented into four edges 

Fig 2.4 The same shape, produced by mirroring, now represented as six edges 

Fig 2.5 A rectangle produced by double mirroring, represented as eight edges. A unique 
representation scheme has to recognize all three forms of the rectangle as equivalent 

29 



immaterial how many line segments are used to construct the edges of the rectangle in 
Fig 2.3; it will always have four edges and four vertices. 

Less straightforward is the task of defming an edge which includes curved segments. 
There are no discontinuities at all in the "canoe" shape of Fig 2.6, though most observers 
of such a shape intuitively feel that (like the rectangular object of Fig 2.3) it is made up 
from four edge segments (Fig 2.7). To cope with this situation, one has to narrow the 
def~tion of cc;mtinuity; an. edge consists. of t.he union of one or more line segments 
whIch are contmuo'!s b.oth m resp~c~ of dIrectIOn and curvature. This would yield four 
edges for the shape m FIg 2.6 even if It had been produced by mirroring as in Fig 2.8. 

There remains the problem of smooth curves of varying curvature. While these are not 
common in machined parts (as opposed to sculptured surfaces such as car body panels), 
any representation scheme which claims to be generally applicable must be able to 
handle them. An example of such a part is the rocker ann shown in Fig 2.9. How, if at all, 
should this boundary be segmented? Again following intuition, one might decide that the 
boundary should be segmented where curvature changes sign (Fig 2.10), and possibly 
where there are easily-observable step changes in curvature (Fig 2.11). In formulating a 
definition of an edge, however, one needs to be able to distinguish between situations 
where the designer has specified a step change in curvature and situations where a 
complex surface has been approximated by a series of straight lines or circular arcs. This 
is part of the wider issue of the extent to which curved segments can be represented in 
canonical form, which will be discussed in detail below. An essential prerequisite for this 
process is the need to ensure that a single edge is recognized as such, even though one 
designer may have represented it as a single elliptical segment, another as a series of 
circular arcs, and a third as a parametric spline. Changes of curvature that were clearly 
intended by the designer must be distinguished from those that are merely artefacts of the 
CAD system used. 

The most straightforward way to achieve this is to establish a threshold value for 
curvature change, and assume that changes below this value do not signify 
discontinuities. The principle of a threshold accords well with empirical evidence that 
human observers find it difficult to perceive small changes in curvature, though no 
studies appear to have been carried out so far to establish the smallest change of 
curvature that can be perceived (Asada and Brady, 1986). One would then define an edge 
as the union of straight or curved line segments (whose curvature could be constant or 
continuously varying), containing no angular discontinuity or significant change of 
curvature. A significant change of curvature would be defmed as either a change in the 
sign of curvature, or a change in its magnitude greater than a given threshold value. This 
issue is discussed in more detail in Chapter 3. 

2.5.2 How should edges be represented? 

No universally-accepted criteria exist for answering this question for any given 
application. Given the system objectives discussed above,. it is possible to derive a 
reasonable set of criteria which any unique edge representatIOn scheme should meet, as 
follows: 

(a) It must faithfully preserve all information of interest; in particular, it should be 
possible to reconstruct the original object from its representation to a given level 
of accuracy. 

This is clearly necessary if the system is to be able to support exact shape matching, 
display of retrieved structures, or reliable feature extraction. 

30 



Fig 2.6 A "canoe" shape, containing no angular discontinuities 

c ) 
Fig 2.7 A "natural" segmentation o/the shape in Fig 2.6 

-------------

Fig 2.8 Additional edges produced by mirroring. Again, a unique representation scheme 
must recognize this as equivalent to the object in Fig 2.6 

31 



Fig 2.9 A rocker arm, whose boundary consists entirely of curved segments 

o 
Fig. 2.10 Segmentation of the shape in Fig 2.9 at points where curvature changes sign 

Fig 2.11 Additional segmentation of the object in Fig 2.9 at points where there is a 
significant step change in curvature. A unique representation scheme has to be able to 
define such points unequivocally 

32 



(b) It must ge~erate a single ~ano~ical representation for all types of curve; such a 
representatIon should be illvanant under translation, rotation and scaling and 
independent of the starting-point chosen. " 

This is essential for exact shape matching and highly desirable for similarity matching. 

(c) ~t shoul? prom?te ease ofprocess.ing, in construction, manipulation, and display; 
ill partIcular, It should be possIble readily to derive local and. global shape 
features from such representations. 

Similru:ity matching, .particularly of complex shapes, is likely to be a computationally 
expensIve process. SImple forms of representation, particularly those which allow non
matching structures to be rejected quickly, are therefore at a premium. 

(d) It should provide reasonably compact storage; the complexity of the 
representation should bear some relation to the complexity of the original object. 

Not a crucial objective, except that compact representations can generally be retrieved 
more quickly from backing storage, and should therefore enhance system performance. 

(e) It should ideally give representations that are reasonably robust; small changes 
to a machined object (addition or removal of a boss or keyway, for example) 
should produce correspondingly small changes in its representation. 

Again, efficient similarity matching is possible only if the representations of objects 
sharing many common features are themselves very similar. 

Most, if not all, representation schemes are approximations of the original object (whi~h 
is in any case specified only within certain tolerances, as discussed above). The important 
point is that their accuracy is sufficient for the domain of objects and the set of 
applications in question. Most machined parts can in fact be represented by a small 
number of primitives, corresponding to the capabilities of commonly-used machine tools. 
In a survey carried out by the· UniverSity of Rochester, as reported by Voelker & 
Requicha (1977) and Pratt (1984), it was found that over 90% of parts could be built up . 
from just five solid primitives - rectangular blocks, cylinders, spheres, cones and tori. 
Over 40% could be built up from blocks and cylinders alone. As might be expected, 
workpieces made by forging, casting and moulding covered a much wider range of 
shapes. 

One can thus represent the faces of most machined parts by planar or quadric surfaces. 
This implies that, at least when considering 2-D or 2.5-D objects, the vast majority of 
edges can be represented by straight lines or circular arcs. There is clearly a strong need 
for an edge representation scheme to provide essentially exact representations of straight 
lines and circular arcs; what is less certain is the need for an exact representation for 
edges in the form of conic arcs (which could naturally arise at the intersection of quadric 
surfaces) or parametric splines (normally to be found only with "sculptured" surfaces). 

If a unique representation of curved edges is required, it is essential that the range of 
curve types permitted should be severely limited. While it is theoretically possible. to 
compare cubic splines with elliptical arcs, or circular and parabolic arcs, to establIsh 
whether they represent the same curve within specified error limits, the task is 
computationally expensive. The use of a single type of representation for all curves 
provides a much more efficient solution to the problem. The questions to be resolved if 
this approach is taken centre on the domain of curves to be represented exactly; the 
method of approximation to be used for others; and the merits and disadvantages of 
representation schemes meeting these criteria. The principal options are set out below. 

33 



2.5.3 Representations based on straight-line segments 

An obvious possiJ:'ilit>: is to choose the straight line as the sole curve primitive, and use 
p.olyg~:)I~al app.ro~unatIon for all other curve types. This method has the advantage of 
Su:oplICIty; It. IS !" fact one .of the oldest methods of representing curves, and is still 
wIdely u~ed ~ dIsplay gr~phics .. (The ISO graphics standard GKS provides no functions 
for ~awrng crr~les or ellIp.ses drrectly; they hav~ to be approximated by user-specified 
functions drawmg appropnate sequences of straIght-line segments). Because of this a 
wide selection of algorithms. is available for generating and processn1g such displays. 
One r~cen~y-reported alg onthm , for. example, claims to provide an optimal linear 
approxunatlOn to any planar curve, m the sense of fmding the minimal number of 
segments necessary to approximate the curve within a specified error bound (Dunham 
1986). ' 

Straight-line approximations can be information-preserving (it is possible to specify as 
accurate an approximation as required by increasing the number of linear segments) and 
canonical representations can be devised for any shape, though few representations 
described in the literature are suitable as they stand. The main problem with 
representations based purely on s!raig~t-line segments is that they are unnecessarily 
verbose when used to descnbe engmeermg parts, unless very coarse approximations are 
used. (Perkins (1978) cites a case where the outline of a steering knuckle could be 
described adequately by 27 segments if both circular and straight-line segments were 
permitted, but needed 260 segments if all were straight lines). Such verbosity is wasteful 
both of storage space and processing time. It also seems inelegant to represent a 
conceptually simple structure like a circular arc (as we have seen, a very common feature 
of machined workpieces) in such a complex way. 

It is worth noting that representations based on straight-line segments have been 
extensively used in geographic information processing, where the objects to -be 
represented (height contours, rivers, coastlines) are often jagged and have no regular 
shape. The simplest way of representing such segments is to use their end-point 
coordinates, though this has limited usefulness because of their sensitivity to translation, 
rotation or scaling. One of the best-known schemes is Freeman's chain code (Freeman, 
1974), which uses a grid of arbitrary fineness to quantize the contour to be represented 
into segments of unit length and restricted direction (Fig 2.12). Such a representation is 
insensitive to translation, and to some extent to scaling, though it remains sensitive to 
rotation (not a major problem in geographic information processing where the orientation 
of map features is normally known). Published algorithms are available for deriving 
shape features from chain-coded contours, matching segments of chain code, and 
computing properties such as chain length and moment of inertia. 

More recent representation schemes have concentrated on providing hierarchical 
descriptions of contours (logical when one remembers that most objects of geographic 
interest, such as coastlines, are in fact fractals, and can therefore by definition be 
represented only to a specified level of approximation). These have included Burton's 
Binary Searchable Polygonal Representation (Burton, 1977), which constructs a binary 
tree to "index" a set of curve segments, based on recognizing local x and y minima and 
maxima, and Ballard's Strip trees (Ballard, 1981), overlapping rectangles which bound 
segments of a curve at progressively finer levels of detail. These representation schemes 
are of peripheral interest in the present context because of their sensitivity to 
transformation, rotation, scaling, and choice of starting point - and because their principal 
advantage, the ability to apply processes such as curve-matching at varying levels of 
detail, is of limited usefulness here. The only truly invariant representation scheme of this 
kind is that of Mokhtarian and Mackworth (1986), which derives a measure of curvature 
at each point on a polygonal curve, and transforms this by convolution with a one
dimensional Gaussian kernel. From this an invariant scale space image can be derived, 
which can be used for curve matching. The method is unsuitable for most machined parts 

34 



as it depends on identifying points where curvature changes sign - a concept of doubtful 
validity in objects with long straight edges. 

m
l2 

6 7 
I 

Fig 2.12 An example of the Freeman chain code (from Freeman, 1974), 
which quantizes all curves into unit segments which can take one of eight 
directions, as shown in the bottom right of the picture. Any curve can thus 
be approximated by a string of numbers indicating the direction of each 
unit segment in turn. The grid size can be chosen to give any required 
degree of accuracy. 

2.5.4 Circular arc representations 

Another option is to use circular arcs (with straight lines regarded as arcs of zero 
curvature) as a basis for describing edges. This has the advantage that an "exact" 
representation can be provided for the vast majority of edges found on simple 
workpieces; approximations will be needed only for more complex "sculptured" parts. 
Representations based on circular arcs are thus information-preserving to at least the 
same degree as those based on straight lines; in the majority of cases they will provide a 
more exact representation. It is not difficult to generate invariant representations both for 
simple arcs and (through approximation) segments of varying curvature. For most 
workpieces it is possible to generate extremely compact representations (each segment 
needs only three parameters, such as length, curvature, and angle made with next 
segment), and readily extract local and global shape features. As a method of 
representing simple workpieces it shows considerable promise. .. 

An example of the use of this kind of representation is provided by Perkins (1978), 
whose recognition system for industrial parts analysed digitized images of workpiece 
outlines, identifying boundaries and fitting them to straight-line or circular segments 
which he named concurves. He was then able to match concurves derived from images 
with concurves for known objects. 

35 



2.5.5 Spline representations 

A third option is to use spline representations for all curves. This has the advantage of 
pennitting exact representations of all kinds of curves, though at some cost in 
complexity. Spline functions nonnally provide approximations to curves by dividing 
them at appropriate Jm.ot points ~to seg~ents, which can be represented to any specified 
accuracy by polynomlal~ or basls i?-nctlOns of any required degree (cubic polynomials 
are frequently used). RatIOnal B-splmes, curves C(t) defmed by the equation 

n 

L B· k(t)h·P· l., l. l. 

1 
c (t) = 

n 

L B· k(t)h. l. , l. 

1 

where Pi are points known as control points, t is a parameter whose value lies between 
fixed limits a and b, and Bi,k(t) are the basis functions, have a number of useful properties 
not shared by polynomial B-splines, including the ability to provide "exact" 
representations of circles and conics (Tiller, 1983). In many ways, this provides the ideal 
fonn for curve representation, as all types of curve can readily be cast into a single 
canonical fonn (for this reason, it has been adopted as the sole fonn of curve 
representation in the GEOMOD geometric modelling system from Structural Dynamics). 
Its disadvantages are its mathematical complexity, making it difficult to develop 
algorithms for feature extraction, and its lack of conciseness when compared to circular 
arc representations, at least for the majority of workpieces. Its high degree of generality 
make it a scheme worth exploring for families of parts where "sculptured" surfaces are 
common. 

2.5.6 Boundary transformations 

The fmal option is to use some transfonnation of the object boundary, taken as a whole. 
The best-known of these is the Fourier transfonnation (Zahn and Roskies, 1972). This 
defines the cumulative curvature around the object boundary as a function of curve 
length, and proceeds to expand this function as a Fourier series 

in which the coefficients Ak and ak, the kth harmonic amplitude and phase angle 
respectively, are known as the Fourier descriptors of the curve. This form of 
representation is information-preserving up to a point: if an infmite Fourier expansion is 
used, the curve can be reconstructed exactly; a truncated Fourier series will generate an 
approximation to the original curve. Fourier descriptors can provide an invariant 
description of the curve, and do appear to reflect the overall shape of the object fairly 
consistently - lower-order Fourier descriptors from similar objects are generally of 
similar magnitude, and can be used to provide an objective index of similarity between 
two shapes. The underlying theory has been well researched, and numerous algorithms 
have been developed for generating and processing Fourier descriptors. Fourier 
descriptors also have a number of useful properties - for example, they can be used 
directly to fmd axial or rotational symmetry in the object boundary. Storage requirements 
depend on the number of tenns retained from the expansion; in many cases, adequate 

36 



representations can be achieved with a dozen terms or less; if so, representations can be 
very co~pact. The insuperable objectio~ to their us.e in the present context is that they are 
propertIes of the boundary taken as a whole; there IS no known way in which infonnation 
about local shape features can be extracted (Pavlidis, 1980). 

A similar o?jection rules out another rec.ently-described method of shape description, the 
autor~gressive model approac? of DuboIs and Glanz (1986). This takes the object radius 
at pomts where the boundary mtersects a number of equispaced radius vectors, and fonns 
a r~gression equa~i(:m for the :adius a! the kth po~t in terms of the radius at the previous j 
pomts. The coeffIcIents of thIS equatlOn can agam be used as invariant descriptors of the 
overall boundary shape - but are of no use in describing local shape features. 

One feature common to nearly all applications using complex transformations appears to 
be the need to recognize shape features in object representations generated from 
inherently noisy digitized images. One of the principal reasons for using such 
transformations is clearly the need to distinguish between genuine shape features and 
noise, and the need to take account of the effects of digitization at different scales. The 
present study takes drawings generated on a CAD system as its starting point; such 
drawings should be (relatively) noise-free, and digitization errors should not affect 
measures of curvature to any marked extent. It is not therefore expected that complex 
transformation techniques will prove particularly useful. The only transformation which 
has been used, as it provides invariance to translation, rotation and scaling, is to represent 
all boundary lines in intrinsic coordinates, by plotting e, the cumulative curvature, 
against s, the cumulative arc length. An advantage of this transformation is that circular 
arcs become straight lines, making the task of processing representations based on 
circular arcs much easier. 

2.6 Representation schemes for 3-D objects 

As discussed above, one of the aims of the present study is to lay the groundwork for the 
development of databases of 3-D objects. A brief examination of representation schemes 
for 3-D objects is thus in order. Numerous schemes have been proposed, including 
primitive instancing, where objects are classified as "cube", "prism", "cylinder", etc. and 
further specified by appropriate parameters; spatial occupancy, the 3-D equivalent of 
raster format, in which space is divided into unit cubes (sometimes known as voxels) , 
each of which carries an indication of whether it is "inside" or "outside" a given object; 
and cell decomposition, where objects are divided up into tetrahedra by a solid 
triangulation process. Such schemes all have severe drawbacks (Requicha, 1980), and in 
practice only two methods have been used to any significant extent. These are the 
boundary and constructive solid geometry (CSG) representations referred to in Section 
1.2. 

CSG is on the face of it a promising form of representation for 3-D solids. The CSG trees 
representing how solid objects were built up from their constituent primitives provide 
unambiguous representations of the original object, and can be very concise. They are not 
unique, in that (a) even starting with a single set of primitives, an object could be built up 
in many different ways by varying the order in which operators were applied; (b) two 
CSG schemes based on different sets of primitives would inevitably generate a given 
object in different ways. 

The flrst problem can in fact be successfully overcome in the majority of cases. Woo 
(1982) has shown that any CSG representation of a rigid solid can be transformed into a 
canonical form termed ASV (Alternating Sum of Volumes), by forming its convex hull 
(the smallest convex solid into which the object can be completely fitted), subtracting it 
from that convex hull to generate a new solid (representing the difference between the 
original solid and its convex hull), and repeating this pair of operations on the resultant 
solid until this difference becomes zero. The only limitation is that the process does not 

37 



terminate in all cases. For such solids, Woo's method cannot generate a unique 
representation. 

The second problem above could be overcome in two ways. One way would be to adopt 
an agreed set of standard primitives out of which all systems could build geometric 
models. Such a set would need to be limited in such a way that a geometric model could 
be built only from a single set of primitives (so that, for example, cubes and cuboids 
would not be pennissible as separate primitives because one designer might use cubes to 
build up a given part, while another used cuboids). Such standardization flies in the face 
of the current trend to provide designers with as wide a range of primitives as possible in 
order to make the design process easier, and cannot therefore be considered a practical 
proposition. Another way would be to adopt a small set of standard primitives into which 
all modelling systems could transform their models, possibly as the basis for an exchange 
format. Although such a possibility has been mentioned in connection with the 
development of standards for data exchange between solid modelling systems, no 
generally accepted set of primitives exists at present. The existing IGES standard is 
unable to handle CSG specifications, and extensions to the standard to enable it to do so 
are still the subject of debate. For these reasons, CSG seems an inappropriate 
representation method at present. Its many advantages suggest that it may prove a fruitful 
basis for future studies. 

Fig 2.13 An example ?! the d~fficulty in defining a/ace. The shaded area 
could logically be partltzoned m any of the alternative ways shown. 

38 



Boundary representation of solid objects is almost certainly the most common form 
encountered in practice, if only because of its use in computer graphics as well as 
ge~metric modelling. Solid objects ar~ repre~ented as a fmite number of bounding faces 
whIch. between them enclose the ~ntrre solId. In tum, each face is represented by its 
boundmg loop of edges and vertIces .. To represent a solid unambiguously, both its 
topology and the geometry <?f eac~ co~st1tuent ~ace must be represented unambiguously _ 
though, as shown by the mveshgatlOns carned out by Weiler (1985), a number of 
altem~tive repr.esentations are topologically sufficient. Planar faces may be represented 
by therr bounding edges, but curved faces require additional information (such as their 
surface equation) before they can be unambiguously specified. 

To construct a boundary representation scheme which is also unique raises additional 
problems, as objects' bounding faces need to be uniquely defmed, and their topological 
relationships uniquely represented. Intuitively, it is not always obvious what should 
constitute a face, particularly where planar and curved surfaces meet. The object in Fig 
2.13, for example, contains a large smooth area which could be regarded as one, two, 
three or even more faces. The design of a unique boundary representation scheme 
therefore involves a number of far from trivial decisions. 

2.7 Conclusions 

Several possible methods of representing line segments have been outlined above. When 
judged against the criteria set out in paragraph 2.4.2, their merits and disadvantages can 
be summed up as follows: 

(l) IGES parameters could in theory be used directly to specify line segments. They 
would certainly be information-preserving, but would fail on virtually every other 
count. There is no simple way in which they could be made invariant to scaling, 
translation or rotation; they are far from compact; and similar lines could have totally 
different IGES representations. 

(2) Straight-line approximations can provide an invariant representation provided lines 
are expressed as normalized length and direction. But they cannot simultaneously 
provide information preservation and compact storage for curved segments (use of 
short straight-line approximations to prevent information loss inevitably increases 
the number of segments). 

(3) Circular arcs can provide compact information-preserving representations for 
machined shapes, the vast majority of which are made up of straight lines and 
circular arcs. If expressed in intrinsic coordinates, they are invariant to translation, 
rotation and scaling, and relatively easy to process for feature extraction or similarity 
matching. 

(4) Rational B-splines can provide information-preserving representations for all shapes, 
and can be cast into invariant form. Their large number of parameters makes 
compact storage difficult, and processing algorithms are necessarily complex. 

(5) Fourier and similar transformations fail to preserve local shape information, even 
though they can represent ~ object's glo?al shape accurately (in invari~t f0f!11) 
provided enough terms are mcluded. In this respect, they resemble the straIght-lme 
representations in that they force a "trade-off' between accuracy and compactness. 
Processing of such representations can be complex. 

From the above discussion, it seems clear that the only two representations worth serious 
consideration are circular arcs and rational B-splines. Since the vast majority of 

39 



engineering parts are in fact machined shapes, circular arc representations seem 
preferable, as they provide much more compact storage and ease of processing at the 
expense of a very slight loss of generality. An exploration of the use of spline 
representations, particularly for sculptured parts, could form a useful extension of the 
present research. 

40 



CHAPTER 3. SHAPE REPRESENTATION FOR RETRIEVAL 

3.1 Introduction 

As discussed in section 2.3,. the need for efficient shape matching and retrieval implies 
~hat ~l drawing features .likely to. be use? in r.etrieval should be represented in as 
mvanant a form as possIble. While detailed discussion of the question of feature 
extraction for retrieval is deferred until chapter 4, it must be noted here that if there is to 
be any possibility of retrieving shapes by matching sequences of boundary segments 
themselves, some attempt has to be made to represent these in a unique standard form. 
O?j~cts with the saIl1:e shape should .have ide~tical representations, however they were 
ongmally drawn. GIven the. do~am of .0bJects select~d. (2-I? objects defined by 
boundarIes represented as straight lmes or clfcular arcs), this lffiphes that representations 
of the object's outer boundary, all inner boundaries, and the relative 'positions of all inner 
and outer boundaries must all be in a form invariant to translation, rotation and scaling. 
Furthermore, there is a need to defme a standard ordering for each shape element if one 
wishes to limit the complexity of the matching process. This requires that rules must be 
defined both to select a start segment and traversal direction for each shape boundary, 
both outer and inner, and also to order all inner shape boundaries. 

3.2 Choice of shape representation 

3.2.1 Outer boundary representation 

As discussed in section 2.7 above, the most appropriate representation for shape 
boundaries was considered to be a set of line segments, each defmed by its length and 
curvature. If these segments make up an ordered list in such a way that following the liSt 
corresponds to traversing the boundary in a given direction until the starting-point is 
reached, a very compact representation of the boundary can result, as angular changes in 
direction can be included as parameters of the preceding line segment (Fig 3.1). This 
form of boundary representation can easily be rendered unique provided length and 
curvature parameters are normalized, a standard direction of boundary traversal 
(clockwise or anticlockwise) is chosen, and a procedure exists for choosing a unique 
starting-point for boundary traversal. 

3.2.2 Initial representation chosen 

Initially, each boundary was to be represented by a list of 3- tuples 

{L,C,D} 

each representing a single line segment, where L is the segment length, C its curvature 
(reciprocal of radius for circular arc segments, zero for straight-line. segments) , and D !he 
discontinuity angle between the current segment and the next (FIg 3.1). The ordermg 
chosen for outer boundary segments corresponds to anticlockwise boundary traversal, 
consistent with programming conventions for numerically-controlled machine tools. 
Segment representations could readily be transformed into a form invariant to scaling, 
rotation and translation by normalization using a standard length L o, yielding the form: 

{ LILO ' C*L , D } 

Lo can conveniently be taken to be the boundary perimeter, so that each segment is 
represented by three parameters: its length (as a fraction of the entire boundary), its 
arc angle A, equal to the product of its curvature C and its length L, and D, the 
discontinuity angle with the next segment (Fig 3.2). 

41 



I , 

./ 

\ 

Segment 
"- no. 

1 
2 
3 

, , , , 

\\ R l (.= 11 C l ) 

, , , 

L 

, , , , 

4.53 
4.81 
3.90 

C 

0 
0 

0.27 

D 

1.12 
-1. 38 

Fig 3.1 Three line segments, each represented by its length L, curvature C (zero for 
straight lines, positive for anticlockwise arcs,' negative for clockwise arcs), and 
discontinuity angle D (again, positive for anticlockwise changes in direction, negative for 
clockwise). 

, ..... "" ...... 
.' ' 

/<y" ./ ", 

, 

L2 
LJ 

LI , 

,E) Segment LILo A D 
no. 

" 
1 0.15 0 1.12 
2 0.16 0 -1. 38 
3 0.13 1. 61 

Fig 3.2 The same three line segments, represented by normalized length LlLo, arc angle 
A ( = elL) and discontinuity angle D. 

42 



Although the line segments conceptually form a closed ring, they have to be stored and 
pr<?cessed as a linear sequence. To generate a canonical r~presentation of the boundary, a 
umque start segment must therefore be defmed, otherwIse as many representations are 
possible as there ~~ segments (Fig 3.3). To defme a unique start point purely in terms of 
boundary shape, It IS necessary to select a start line on the basis of invariant parameters 
such as those set out above. The most straightforward way to do this is to select as start 
line (a) the line segment with greatest length; if more than one line fulfils this criterion 
select (b) the candidate with the greatest curvature; if this does not resolve the matter' 
select (c) the candidate with the largest angle of discontinuity between it and the nex; 
segment. If more than one candidate still remains, apply criteria (a) - (c) in turn to the 
line segment following each candidate, and if necessary to subsequent line segments, 
until either (i) a unique start line emerges, or (ii) the entire boundary has been traversed. 
In the latter case, the boundary is completely symmetrical, and a start line can be selected 
from the remaining candidates at random. See Fig 3.4 for examples of this process. 

It is of course perfectly possible to choose any combination of extreme values for the 
parameters defining line segments in order to specify canonical form - for example, one 
might have chosen as start point the line with smallest curvature, smallest discontinuity 
angle, and smallest length, in that order. There appears to be no clear-cut reason for 
preferring anyone combination of parameters to any other. The choice of starting- point 
has in any case no structural significance. 

3.2.3 Final representation chosen 

The above representation meets the first four criteria presented in section 2.5.2 above, but 
fails on the fIfth. The method of boundary start line selection described in the previous 
section always yields the same result with identical shapes. However, small changes such 
as the addition of a notch in one side of an object can lead to a totally different start line 
being chosen (Fig 3.5). Hence quite large degrees of similarity between shapes could go 
unrecognized because their representations would be markedly different. 

While this problem can never be completely overcome (see section 3.3.5 below), it can 
be alleviated in a large number of cases if object representations are preprocessed to 
remove local features, revealing their underlying shape (Fig 3.6). As observed in section 
3.2.4, this approach has a number of additional useful aspects. The method involved is . 
similar to that of Kyprianou (1980), though here the process is easier because it involves 
only two dimensions, and only two basic classes of local shape feature, midline features, 
sequences of short line segments interrupting an otherwise continuous long edge (Fig 
3.7), and comer features, line sequences contained as it were in the jaws of a comer (Fig 
3.8). The process can be regarded as the repeated application of the shape rewriting rules 
illustrated graphically in Figs 3.9 and 3.10. DefInitions of line sequences making up 
midline and comer features are not lost, but absorbed into the defInitions of the 
"skeleton" lines enclosing them (see section 3.3.3 below for a detailed discussion of the 
process of generating such descriptions). 

Such shape feature defmitions are essentially recursive, since a line enclosing a shape 
feature at one level can itself form part of a shape feature at a higher level. Repeated 
application of the rewriting rules to a complex shape will thus lead. to a ~rogres~ive 
simplification as local features are removed one by one, eventually leavmg an IrredUCIble 
"skeleton" shape (Fig 3.6). As discussed below, it is possible to regulate this process to 
allow a shape to be described hierarchically, each level of description including an extra 
level oflocal features (Fig 3.11). The boundary can be traversed at any of these levels; its 
representation then becomes a sequence of 4-tuples: 

{ LILo ' A , D , E } 

43 



Sturt pOint 2 
\ 

\ 
_\/ 

Segment LILO 

1 0.045 
2 0.072 
3 0.063 
4 0.054 
5 0.141 
6 0.054 
7 0.063 
8 0.072 
9 0.045 

10 0.070 
11 0.251 
12 0.070 

A D 

0 1.57 
0 -1.57 
0 1. 57 
0 1.57 

-3.14 1.57 
0 1. 57 
0 -1.57 
0 1.57 
0 0 

1.57 0 
0 0 

1.57 0 

Segment LILo 

1 0.045 
2 0.070 
3 0.251 
4 0.070 
5 0.045 
6 0.072 
7 0.063 
8 0.054 
9 0.141 

10 0.054 
11 0.063 
12 0.072 

\ 
\ 

\ 
\ 

\ 

Sturt point 

A D 

0 0 
1.57 0 

0 0 
1.57 0 

0 .57 
0 -1.57 
0 1.57 
0 l.57 

-3.14 l.57 
0 l.57 
0 -l.57 
0 1.57 

Fig 3.3 Two alternative representations of a simple shape, using different starting points 
(boundary traversal anticlockwise in both cases). 

44 



/ 

/ 
/ 

Start line 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

Stud line /171 
/ 

Stud line / 

Fig 3.4 Three examples of start segment selection, showing selection of (a) the longest 
segment, (b) the segment with the greater discontinuity angle, and (c) the segment with 
the longer following segment. 

./ Sturt line 

--Stud line -- -
Sturt line 

-

1'" 
"" S turt line 

Fig 3.5 Lack of robustness of start segment s~lection procedure. Small changes in 
structure can alter start point, giving completely different representation. 

45 



) 

) 

-71L-__ 

) 

Fig 3.6 Underlying object shapes uncovered by removing local shape features. 

46 



-----------'----

Fig 3.7 Examples of midline shape features. 

------------~--I 

I- - - --,----

I 
I 

1\ 

Fig 3.8 Examples of corner shape features. 

47 



II B C C 

LI --, 
HI I 

{C i } 
D > 

L2 H2 

E E 

C 
II B A 

LI HI 

> H2 

E E 

Fig 3.9 Corner feature rewrztzng rules. Assuming boundary traversal to be in the 
direction L j , C}1 ... , L2, new lines H j and H2 inherit properties as follows: H1 - length: 
distance AC measured along Hj; curvature: curvature of Lj; discontinuity angle: angie 
between tangents to H j and H2 at C. H2 - length: distance CE measured along H2; 
curvature: curvature of L2; discontinuity angle: discontinuity angle of L2. 

---,--N~ 
A. c D 

> H 
A c 

H 
B C 

> 
A D A D 

Fig 3.10 Midline feature rewriting rules. Again assuming boundary traversal to be in the 
direction L j , M}1 ... , L2 , new line H inherits properties as follows - length: distance AD 
measured along H; curvature: curvature of Lj (which must be equal to the curvature of 
L2 within a very fine tolerance); discontinuity angle: discontinuity angle of L2· 

48 



Lowest level: Segment LILO A D E 

1 0.292 0 0 2 
2 0.082 1.57 0 2 
3 0.052 0 1.57 2 
4 0.083 0 -1.57 2 
5 0.073 0 1.57 2 
6 0.063 0 1.57 3 
7 0.164 -3.14 1.57 3 
8 0.063 0 1.57 3 
9 0.073 0 -1.57 2 

10 0.083 0 1.57 2 
11 0.052 0 0 2 
12 0.082 1.57 0 2 

Segment LILO A D E 

1 0.396 1.57 0 1 
2 0.104 1.57 0 1 
3 0.396 1.57 0 1 
4 0.104 1.57 0 1 

Fig 3.11 Representation a/the shape from Fig. 3.3 at three levels a/detail 

49 



where E represents the level at which boundary traversal takes place. L here could be the 
boundary length at the relevant level, though it is normally simpler to °take it as the top
level boundary length in each case. 

In practice, this form of representation is wasteful of space. Since many line segments 
remain unchanged by the rewriting process and therefore form part of the structure at 
more than ?ne level. The information abou~ such lines would need to be duplicated at 
each level if the above form of representatIOn were used direct. The modified form of 
representation shown in Fig 3.12 was therefore used, with each segment represented as a 
5-tuple: 

{ L/LO ' A , D , Et ' Eb } 

where Et repr~sents the leve~ of the current line counting downwards from the top, and 
Eb represents Its level countmg upwards from the bottom. Again, Lo represents the top
level boundary length. It is then easy to construct an algorithm to traverse the structure at 
any desired level V, for example by successively taking all line segments for which Et = 
V, or Et < V and Eb = 1. 

Such a hierarchical representation can be cast into canonical form by choosing a unique 
start line from the top-level line segments, using the procedure described in the previous 
section, with one addition. If traversal of the boundary at top level fails to identify a 
unique start line, the boundary is traversed at successively lower levels (Fig 3.13), until 
either a unique start line emerges, or the entire boundary has been traversed at the lowest 
level. As before, this indicates that the entire shape is symmetrical, and a start line can be 
chosen at random from the remaining candidate lines - unless there is an unsymmetrical 
configuration of inner boundaries. One further modification can be made to improve 
robustness - the use of a measure involving chord length rather than arc length when 
comparing candidate start lines. This makes no difference to the vast majority of shapes, 
but yields a more consistent start line in the cases shown in Fig 3.14. 

Given two identical shapes of different size and orientation, it can be shown that this 
modified procedure (like the original) always yields the same start point. While no proof 
can be offered that such a hierarchical representation is always more robust to small 
changes of shape than the 3-tuple representation described above, the examples shown in 
Fig 3.15 give a clear indication of the potential advantages of this representation, which 
clearly meets criterion 5 better than its predecessor. However, the examples illustrated in 
Fig 3.16 show clearly the limitations of the method, and why it is inherently unable to 
generate robust representations in all circumstances. 

3.2.4 The concept of the boundary level 

A further important advantage of the type of hierarchical representation described above 
is the additional flexibility of shape matching it can provide, by allowing shape 
boundaries to be traversed at different levels. Each level of boundary traversal (from now 
on referred to as a boundary level) can be treated as a legitimate view of its parent 
boundary, and used to represent that boundary anywhere in the shape ma~ching process. 
One might expect the ability to match query and stored drawing boundanes at any level 
to be a powerful aid to retrieval performance, as it allows inhe!ent similarities to ~e 
recognized even where one object has a much n:-0r~ complex outlme t!tan another \as ~ 
Fig 3.17). The boundary level is thus regarded w1thm the system as an lmportant entity m 
its own right. 

It can further be hypothesized that feature extraction should be based on separate 
processing of each boundary level, rather than the bou~dary as a whole, yi~lding a .sex:tes 
of feature sets, each characterizing the boundary at a different level of detail. Identifymg 

50 



Segment LILO A D ~ Et 
I--

I 1 0.396 
I 0 1.57 2 1 

2 0.292 0 0 1 2 
3 0.082 1.57 0 1 2 
4 0'.104 0 1.57 2 1 
5 0.052 0 1.57 1 2 
6 0.396 0 1.57 2 1 
7 0.083 0 -1.57 1 2 
8 0.073 0 1.57 1 2 
9 0.229 0 1.57 2 2 

10 0.063 0 1.57 1 3 
11 0.164 -3.14 -1.57 1 3 
12 0.063 0 1.57 1 3 
13 0.083 0 -1.57 1 2 
14 0.396 0 1.57 2 1 
15 0.104 0 1.57 2 1 L_ 16 0.052 0 0 1 2 
17 0.082 1.57 0 1 2 

Fig 3.12 Representation of all drawing levels in single table. 

Top level: InterMediO te level: 

B B' 

A I A' 
L_~ ____________ ~ 

Top level: InterMediO te level: 

c 

D B 

A 

Fig 3.13 Two examples where boundary traversal is needed at more than one level to 
resolve otherwise identical starting points. In the top example, line A is favoured as 
starting-point over B because its lower-level analogue A' is longer than B'. In the bottom 
example, A and C remain as possible starting points after second-level traversal since A' 
and C' are longer than B' or D'. Further traversal at lower levels, and possibly 
involvement of inner boundaries, would be necessary to resolve between A and C. 

51 



ChOice of start line bused on line length 

/,Start line 
/' 

C...-----..,r---:) 
//1 

Start line 

Choice of sturt line bused on chord length 

C,..-------.,,..---,:) 
/1 

/ / 
Start line Start line 

Fig 3.14 An example where use of chord length (the straight-line distance between start 
and end points) rather than segment length as prime discriminator between possible start 
lines makes choice of start line and start direction less sensitive to small changes in 
object shape. 

Fig 3.15 Examples of improved robustness in choice of canonical start line by use of 
multi-level shape description. The three low-level descriptions above have their longest 
lines in different relative positions. Using the higher-level descriptions below, the major 
semicircle becomes the start line in all cases, forcing the same choice of start point on all 
three shapes. 

52 



Fig 3.16 Examples of shapes where completely robust unique representations cannot be 
generated. While most observers would agree that the left-hand shape in both series is 
basically straight-edged, the position gradually changes as the relative length of the 
curved segments is increased, until the essentially circular right-hand shape is reached. 
At some point, therefore, a small change in segment length will inevitably result in a 
major change in shape representation. 

I 

Fig 3.17 Examples of pairs of shapes where clear elements of similarity are present, but 
where direct comparisons of segment length, curvature or discontinuity angle would be 
unlikely to discover those similarities. The first pair of shapes, for example, shares only 
one common segment, the second pair none at all. 

53 



~l shapes. with specific features in ~o~on (such as the (+900 -900 -900 +900 ) 

dI~contmUlty angle sequence ch~act~nzmg r~ctangu1ar depressions) is relatively easy 
wIth shapes such as that shown m FIg 3.17 if feature sets for intermediate levels are 
extracted ~d stored separately. Fa~e~ only with discontinuity angle sequences from the 
m?st detailed level of shape descI~pt.IOn, It would be much more difficult to recognize 
thIS type of featur~. Hence the maJont~ of extracted retrieval features (see chapter 4) in 
the prototype verSIOn of SAP ARI are m fact associated with a specific boundary level 
rather than the boundary in general. ' 

3.2.5 Inner boundaries 

Since inner boundaries are defined in an identical fashion to outer boundaries an 
identical met~od was ll:sed for representing them, with two exceptions. Firstly,' the 
segments making up an ~er boundary were traversed in clockwise order; secondly, the 
length Lo used to normalIze segment length was chosen to be the outer boundary 
perimeter rather than the inner boundary's own perimeter. These decisions were taken to 
differentiate inner and outer boundaries. The first is consistent with the principle of NC 
machine tool operation (metal on the left of the cutting tool); the second permits the 
database to represent the relative size of inner and outer boundaries - essential for 
unambiguous representation of complete objects with inner boundaries. 

As discussed later, the choice of start point in otherwise symmetrical inner boundaries is 
determined by the relative positioning of inner and outer boundaries. 

3.2.6 Relative positions of inner and outer boundaries 

To complete an unambiguous description of 2-D objects, it is necessary to specify in an 
invariant form: . 

(a) the start point and start direction of each inner boundary; 

(b) the ordering of internal boundaries. 

Start point and start direction. In view of the need to identify symmetry at a later stage 
of the shape-matching process, it was in fact decided first to calculate and store the 
position of each boundary centroid. The position of each inner boundary centroid is then 
defmed in terms of the vector joining it to the outer boundary centroid; in tum, the start 
point of each inner boundary (the start point of the start line selected by the procedure 
described above) is defined by the vector joining it to its centroid (Fig 3.18). The lengths 
of these vectors are rendered invariant to translation, rotation and scaling by dividing 
them by the outer boundary perimeter Lo; their angles by relating them to a standard 
direction characteristic of the shape itself, such as the shape's major axis, or the start 
direction of the outer boundary start line. Similarly, inner boundary start directions are 
rendered invariant by relating them to the outer boundary start direction. 

Ordering of inner boundaries. The [mal step in generating a standard ordering of all 
shape elements is clearly the specification of a standard inner-boundary ordering - though 
it should be noted that the problems of defining a robust ordering in all cases are as 
intractable here as in the case of outer boundary segments (section 3.2.3). This implies 
that an ordering of inner boundaries must be defmed purely in terms of intrinsic shape 
parameters. It is valid to order inner boundaries purely in terms of parameters such as 
number of segments, relative distance from outer boundary centroid, relative length of 
perimeter and so on. Such an ordering is not however very useful because of the high 
degree of symmetry in many engineering shapes. The most appropriate ordering of inner 

54 



Go 
----+---

Fig 3.18 Invariant representation of inner boundaries interms o!centriJid vectors GOG I 
and GOG2, linking inner and outer boundary centroids, and start point vectors G I8 1 and 
G282, linking inner boundary centroids and start points. 

o o 

o o 
Fig 3.19 Highly symmetrical objects where the most logical inner boundary ordering is 
qngular, as all have centroids virtually the same distance from the outer boundary 
centroid. The central inner boundary in the right-hand object would come at the end of 
the ordering sequence. 

55 



boundaries in shapes such as those shown in Fig. 3.19 is clearly by angle. All inner 
bound~ies are of essentially equal size, shal?e and .distance from the outer boundary 
centrOid; any attempt to order them by the mmute differences that might exist in these 
parameters would be totally counter-productive, as small changes in position - well 
within engineering tolerances - could lead to radical differences in ordering. 

This leads to an apparent paradox. One can easily specify an ordering direction 
(clockwise or antic1ockwise) for boundaries which are otherwise identical but how 
should the start boundary be specified? The problem can in theory be solved ht the same 
wa~ as fo: inner bound'!-fY P?sitions, by choosing a standard direction (such as the shape's 
major axIS, or start directIOn of the outer boundary start line), and ordering inner 
boundaries on the basis of the relative angle between this and the vector joining each 
inner boundary centroid to the outer boundary centroid. (Fig 3;20). Unfortunately, this 
procedure does not work for objects whose outer boundary is a complete circle, as no 
outer boundary direction can be defined. Nor does it work for the class of otherWise 
symmetrical shapes where the relative positioning of inner boundaries creates a clear 
distinction between otherwise equivalent start lines (Fig 3.21). For these shapes, the 
standard direction defining the relative ordering of inner boundaries cannot be 
determined without reference to the positions of those inner boundaries. 

There are two possible ways out of this paradox. Firstly, one could defme a measure of 
inner boundary configuration which is independent of the ordering of individual 
boundaries, such as the sum S of (length x angle) for all vectors joining inner and 
outer boundary centroids. This could be used to distinguish directly between alternative 
outer boundary start lines, by determining S independently for each candidate start line, 
and then choosing the start line giving the greatest value for this measure. Shapes whose 
outer boundary is a complete circle have to be treated as a special case. 

Alternatively, one could select each inner boundary in tum as candidate start boundary. 
This would then allow the remaining boundaries to be ordered by distance and angle with 
respect to the candidate inner boundary direction. Alternative inner boundary orderings 
could be compared, and a unique ordering selected, by successively comparing relative 
centroid distance, centroid angle, perimeter, start angle, etc of each boundary in the list 
until a difference emerges (Fig 3.22). If two or more orderings prove identical, the inner 
boundary configuration is symmetrical, and more than one candidate inner boundary 
direction has to be retained at this stage. 

If no outer boundary start direction can be defmed, this inner boundary standard direction 
becomes the standard direction for the entire shape. (If the inner boundary configuration 
is symmetrical, an arbitrary candidate direction can be selected). Otherwise, inner and 
outer boundaries are then oriented by recording the angle between outer boundary and 
inner boundary standard directions. If there is symmetry in either the outer boundary or 
inner boundary configuration of the object, each possible pair of alternative inn~r. ~d 
outer boundary standard directions has to be compared to select a defmItlve 
representation (Fig 3.23). 

3.3 Converting shapes to invadant form 

3.3.1 Overview 

To be of any real use, a shape retrieval system needs to be able to accept input from a 
wide variety of CAD systems. For reasons discussed in section 1.3, the most reliable way 
to ensure this is to base input to the system on a standard inter change format such as 
IOES. The problem of generating invariant shape descriptions of the kind described 
above can then be resolved into the following stages: 

(a) extracting geometric information from IOES-format fIles; 

56 



/ Sto.rt line 
/ 

~ 

06 05 
q 0 7 O2 

0 3 0 4 

Fig 3.20 For unsymmetrical shapes, a logical start direction for inner boundary 
ordering is provided by the outer boundary start direction. Here, inner boundary 1 has 
its centroid vector most nearly parallel to the start line; subsequent boundaries are then 
ordered as shown. . 

o o 
o o 

o o 

Fig 3.21 For shapes with symmetrical outer boundaries, no obvious start direction for 
ordering inner boundaries exists. Some alternative means is needed to select this start 
direction and hence the first inner boundary in sequence. 

57 



~ ~ t,· /~ Got GA ~ 
I 00 0 ( Ed ::J 

Fig 3.22 Resolution of inner boundary ordering problem by selecting each inner 
boundary in turn as candidate head of inner boundary list, and comparing alternative 
orderings of inner boundaries in terms of relative centroid distances and angles, and, if 
necessary, boundary size and shape. In case (a), inner boundary 1 takes precedence as 
distance GOG1 is greater than GOG2; in case (b), boundary 1 takes precedence because 
the angle G1GoG2 is less than any of the other angles between centroid vectors; in case 
(c), all centroid distances and angles are equal, but boundary 1's start angle is greater 
relative to its centroid vector than the other boundaries. 

A 

2Q --8 
B >- - D cf 1 

3 

C 

Fig 3.23 Comparison of candidate outer boundary start lines and inner boundary 
standard directions to yield canonical shape representation. The three possible inner 
boundary directions and four possible outer boundary directions are compared to find 
the pair giving the smallest difference in angles (in this case inner boundary 1 and outer 
boundary start line C). 

58 



(b) joining lines characterized in step (a) into connected boundaries; 

(c) generating a hierarchical description of each shape boundary using the rewriting 
rules described above; 

(d) converting these representations into invariant form. 

Each .of these steps was implemented as .a sep~ate program, as illustrated in Fig 3.24 and 
descnbed below. All programs were wntten ill VAX PASCAL running under VMS on 
Newcastle Polytechnic's VAX 8700. Note that a further step: ' 

(e) generating feature descriptions and loading complete shape descriptions into the 
shape database; 

is described in detail in chapter 4. 

3.3.2 Extraction of geometric information from IGES file 

Program IGES1RAN takes a standard IGES fIle as input, identifies all drawing lines of 
suitable type, and stores their end-points and other defming parameters in an intermediate 
line file (file extension .LIN) for use by subsequent programs. It ignores dimension lines, 
text, and most non-geometric data such as associativity or property definitions. 

The program reads the five sections of the IGES file in sequence: 

Start section - ignored. 

Global section - drawing filename, name of CAD system generating the drawing, 
drawing scale and resolution are extracted from input parameters for transfer to the 
output line file. 

Directory section - each pair of directory entity (DE) records defining a drawing object is. 
scanned. If the object is denoted "geometric" and "visible" on the input record, and is of 
acceptable type, a temporary record is created in main storage. The following IGES 
entity types are currently accepted - 100 (circular arc), 102 (composite data), 106 
(copious data), 110 (straight line), 124 (transformation matrix), and - for input from the 
DOGS system only - one subclass of 406 (property). All other entity types are ignored. 

Parameter section - each entity defmed by a DE record pair will have one or more 
corresponding parameter entity (PE) records in this section. All PE records are read in 
sequence; where they match with the temporary records for accepted entities created 
above, appropriate line records are created, specifying both line type and defining 
coordinates. 

Terminator section - Counts of accepted and rejected drawing entities are displayed, and 
"expected" and "recorded" recoid counts compared. If the input file is valid, appropriate 
header and line records are written to the line fIle. 

3.3.3 Joining boundary lines 

Program LINEJOIN takes as input the line file created by IGESTRAN, rejecting any 
lines shorter than a specified threshold and merging any overlapping lines, and groups all 
contiguous lines into boundaries. Sequences of line segments forming closed boundaries 
are written to a boundary file (extension .BND). 

59 



IGES transFer File 

line file (extension ,LIN) 

Boundary file CBND) 

SegMented File CSEG) 

Co.nonieo.l sho.pe tile CCAN) 

Fig 3.24 Data flow diagram showing the four stages in converting IGES format input 
drawings into invariant shape representations. 

60 



The program first reads in the entire line file, building up a two-way linked list of 
qualifying line records. A line record qualifies for inclusion if (a) its length is greater than 
a pre-set threshold tolerance (currently taken as 1000 x drawing resolution), and 
(b) it does not touch or overlap any existing lines following paths defined by the same 
equation. Lines below threshold length (which are usually remnants of deleted drawing 
features) are simply rejected. Contiguous or overlapping lines following identical paths 
(common in drawings constructed by copying or mirroring, as discussed in section 2.5.1) 
are merged, as illustrated in Fig 3.25. For all accepted lines, maximum and minimum x
and y-coordinate values are calculated. 

When all valid lines have been read in, the program attempts to group as many as 
possible into complete boundaries, on the basis of the following algoritlun: 

Find the ungrouped line record with the lowest minimum X-coordinate 
value (resolving ties using the lower minimum Y-coordinate). Denote 
this the boundary start line; 

While a start line can be found do 

Beqin 

Create a new boundary header record, detach the start line 
record from the "ungrouped" list and link it to the boundary 
header; 

Record start and finish coordinates of boundary, and success at 
finding matching line; 

While the boundary list is incomplete (i.e. start and finish 
coordinates unequal) and matching line successfully found do 

Beqin 

Search the list of ungrouped line records for lines whose 
start or finish coordinates match those of the ends of the 
growing boundary; 

If a matching line can be found then 

Detach this line from the ungrouped list and link it to the 
appropriate end of the growing boundary list 

else 

Record failure to find a matching line 

End; 

Find a new boundary start line as before 

End 

To allow for errors in drawing, end-coordinate matching criteria are progressively 
relaxed if no exact match is found; if an approximate match is found, line and boundary 
end-points are adjusted accordingly. 

61 



/ 
/ 

/ 
/ 
(~ 

( 

) / 

) 

Fig 3.25 Merging of contiguous or overlapping lines from the original drawing to 
generate single line segments - each represented by a single record. Line segments were 
considered for merger only if both were straight lines with identical angle and distance 
from the origin, or both were circular arcs with identical radius and arc centre 
coordinates - within specified tolerances. 

62 



When all available lines have been grouped into boundaries, all complete boundaries are 
writte.n to the bound.ary fIle, in the order in which t~ey were created. With the given 
~omam of shapes,. thIS means ~hat the. outer. b~)Undary IS always stored first, followed by 
mner boundarIes m order of mcreasmg rrurumum X-, then y-coordinates. Within each 
boundary, the header record is always written first, followed by the line records for the 
starting se~ment (the segment with min~um X-, then y-.coord.inat~s), then all remaining 
segments m order of boundary traversal m the appropnate drrectlOn (anticlockwise for 
outer boundary, clockwise for inner boundaries). The primary defIDing parameters for 
each line segment (length, curvature and discontinuity angle) are calculated and stored at 
this stage. 

3.3.4 Uncovering underlying shape 

Program SKELETON takes as input the boundary file created by LINEJOIN, applying 
the rewriting rules described in Section 3.2.3 to reduce lines defIDing comer and midline 
features to subordinate status, generating a hierarchical representation of each boundary 
which can be traversed at different levels. This representation is stored in a segment file 
(extension .SEG). 

The program operates on each boundary in tum. Firstly, it builds up a two-way linked list 
of all boundary segments in order, and then scans the boundary to ensure that no line 
segments remain fragmented. It is important that this step precedes shape hierarchy 
generation, because preconditions for recognizing shape features all involve comparing 
the relative lengths of lines forming and enclosing potential shape features. The boundary 
is scanned once; if any neighbouring line segments are found to have discontinuity angles 
and normalized differences in curvature less than a specified threshold, a new parent 
record is created for the merged line, and linked into the boundary segment list (Fig. 
3.26). Records for individual line fragments are retained as child records to the new 
parent. This ensures that the representation remains information-preserving. 

The program then builds up a hierarchical description of the boundary shape. It creates 
new header records, as shown in Figs. 3.27 and 3.28, to represent the extended lines 
generated by the shape rewriting rules illustrated in Figs 3.9 and 3.10, and links them to 
existing records with parent and child pointers. All drawing lines are examined in tum, 
starting with the shortest, according to the following algorithm (NB - the term shortest 
here has the obvious meaning only if one line is shorter than all others by more than a 
specified tolerance. If two lines of essentially equal length are found, the shorter is 
defmed by examining each candidate's successor lines (found by following the chain of 
next pointers from each line) until a difference in length is found, or the entire boundary 
has been traversed): 

Mark all boundary segments 'unexamined', with level no = 1. Find 
the shortest unexamined line (if any) and mark it 'examined'; 

While a new 'shortest' line can be found do 

Beg.in 

Attempt to process shortest line as (part of) a potential corner 
feature; 

If no shape feature discovered then 

Attempt to process shortest line as (part of) a potential 
midline feature; 

63 



Dro.Wing lines: 

H 

> 

Interno.l represento. tion: 

" 
---- -

/ / 
I 

H ~ 
,-
I 

'\ 
I 
I 

\ \ 
\ 

\ - \ 
\ 
\ I 
\ '-.. 
I / --I '\ 

/ 

~ 
........ 

'\ 

L2 \ 

Key to painters: 

NEXT ) PREVIOUS - - -) PARENT - - ) CHILD -----) 

Fig 3.26 Replacement of contiguous lines of similar curvature with single "parent" 
record, a symmetric circular arc inheriting start and finish coordinates and start 
direction from "child" segments (which then determine parent segment's length, 
curvature and discontinuity angle), 

64 



Dro. wing lines: 

Ll --------, Hl -------=-----. 

> 

Interno.l represento. tion: 

IL 

..- --/ -....... " / / "-/ 
I 

I , 
I 
\ , \ , 

/ -- " IL Ll \ 

r 
Key tc pOinters: 

NEXT > PREVIOUS - - -> PARENT - - ) CHILD -----) 

Fig 3.27 Creation of additional "parent" records to implement corner shape rewriting 
rules illustrated in Fig. 3.9. Parent records HI and H2 are linked into the Next and 
Previous pointer chains in place of L I and L 3. 

65 



Drawing lines: 

H 

> 
,~----~--------~, 

/ " / , 

Internal represento. tion: 

( " k! Ll 
\ 

( r ~ -Ll , " 
L2 

\ r L3 

" 

Key to painters: 

NEXT > PREVIOUS - -7 PARENT - - ) CHILD -----) 

Fig 3.28 Creation of additional "parent" record to implement midline shape rewriting 
rules illustrated in Fig 3.10. Again, parent record H is linked into the Next and Previous 
poimer chains in place of L 1 and L 3. 

66 

\ 



Find the next shortest unexamined line (if any) and mark it 
'examined' 

End 

~ e~ample of t~e type o.f hierarc?y produced is shown in Fig 3.29. The process of 
buildmg up the hierarchy IS complIcated by the need to ensure that the final structure 
produced is as far as possible independent of the order in which segments are processed. 
Even though a strict. "sh?rtest first" order. is s~ec~fied, similar: but ll<?t identical shapes 
such as those shown m FIg. 3.30 need to YIeld similar-shaped hierarchIes of header lines. 
The most effective way to achieve this was found to be to limit the creation of new 
records to cases where positional information would otherwise be lost. 

Consider the case shown in Fig. 3.31. Because the header record created at one step 
encloses a comer or midline feature at the next, automatic creation of new header records 
every time a rewriting rule is invoked can lead to an unwieldy pyramid of header records. 
Worse still, the resulting structure is completely dependent on the order in which 
segments are processed. 

If the creation of new header records is limited to cases where the coordinates of an 
intermediate point would otherwise disappear (Fig 3.32), a much more manageable 
structure results. First, such a structure is the minimum required to allow traversal of a 
shape boundary at any desired level. Since a new header record is created only where a 
point coordinate would otherwise be lost, one of its end-points must always contain 
unique information. Removal of any header record from the structure would therefore 
prevent traversal of the boundary at one or more levels, Secondly, such a structure is 
much less sensitive to the actual order in which line segments are processed - as shown in 
the example in Fig 3.33. An algorithm reliably yielding the minimum set of header 
records should generate this same set, whichever order of processing is chosen for the 
line segments. 

The following algorithm was therefore devised to process comer features. It tests whether 
the shortest currently unexamined line, indicated by the pointer Shortest, enclosed by 
lines First and Last, is a potential comer feature. If so, it creates new header records 
Head1 and Head2, which are added to the hierarchy if First and Last contain unique 
coordinate information, but which replace First or Last otherwise. LenRatio is a constant 
normally set equal to 1. 

Set First to indicate the line preceding Shortest, Last the line 
following it, and indicate no shape feature discovered; 

While no shape feature discovered and number of lines separating 
First and Last is less than 3 do 

Begin 

Repeat 

If First and Last would meet at a suitable angle when extended 
(e.g. between 30 0 and 150°), and appropriate qualifying 
conditions are met, e.g: Headl must be longer than First * 
LenRatio, Head2 must be longer than Last * LenRatio, total 
length of line segments between First and Last must be less 
than LenRatio * (Headl + Head2) then 

Indicate shape feature discovered; 

67 



1 8 1 

2 5 7 ) 2 7 

4 6 4' 6' 

3 3 

l' l' 

2 
7' 

2 ) 7" 
41 6

1 

3 3' 

I I I 
I 

I 
l' 2 3' 7/1 

I I I I I I 
1 3 4' 6' 7' 

h I h 
4 5 6 7 8 

Fig 3.29 Hierarchy of line levels produced by repeated application of the shape 
rewriting rules described above. In theory, it should be possible to traverse such a 
structure at any given level - though in practice this is possible only where the 
application of the rules is strictly controlled. See Figs 3.31 and 3.33 below. 

68 



5 l' l' 

1~ 
10 12 12 10' 

(b) 
5 l' l' 

1~ 
10' 

I I 
l' 10' 

I I I ! I I I I I I I I 
1 2 3 4 5 6 7 8 9 10 11 12 

Fig 3.30 Need for similar shapes to generate similar hierarchies of intermediate level 
lines. In both cases, processing needs to yield two top-level lines (1' and 10'), irrespective 
a/whether constrllction a/the hierarchy begins between lines Z & 5, 5 & 9, or 10 & 12. 

69 



8 7 5 3 2 7 3' 7' 
L2J 3' 

9ril A rI A I II' > 9 l' > 9' .. 

1 1 
9r11 B r 3/1 3/ ") 

II' B )9,1 
II' >9 

Hiero.rchy yielded by route 

A: B: 

I I 
l' 3" 9' l' 3'" 9' 

n I I 
I I I I I I 

h I 
3' 4 5 6 7' 9 3" 8 9 
I h 

1 2 3 7 8 2 3' 

I I I I 
3 4 5 6 7 

Fig 3.31 Unrestricted creation of header records when applying rewriting rules can lead 
to problems. Two alternative sequences of rewriting can yield markedly different 
hierarchies of inter mediate level lines, even though the top-level structure is the same in 
each case. In neither hierarchy is it obvious how traversal at intermediate line levels (see 
Figs 3.11 and 3.12) is supposed to be achieved. 

70 



(Q) 
) 

(b) 

(c) 
L2 H2 H2 

L'IIL3 
) Hli ) H1( lH3 

(d) 

L2 L3 H2 H2 

Lf~~ ) HII ) HI 

Fig 3.32 Illustration of rules for limiting the creation of new header records. In cases (a) 
and (b), flew header records are created at each stage to prevent loss of information on 
the position of line segment end-points. lit case (a), new header records HJ and H2 are 
created because extending LJ and L; till they met '.vould lose the original end coordinates 
of LJ and the original start coordinates of L2· A similar argument applies to both steps of 
case (b) - information on the position of lille end-paints is lost unless two levels of header 
record are created. 

In cases (c) and (d', existing header records can be extended without loss of information. 
III both cases. header H: can safely be extended at step 2 without losing information on 
its original end coordinates. as these are identical with those of line L2. 

71 



8 7 5 3 2 8 7 5 3' 7' 

9/11 A)9i11' A )9,1 
1 

8 3' 2 

B r 3' 

9111 11' B )9,1 )9 

Hiero.rchy yielded by either route: 

I 
I' 

h 
3' 

I I 

I 
9' 

123456789 

W 3' 

11' 
1 

3' 

11' 

Fig 3.33 Limiting creation of header records as specified above yields a hierarchy which 
is both more compact and less sensitive to the order in which rules are applied. Here. 
sequences A and B both yield the same hierarchy. which can clearly be traversed uf just 
two levels. 1'-3'-9' and 1-2-3-4-5-6-7-8-9. 

72 



Create new line records Headl and Head~, ex~e~s~c~s c~ ~~~s: 

and Last respecti?ely, such ~hat s~a~~ :c:~d~~a~es c~ ~i~s= 

coincide with those of Headl, finish :c:~d~~a~es o~ ~as: 
with those of Head2, and ~inish ccord1na~es of Headl W~~~ 

start coordinates of Head2; 

!1ark Headl as the parent of First and al':' ~nte~:-:-.ed~a~e 

records, and Head2 as the parent of Las:; 

If finish coordinates of First are ldentica':' to finis~ 
coordinates of its last child record then 

give Headl the same level no as First and ~e~':'ace F~rs: 

by Headl in the line segment hierarchy, marking Head~ as 
the parent of all First's child records 

else 

give Headl a level number 1 higher than First, and reta~n 
both Headl and First in the line segment hierarchy; 

If start coordinates of Last are identical to start 
coordinates of its first child record then 

give Head2 the same level no as Last and replace Last by 
Head2 in the line segment hierarchy, markln~ Head: as the 
parent of all Last's child records 

else 

give Head2 a level number 1 higher than Last, and retain 
both Head2 and Last in the line segment hierarchy 

else 

Replace First and Last by their predecessors 

Until shape feature discovered or Last = Shortest; 

Replace Last with its successor 

End 

Similarly, the following algorithm was devised to process midline features, testing 
whether the shortest currently unexamined line is a potential midline feature. If so, it 
creates a new header record Head, which is added to the hierarchy if First and Last both 
contain unique coordinate information, but which replaces First or Last (or both) 
otherwise: 

Set First to indicate the line preceding Shortest, ~ast the lii.e 
following it, and indicate no shape feature jiscc""ered: 

While no shape feature discovered and number of lines se~a~a-::~:-.:; 

First and Last is less than 5 do 

Begin 



Repeat 

If First and Last can be described by the same equation, and 
the total length of all line segments between First and Last 
is less than LenRatio * (the length of Head) then 

Indicate shape feature discovered; 

Create new line record Head, such that start coordinates of 
First coincide with those of Head and finish coordinates of 
Last with those of Head; 

Mark Head as parent of First, Last and all intermediate line 
records; 

If start coordinates of Last are identical to start 
coordinates of its first child record then 

give Head the same level no as Last and replace Last by 
Head in the line segment hierarchy, marking Head as the 
parent of all Last's child records; 

If finish coordinates of First are identical to finish 
coordinates of its last child record then 

give Head the same level no as First and replace First by 
Head in the line segment hierarchy, marking Head as the 
parent of all First's child records; 

If neither of these conditions holds then 

el.se 

give Head a level number 1 higher than First and retain 
Head, First and Last in the line segment hierarchy 

Replace First and Last by their predecessors 

Until. shape feature discovered or Last = Shortest; 

Replace Last with its successor 

End 

Some results of these algorithms are shown in Figs 3.34 and 3.35. Note that additional 
qualifying restrictions on comer features have been added to produce an intuitively more 
"natural" performance with a wide range of shapes, and to reduce dependence on order of 
processing. For example, comer features which would spoil later discovery of midline 
features are inhibited, and comer features bounded by curved lines or acute-angled 
straight lines are inhibited if they would spoil features bounded by right-angled straight 
lines. 

Finally, the entire sequence of line records is written to file, using a recursive procedure 
which stores each line segment record at a given level, followed immediately by its child 
records, to whatever depth is required. The procedure records and stores the depth of 

74 



I' 

I I I I I 
2 3 4 5 6 

1" 

I 
I' 3' 5' 

7' 

I I I I I 
7 8 9 10 11 12 

I 
10 

I I 
7' 9' 11' 

h h h h I h 

> 

13' 

I I I I I I 
13 14 15 16 17 IB 

I 
11" 

I 
13' 15' 17' 

19' 

I I I I I I 
19 20 21 22 23 24 

I 
20 

19' 

h h h I 
123456 7 8 9 11 12 13 14 15 16 17 IB 19 

Fig 3.34 Multi-level representations of some test shapes, illustrating line segment 
hierarchies. The hierarchy can be traversed at any given level using the algorithm 
outlined in Section 3.2.3. 

75 



(oJ 

Fig 3.35 Cases illustrating needfor additional restrictions on rewriting rules - (a) where 
line segment could either form part of a corner feature or a midline feature, midline 
feature is preferred; (b) where diagonal segment between perpendicular line segments 
could yield either triangular or rectangular overall shape, rectangular is preferred. 

x x 

Fig 3.36 Triangulation of a boundary to calculate the position of its centroid. The 
centroid coordinates and area of each triangle or circular arc segment making up part of 
the shape enclosed by the boundary are calculated by appropriate formulae; moments 
are then taken to find coordinates of overall boundary centroid Go. Point G' can be 
selected arbitrarily, as its position has no effect on the final result. 

76 



nesting, so that each stored line record contains two level numbers, as discussed in 
section 3.2.3; Eb' the (bottom up) level number assigned during construction of the 
feature hierarchy, and Et, the (top-down) level number assigned at storage time. 
Together, these level numbers permit easy traversal of the shape boundary at any level. 

3.3.5 Generating canonical representation 

Program CANONGEN takes the segmented boundary representations from the segment 
file created by SKELETON, converts each boundary representation into canonical form 
calculates the relative positions of inner and outer boundary centroids, sorts inne; 
boundaries into a standard ordering, transforms the spatial relationship of inner 
boundaries into invariant form, and normalizes all lengths and directions in terms of outer 
boundary perimeter and major axis. 

3.3.6 Outer boundary representation 

The program first processes each boundary in sequence, reading the line segments 
making up each boundary into a two-way linked list, and validating each list by checking 
that it forms a closed boundary at whichever level it is traversed. The x- and y
coordinates of each boundary centroid are calculated as shown in Fig 3.36. The fust step 
in converting each boundary into canonical form is then taken, by selecting a defmitive 
start line, using the following algorithm: 

Choose an arbitrary top-level line segment, denote it StartLine, 
and mark it as a potential start segment. Find the next top-level 
line in the list and denote it CurrentLine; 

Whi1e a new CurrentLine can be found do 

Begin 

Set SL = StartLine, CL = CurrentLine, current level to 1, and 
action required to "unknown" {other legal values are "replace 
start line", which marks CurrentLine instead of StartLine as 
start segment, "add start line", which marks CurrentLine as we11 
as StartLine as start segment, and "no action required"}; 

Whi1e action required unknown do 

Begin 

Repeat 

Case of chord length of line CL 
> SL: replace start line 
< SL: no action required 
= SL: 

Case of length of line CL 
> SL: replace start line 
< SL: no action required 
= SL: 

Case of arc angle of line CL 

77 



> SL: replace start line 
< SL: no action required 
= SL: 

Case of discontinuity angle following line CL 
> SL: replace start line 
< SL: no action required 
= SL: replace CL and SL by their successor lines 
at current level; 

Unti~ current action known or boundary completely traversed at 
current level; 

Increment current level; 

If no more levels to traverse and action required not yet 
known then 

add start line 

End; 

Replace CurrentLine by its successor 

End 

This procedure always yields a unique start line unless the boundary possesses rotational 
symmetry - a boundary with n-fold symmetry will yield n potential start lines. If the 
shape as a whole contains unsymmetric features, the position and orientation of other 
boundaries is used to choose between candidate start lines, as outlined below. If not, 
choosing any of the candidate start lines will yield an identical representation of the 
boundary; the program therefore selects the first candidate start line it encounters. 

3.3.7 Inner boundary representation 

When all individual boundaries have been cast into canonical form (individual inner 
boundaries are processed in exactly the same way as the outer boundary), the program 
attempts to define an inner boundary standard direction, and canonical ordering of inner 
boundaries. The length and direction of each inner boundary's centroid vector (Fig. 3.18) 
are fIrst calculated and stored. The inner boundaries are then sorted into a provisional 
order, by decreasing centroid vector length. 

Drawings with zero or one inner boundaries are treated as special cases. Otherwise, the 
program then attempts to create one or more (if symmetric) canonical boundary 
orderings, as follows: 

Choose the first boundary on the provisional boundary list, and 
define Uni tDir as the direction of this boundary I s centroid vector; 

Create a new temporary listing of the remaining inner boundaries, 
following the provisional ordering except that a group of 
boundaries whose centroid distances differ by less than a given 
tolerance are instead sorted by (CentroidAngle - UnitDir). Adjust 
inner boundary start lines/start directions where necessary to 
minimize angle between UnitDir and start direction; 

78 



Denote this listing the 'current candidate list'; 

Attempt to find another candidate boundary to head the inner 
boundary list (i.e. another boundary with centroid distance within 
the given tolerance); 

While another candidate boundary can be found do 

Begin 

Create a temporary listing headed by the new candidate boundary 
as specified above; 

Compare each boundary in the new listing with the corresponding 
boundary in the current candidate list, using the following 
parameters in turn until a difference emerges or all parameters 
have been compared: centroid angle, centroid distance, 
perimeter, no of segments, max no of levels, start angle, then 
chord length, arc length, arc angle and discontinuity angle of 
each line segment at each level; 

Case of the value of the discriminating parameter in the new 
list relative to that in the current list (with the exception of 
centroid angle, where actions are reversed) : 

Greater: Replace the current li.st with the new list 

Less: Discard the new list 

Equal: Retain both old and new lists; 

Attempt to find another candidate boundary to head inner 
boundary list 

End 

The procedure tenninates yielding one or more (equivalent) orderings of inner boundary 
records. In the first of the three examples shown in Fig. 3.22, it creates one list headed by 
boundary 1, adds boundary 2. to that list, then terminates. The final inner boundary 
direction is thus that of the vector GoG I' In the second example, three candidate lists 
would be generated (1-2-3, 2-3-1, and 3-1-2); list 2-3-1 would then be compared 
boundary by boundary with list 1-2-3, and the second list rejected because boundary 3 
has a larger centroid angle (relative to the list header, boundary 2) than boundary 2 
(relative to its list header, boundary 1). Similar considerations cause rejection of the third 
list. 

Once defmitive ordering(s) of inner boundaries have been generated, the fmal resolution 
of inner and outer boundary directions becomes possible. Again, a number of special 
cases need to be treated - where no inner boundary is present, or there is a single inner 
boundary with zero centroid distance, inner boundary standard direction is set equal to 
the start direction of the outer boundary start line. Conversely, if no outer boundary start 
direction can be defined (because the outer boundary is a complete circle), outer 
boundary start direction is set equal to inner boundary standard direction. If both inner 
and outer boundaries are unsymmetric, the outer boundary direction is uniquely defined 
by the start direction of its start line, and inner boundary direction by the centroid vector 
of the frrst inner boundary. Otherwise, each candidate (outer boundary startline )/(inner 

79 



b~)Undary list header) pair has to be compared t~ fmd the combination giving the smallest 
differ~nc~ between mner and outer boundary duections. In the example from Fig. 3.23, 
combmatlons AI, A2, A3, BI, B2, B3, etc are successively tested to fmd the one where 
directions are most nearly parallel. 

Once final inn~r aI?-d outer boundary directions are established, the chosen inner 
boundary ordermg IS made permanent, and inner boundary start angles/start lines 
adjuste? where. necessary to reflect the final direction chosen. All lengths and angles are 
normal~ed WIth reference to outer boundary perimeter and standard direction 
respective1 y. 

3.4 Efficiency considerations 

All the algorithms described here appear to be polynomial-bounded. IGESTRAN 
perfo~ a sequential read of all DE records from the input IGES file, creating temporary 
records m ~am storage, then reads all PE records in sequence, matching them with the 
corresponding temporary records and creating new combined records. Provided DE and 
~E records are ~orted in the same. way in the input file (as they should be), this is a purely 
lmear process, I.e. O(n), where n IS the number of records in the input IGES fIle. 

The most processor-intensive routine within LINEJOIN is probably that of growing new 
boundaries. Each time a new segment is added to a boundary, a search has to be made 
through all unattached segments to identify the correct line to add to the growing 
boundary. In the worst case, this would involve n(n-l )/2 comparisons, where n is the total 
number of line segment records input - an O(n2) process. 

SKELETON builds up its shape feature hierarchy by successively examining each 
boundary segment in order of increasing length. The process of comparing line pairs 
surrounding the current shortest segment, and generating one or more header records 
where appropriate, is lengthy, but independent of the number of boundary segments n 
except for very small values of n, since an upper bound is set on the number of candidate 
header pairs examined in each case. Each time a new header record is created, these 
comparisons have to be repeated at the next higher level. The total number of 
comparisons performed for any given boundary is thus a function not only of the number 
of segments it contains, but also of its shape feature content, in terms of the number of 
header records generated. 

In the "best" case, where no shape features are detected, analysis is simple - precisely n 
comparisons are made. In the "worst" case, every segment in the original boundary 
becomes subsidiary to a higher-level segment, every segment at this level becomes 
subsidiary to a yet higher level, and so on. Since in this case each level can never contain 
more than half the number of segments of the level below, the total number of segments -
and hence comparisons - cannot be greater than 2n. In intermediate cases, the situation is 
harder to determine, though it would appear reasonable to regard the algorithm as O(n), 
where n is the total number of line segment records input. (One could argue that since the 
boundary is fust searched to fmd the shortest segment, it is strictly an O(n2) process. 
However, the amount of processing required to fmd the shortest line is trivial compared 
with that required for examining candidate header segments for the size of drawing 
handled here). 

Finally, CANONGEN identifies unique boundary start lines by comparing segme~t 
sequences starting from each pair of candidate start lines in tum. In the worst case, th~s 
could involve comparing n segment pairs in each of N candidate sequences, where n IS 

the total number of segments making up all levels, and N the number of top-level 
segments. This is essentially an O(n2) process. Generating a standard ordering of inner 
boundaries involves setting up and comparing a number of provisional orderings, each 
starting with a different candidate start boundary. In the worst case (n inner boundaries, 

80 



all the same. distance fr?m the outer boundary ce~troid), this would involve setting up 
and companng n candidate. ordered boundary lists, each generated using a simple 
exchange sort (an O(n2) algonthm). The overall process here is thus O(n3). 

Typical cpu usage figures for each of these programs as implemented on a VAX 8700 are 
presented in table 3.4.1 below. To obtain these figures, each program was run with 
representative "simple", "average': and "complex" drawings, identified by ranking input 
fIles b~ the number of relevant mput co~ponents, and selecting input drawings with 
percentile, ranks .of 10, 50 and 90. re.spectlvely. The figures, produced by accessing the 
processor s real-tune clock from WIthin the program, should be treated with some caution 
since they r~present total cpu us.age for the current process, including all transfer of dat~ 
between mam storage ~d backing stor~, whether requested by the application program 
or caused by the operatIng system pagmg out blocks of memory to allocate to another 
process. This latter effect was minimised by running all jobs in batch mode at times when 
the machine was known to be lightly loaded, but could not be totally eliminated. 

Table 3.4.1 - cpu usage for translation programs 

Drawing No of CPU usage (s) 
comp- input 

lexity records* processing+ total 
Program name 

IGESTRAN Simple 74 0.15 0.25 
Average 135 0.28 0.38 
Complex 331 0.66 0.80 

LINE JOIN Simple 11 0.01 0.08 
Average 25 0.04 0.15 
Complex 64 0.10 0.20 

SKELETON Simple 8 0.02 0.12 
Average 17 0.04 0.13 
Complex 44 0.09 0.18 

CANONGEN Simple 11 0.02 0.10 
Average 24 0.03 0.13 
Complex 52 0.04 0.15 

*parameter has slightly different meaning for each program; for 
IGESTRAN, it represents no. of fixed-length aO-character records in 
IGES transfer file; for remaining programs, it represents no. of line 
segment records in intermediate .LIN, .END, or .SEG transfer files 

+excluding cpu time for opening and closing data files 

Program IGESTRAN was on average the greatest user of cpu time, largely because of the 
sheer volume of data forming the average IGES-fonnat transfer fIle. CPU usage figures 
for all programs appear consistent with predicted overall complexities. 

3.5 Concluding remarks 

This chapter has described in detail the shape repres~ntation I?-ethods adopted for the 
prototype version of SAFARI, and the processmg requIred to generate such 
representations from drawings input in standar~ IGES f?nnat. The method can be 
distinguished from those adopted by other authors m two mam.respects: ~a) ~e use of the 
concept of the boundary level, allowing each boundary to be vIewed at differmg levels of 

81 



detail, (b) the specification of a standard ordering for shape components, to generate a 
unique representation for each shape. 

There are however a number of limitations on the extent to which such system objectives 
can be achieved in practice. The most important of these are as follows: 

(a) Drawings must be expressed in IGES format, using only the limited domain of 
geometric entity types specified in section 3.3.2. This is not an inherent limitation of 
the method and could readily be overcome by enhancements to the initial translation 
module IGESTRAN. 

(b) Some limited drawing inaccuracy can be tolerated - the boundary segment joining 
module LINEJOIN can recognize lines as contiguous if their end-points lie within a 
specified tolerance, and the hierarchy builder SKELETON similarly allows line 
segments to be recognized as collinear or concyclic within specified tolerances. The 
default tolerances used (0.01 drawing units with LINEJOIN, 0.01% of the outer 
boundary perimeter with SKELETON) are more than ample to cope with any 
possible inaccuracies in a professionally-produced drawing. However, they cannot 
be relaxed indefinitely without producing spurious effects, and the method may fail 
on drawings produced by untrained draughtsmen. 

(c) The hierarchy builder SKELETON fails to yield satisfactory results with some types 
of highly-recursive shape such as that shown in Fig 3.37, where some parts of the 
boundary generate four or more levels of description, and others only one or two. A 
valid hierarchy is built, but cannot be traversed· at all levels by the simple algorithm 
outlined in section 3.2.3. 

(d) As discussed in sections 2.3 and 3.2 above, the canonicalization module 
CANONGEN cannot generate a unique shape representation which is completely 
robust to an arbitrary small change in shape parameters in all cases. 

While such limitations may restrict the system's scope, it is not considered that they. 
invalidate its overall approach in any way. The ultimate test of the usefulness of these 
shape representation techniques is the retrieval effe~tiveness of th~ entire SAP ~ 
system, which can be empirically measured - a subject developed ill more detail ill 

chapter 8. 

82 



Fig 3.37 An example of the type of highly-recursive shape where the hierarchy 
generated by SKELETON cannot reliably be traversed with the standard algorithm used 
by later program modules. 

83 



CHAPTER 4. RETRIEVAL FEATURES 

4.1 Introduction 

To provide an engineering database with the capability of retrieving objects on the basis 
of shape.' it is clearly .necessary to identify a ~et of sh~pe features whose presence or 
abs~nce m stored drawTI?-gs can be us<:d as a b~lS for retneval. Selection of such a feature 
s~t IS one of the most difficult tasks m the desIgn of any retrieval system, and is doubly 
difficult here. because of the lack of ~y body of past queries to provide possible clues. 
The overall aIm of the process can easily be formulated - to define a set of features which 
allows optimum system performance, in terms of ability to provide relevant answers to 
all possible user queries to any given collection of stored data. This aim is unfortunately 
of limited usefulness, as it requires a detailed analysis both of the structure of every 
collection of data to be housed, and of the queries to be put to the database. Since this is 
impossible to establish in advance, one has in practice to be content with the lesser aim of 
identifying features of use in answering a finite set of queries put to a finite set of stored 
data. This does however raise important questions about the degree to which it is possible 
to generalize from the results of a study such as this - see Chapter 8, below. 

In one sense, the procedures outlined in chapter 3 have already yielded a useful set of 
retrieval features - the boundary segments themselves. Each of these represents part of 
the total structure in a form invariant to translation or rotation, and invariant to scaling if 
a suitable reference length (such as boundary perimeter) is available. Some retrieval 
capability is possible even if no further feature extraction is performed: when objects are 
represented in canonical form as an ordered list of segments, the use of suitable matching 
algorithms allows the user to search for objects which exactly match query objects in 
whole or in part. As the following section's discussion will show, however, us~rs' 
retrieval needs are likely to be much wider than this. There needs, for example, to be a 
facility to recognize a slot whatever its dimensions, and also to identify a part as 
rotational or non-rotational. Simple segment matching cannot provide this. Some feature 
extraction method needs to be devised which can extract a range of shape features of use 
in retrieval from 2-D (and preferably 3-D) object representations, reliably and reasonably 
efficiently. This problem is unlikely to be solved within the compass of a single project, . 
as it is essentially iterative. Only when a workable shape retrieval system has been 
developed it is possible to build up and analyze a representative body of queries from 
which future shape features can be derived. 

4.2 Possible sources of shape features 

4.2.1 Manual parts classification codes 

Parts classification codes such as the Opitz code are at present the only practical means 
of providing shape retrieval for engineering drawing.s, and ~ such deserve ~lose s~dy as 
indicators of the types of shape feature that are consIdered lffipo~ant by desI~n ~ngmeers 
and process planners. The Opitz code, fo~ exampl~, charactenzes parts 'p~CIpally by 
overall shape, classing them either as rotational (denve~ f!om a ba~Ic cylmdrI~al shape) 
or non-rotational (derived from a cuboid). It then subdiVIdes rotational parts mto three 
groups on the basis of length/diameter ratios. and non-rotational parts .on the ~asi~ of 
length/width/depth ratios, with additional classes for shapes th~t ~e neIther cylmdrical 
nor cuboidal in origin. Whatever the overall shape, the code also mdicates the pres~nc~ of 
detailed shape features, including major internal machin<:d features such as prmClpal 
bores, internal grooves or screwthreads, and external machined features such as external 
grooves and slots. 

One problem from the point of vie~ of automatic: ~hape analysis is that the Opitz code 
clearly distinguishes between functIOnal and auxilIary machined features - the former 

84 



being an .essential d~tenninant of the component's fitness for its intended purpose. While 
an expenenced engmeer wo~d have. little difficulty in distinguishing between the two 
types. of feature, h~ would m pr~ctI~e be u~ing .(implied) information about a part's 
functIOn as well as Its shape to asSIgn ItS classificatIon code. Such information would not 
be readily available to an automatic shape analysis program, suggesting that the task of 
emulating the manual classification process could prove difficult. 

While alternative ~oding .systems. such as Brisch or MICLASS differ in some important 
r~~ects fron: O~Itz,. theIr selectIon of shape features for classification is remarkably 
SImilar. The Imp~IcatIOn f~r ~e present study would thus seem to be that it is important 
bot~ to ~hara<:tenze an object s ~verall shape (rotational or non-rotational, plus ratios of 
major dimenSIOns), and to specify the nature and shape of machined features such as 
groo,:es, slots or auxilia;y holes. Because of the difficulty of distinguishing between 
functIOnal and non-functIOnal shape features, there would seem to be little advantage in 
trying to incorporate any of the more detailed aspects of such classification systems. . 

4.2.2 Feature names 

A study of the names that engineers use to identify machined features could in principle 
identify additional retrieval features. As discussed in Section 1.5 above, language can be 
a useful pointer to the way engineers think about design and manufacture. Although few 
such terms have rigid deimitions, and (as observed above) there is little control over 
synonyms, such terms might provide an additional indication of features considered 
important for retrieval. Unfortunately, glossaries of such terms are not readily available -
a problem already encountered by Patel (1985), who devised his own list of terms (shaft, 
flange, bush, slot, groove, etc), most of which could be associated with particular 
manufacturing processes. This approach was therefore not considered sufficiently fruitful 
to be worth pursuing further in the present project .. 

4.2.3 Automatic pattern recognition 

Industrial machine vision systems, which aim to recognize components on conveyor belts 
or in storage bins, have many parallels with. the present project. They need to be able to 
identify the type and possibly orientation of all components present in a given digitized 
2-D image, even where some of the components are partially occluded by other objects. 
This is normally achieved by extracting suitable features from each object detected in the 
image, and comparing extracted feature values with reference values for each component, 
a process very similar to shape retrieval. Such systems are therefore a potentially 
valuable source of possible features. 

Chin and Dyer (1986), reviewing the whole field of pattern recognition for robot vision, 
distinguish three types of feature: 

1. Global features, characteristic of the shape as a whole, such as area, perimeter. or 
moments of inertia. These can typically be used to generate a feature vector which 
can readily be matched with reference valu~s for ~own ~bj~cts to generate ov~~all 
similarity measures - or to classify the object usmg statIstIcal pattern recogrutIon . 
techniques (Duda and Hart, 1973). Their advantages include simp~icity (both feature 
extraction and matching are rapid and straightforward processes m most cases) and 
invariance to scaling, translation and rotation. Their disadvan~~ges are susceptibil~ty 
to noise (not a problem in the present context) and inabilIty to handle partIal 
structures or occluded images. 

2. Local (or structural) features, characteristic of individual parts of the shape (normally 
its boundary), such as individual lines, arcs or corne!s. ~ese are normally used to 
form an ordered list (such as a sequence of alternatm~ lme se~ents and. comers) 
which can then be matched with reference objects - typICally usmg syntactIc pattern 
recognition techniques (Fu, 1974). Chin and Dyer claim that both local feature 

85 



extrac!ion ~d matching are com~utationally more expensive than global feature 
~at~hing, smc.e these n?rmally mvolve some kind of parsing, a process that 
mevltably requrres .a ce~am amount of .back-tracking. They also point out that not all 
local feature~ are mvanant to translatlOn, rotat~on, an~ scaling, thus limiting their 
usefulness still more. They are however usable WIth partIally occluded images. 

3. Relational features, characterizing the relative size, position or orientation of groups 
of local features. These features are normally used to generate graphs relating key 
local features of the image to each other; again, these graphs can be matched with 
comparable graphs for reference objects. Relational features are thus the most 
computationally expensive of all to use, though again they can be used with partially 
occluded images. 

Thes~ differe~t kind~ of feature can be comb~:~. For example, Yachida and Tsuji (1977) 
descnbe a hierarchical system based on 1ll1t1al matching on global features (area 
area/per~eter2 ratio), followed by s~arity matching between object and referenc~ 
boundanes (expressed as polar coordinate values) and searches for circles, lines, and 
small holes at specified locations. Stockman et al (1982) used boundary edge elements 
(real edges) and vectors linking the centres of internal holes (abstract edges) for 
similarity matching. Umetani and Taguchi (1982) defmed a wide variety of what they 
described as global, local and concavity properties (though their defInitions of these 
differ considerably from those of Chin and Dyer) in experiments on random shape 
discrimination. Their global properties included various vertex angle, symmetry, 
complexity, and compactness measures; local properties comprised straightness and 
sharpness; and concavity properties included the number, length, depth and size of 
concave features. Some of their feature defInitions are unfortunately not very clear. 

These studies are obviously of value as sources of specific feature types. Many, if not _all, 
of these features could be directly useful in shape retrieval. The major difficulty could in 
fact lie in choosing between the wide variety of available features. Possibly of greater 
value is the concept of tripartite division of features into global, local and relational, with 
each type of feature useful in a different CQntext. One can immediately see how global 
features could be of most use in matching complete shape queries, and local features for 
partial shapes, with relational features of possible use in matching inner boundary 
patterns. 

4.2.4 Human visual perception 

Another possible source of retrieval features could be studies of the psychology of vision, 
though this concentrates Qn how humans see pictures or images, rather than on the 
objects themselves. The insights of the Gestalt sc~ool of ~sychol?~ sug.ge~t t~at gro~ps 
of drawing elements can be identified on the basIS of therr proxlffilty, similanty of SIZe 
and shape, continuity of line and closure - formation?f com~lete. or nearly compl~te 
geometric patterns (Zakia, 1975). Studies of how architects VIsualIZe drawmgs (Akin, 
1978) have also suggested that, when asked to memorize ~awings for later r:call, they 
identifIed chunks of lines associated through geometry (adjacent or parallellmes often 
formed chunks), or similarity of function (load-bearing walls, e.xternal ~~ors). 'I.'he 
experiments of Fischler and Bolles (1986) on the way human subjects partItIoned l~e 
drawings for later recognition or reconstruction appear to conf~ that the p~<?cess IS 
highly subjective, and not based purely on the geometry <?f t~e drawmg. RecogrutIOn of a 
drawing appears to depend on cues based on a combmatlOn of local shape features 
(individual sides and angles) and global features such as symmetry, repeated groups, ~d 
parallel segments. This again implies that recognition an~ extract1o~ of ~eatures .of us~ ill 
retrieval may require situational knowledge not present m the drawmg Itself, reinforcmg 
the message from section 4.2.1 above. 

86 



4.2.5 Information theory 

A furthe~ factor in th~ choice. of shape features comes from information theory. From 
Shannon s theory, the mformanon conveyed by a message symbol i is 

- Pi log2(Pi) 

where Pi is the probability of occurrence of the symbol i in the message (all symbols are 
assume~ to have independent p~obab~ty dis~ibutions). This peaks at Pi = 0.5, implying 
that re~neval features ~ave m~nnal inforn:atlOn content if they are all independent and 
occur m 50~ of .th~ file - an Ideal recogruze.d for many years by designers of retrieval 
systems. 'I!lls prmciple has been used to gUIde the selection of indexing fragments in 
both chemIcal (Adams?n et al, 1973) and text (Lynch, 1977) retrieval systems. In both 
cases, naturally-occ~g ~ragments (atoms .or t~xt words) were shown to have highly 
skewed. frequency d!-stnb~nons, and the s~dIes anned to improve retrieval performance 
by fmding sets of mdexmg fragments WIth much flatter frequency distributions. The 
problem with applying this approach to the present project is that representative 
collections of data are needed to calculate mearIingful frequency distributions. Such 
'standard' collections of drawings simply do not exist; the few surveys that have been 
carried out on shape feature distribution (e.g. Pratt, 1984) have been very selective. As 
implied in section 4.1 above, there are considerable difficulties in generalizing from 
results obtained using artificial test collections. 

4.3 Criteria for feature selection 

It is now possible to propose a reasonable list of criteria which a set of features for shape 
retrieval should meet, as follows: . 

1. The features should cover as wide a range of types as possible. In particular, the 
feature set should include examples of all three types distinguished by Chin and Dyer. 

The range of queries to be handled by a system cannot easily be predicted in advance. It 
is, however, reasonable to assume that queries will include both complete and partial 
shape matching, and that they may well specify relative positions of key shape features 
such as inner boundaries. There is of course a risk of degrading performance if too large 
a feature set is specified. 

2. Extracted features should be invariant to translation, rotation and scaling - and 
independent of choice of boundary start segment. 

This should be obvious from the preceding discussion. 

3. Features should be reasonably easy and economical to extract, and tolerably compact 
to store. 

While machine efficiency is not a major criterion in a shape retrieval system, and feature 
extraction would normally be performed only once for each new shape added to the 
database, space considerations could be relevant in a ~arge d~tabase. Rapid f~a~ure 
extraction from query shapes might be an important facto~ m ensurmg user acc~ptability -
it is doubtful whether any user would be. prepared to Walt for ~ore than a mmute or .so 
while a query shape was being processed. R~pid feature extracnon ~ould become CruCIal 
for any feature which was generated at run t1me rather than sto.red m the ?atabase. There 
is of course an implied constraint that all features must be directly denvable from the 
representation chosen for each stored shape. 

4. If a system is directed at a specific domain of shapes (such as engineering drawings), 
the feature set should take this into consideration. 

87 



For ex~ple, the features to be store~ ~ a ~atabase of engineering parts should include 
each part s overall shape class and an mdicatlOn of machined features. 

4.4 Features chosen for prototype system 

4.4.1 Introduction 

Three main cate~ories of features ~ere ident~~d, ~ough Chin and Dyer's categorization 
was adapted sbghtly to emphasIZe the distmctlOn between inner and outer shape 
boundaries: 

1. Global bound~ fe~tures (correspon?ing almost exactly to Chin and Dyer's global 
features, but mcluding both Umetam and Taguchi's global and concavity features) 
reflecting the overall shape of a given boundary; , 

2. Local boundary features (including Chin and Dyer's local and some relational 
features), computed either from individual boundary segments or short sequences of 
contiguous boundary segments, reflecting specific features within a given boundary; 

3. Positional features (mostly a subset of Chin and Dyer's relational features), 
specifically representing the number, type and pattern of inner boundaries within a 
given shape. 

As discussed in section 3.2.4 above, it can be hypothesized that the chances of matching 
query and stored shapes are likely to be greatest if features are calculated and stored 
separately for each level of traversal of each boundary - in effect treating each boundary 
level as a separate boundary in its own right. This effectively allows the system to select 
the closest-matching views of both query and stored boundaries for similarity estimation. 
This approach was thus adopted· for SAFARI; although a few parameters (such as 
boundary class or length/width ratio) were considered to be characteristic of the boundary 
as a whole, however it was viewed, the vast majority (such as mean segment length or arc 
angle variance) were associated with a specific boundary level. 

4.4.2 Global boundary features chosen 

The features below were therefore computed and stored for each level of each boundary. 
The rationale for selecting these features comes largely from the work of Umetani and 
Taguchi, and to a lesser extent the other authors cited above. They represent parameters 
analogous to those used by Umetani and Taguchi, modified to take account of the fact 
that the shapes used in the present study are made up of circular arcs as well a~ straight 
lines. The restricted measures of symmetry were necessary because curved objects can 
have an intmite degree of symmetry. 

1. Mean segment length ML = !: (Li)/n 

where L· is the (normalized) length of boundary segment i, and n the number of. 
segment~ in the current boundary level. 

2. Segment length variance LV =!: (Li-ML)2/n 

3. Mean segment arc angle MA = !: (Ai)/n 

where Ai is the arc angle of boundary segment i. 

4. Segment arc angle variance AV = !: (Ai-MA)2/n 

88 



5. Mean discontinuity angle between segments MD = ~ (Di)/n 

where Di is the discontinuity angle between segments i and i+1 (i < n), and 
between segments i and 1 (i = n). 

6. Discontinuity angle variance DV = ~ (DtMD )2/n 

7. Concavity index CI = (~(Ai : Ai < 0)/(21t) + ~ (Li : Ai < 0)/ ~ (Li» / 2 

a me~ure of the overall concavity of the shape, obtained by (separately) 
summmg the arc angle and length of each concave are, normalizing each sum by 
div~ding by the total arc angle and perimeter of the shape boundary, and then 
taking the mean. . 

8. Degree of rotational symmetry RS 

a lower bound for the number of axes of rotational symmetry, calculated as 
indicated in section 4.5.3 below. The method of calculation allows no more than 
one attempt at calculating symmetry per segment; hence RS <= n. 

9. Degree of planar symmetry P S 

a lower bound for the number of planes of axial (mirror-image) symmetry, 
calculated in a similar way to RS. 

In addition, the following features, considered characteristic of the boundary as an entity 
rather than of any individual level, were computed and stored once for each boundary: 

10. Boundary arc/line ratio AL = ~ (Li : Ai <> 0)/ ~ (Li) 

the ratio of curved segment length to total boundary length, computed for the 
boundary at the highest possible level of traversal to minimize the effect of 
minor shape features such as chamfers and fillets. 

11. Boundary length/width ratio LW 

calculated as indicated in section 4.5.2 below, again using boundary traversal at 
the highest possible level to minimize the effect of minor shape features. 

12. Boundary perimeter2/area ratio PA = ~ (Li)/(Boundary area) 

calculated using boundary traversal at the lowest possible level, to preserve the 
value of this parameter as a measure of a shape's overall thickness. 

13. No of rotational axes NR 

calculated as the number of distinct centres of convex arcs in the top level of the 
boundary. 

14. Boundary shape class SC 

calculated as indicated below (section 4.5.2); can take the values Rectangular, 
Other right-angled, Other straight-edged, Irregular, Circular or Multi-curved. 
Examples of boundaries from each of these classes are shown in Fig 4.1. 

89 



RECTANGULAR 

OTHER RIGHT-ANGLED ~ o . 
o 00 

OTHER STRAIGHT-EDGED 

CIRCULAR 

MUL TI -CURVED 

IRREGULAR C"--____ ) 

Fig 4.1 Grouping of shapes into families on the basis of top-level outer boundary 
segment traversal. Classification is performed firstly on the basis of straight-line to 
circular arc length, and subsequently on the presence of angles other than right angles 
for "straight-line" shapes and the number of centres of rotation for curved shapes. The 
resulting classification mirrors that of many manual parts classification schemes. 

90 



4.4.3 Local boundary features 

Although individual segment parameters were not used directly for feature matching 
they are listed here for the sake of completeness. They can be regarded as specificall~ 
local features, even though segment length needs to be normalized by dividing by a 
global feature, total boun?ary length, to render it invariant. It should be noted that the 
global and local features listed above and later in this section have all been derived from 
these four parameters. . 

1. Segment length Li 

the length of segment i, normalized by dividing by the outer boundary perimeter. 

2. Segment arc angle Ai 

the arc angle subtended by segment i. 

3. Discontinuity angle between segments D i 

the angle between segments i and i+l (i < n), and between segments i and 1 (i = n). 

4. Segment parent feature Pi 

the type of shape feature (if any) to which segment i belongs, computed as 
outlined below; can take the values Protrusion, Depression, Corner or Absent. 

Two kinds of derived local feature were extracted for each level of each boundary - the 
first making use of data from individual boundary segments, the second from sequences 
of connected segments. A range of feature types of differing complexity was deliberately 
chosen to investigate whether increasing fragment complexity could be associated in any 
way with increased retrieval performance. Analyses of the distribution of each of these 
feature types in the test database suggested that the more complex feature types did 
exhibit a more even distribution than the simple feature types - though it would be 
dangerous to conclude too much from this (see section 4.2.5 above). In each case, the 
feature distribution is characterized by storing counts of the frequency of occurrence of 
each feature value present. The advantage of generating shape features of this kind lies in 
their flexibility. Unlike the local features described by Chin and Dyer, they do not have 
to be processed by parsing algorithms. They can be used to generate feature vectors for 
use in similarity matching in the same way as global features - or used as "index terms" 
in an inverted me to provide rapid retrieval of all shapes containing a given feature. They 
still retain the advantage of being usable with either complete or incomplete boundaries, 
though segment length distribution again has somewhat limited validity in the latter case. 
These local features are listed below. 

5. Segment length distribution LD 

a vector indicating the number of boundary segments (if any) for which relative 
length Lr = logz ( Li / ML ) falls into each of the following ranges: 

Lr < -3.0 -0.9 <= Lr < -0.7 0.7 <= Lr < 0.9 
-3.0 <= Lr < -2.5 -0.7 <= Lr < -0.5 0.9 <= Lr < 1.1 
-2.5 <= Lr < -2.0 -0.5 <= Lr < -0.3 1.1 <= Lr < 1.3 
-2.0 <= Lr < -1.5 -0.3 <= Lr < -0.1 1.3 <= Lr < 1.5 
-1.5 <= Lr < -1. 3 -0.1 <= Lr < +0.1 1.5 <= Lr < 2.0 
-1. 3 <= Lr < -1.1 +0.1 <= Lr < +0.3 2.0 <= Lr < 2.5 
-1.1 <= Lr < -0.9 +0.3 <= Lr < +0.5 2.5 <= Lr 

+0.5 <= Lr < +0.7 

91 



The length ranges were chosen to give a reasonably large nwnber of categories 
and also as even a distribution of segment lengths between categories ~ 
possible. 

6. Arc angle distribution AD 

a vector indicating the number of boundary segments (if any) for which arc 
angle Ai falls into each of the following categories: ' 

A· < -1t A· = 0 + 0.01 ~ ~ A· = -1t + 0.01 0 < A· < 1t/2 -
~ 

-1t/2 ~ -1t < A· < A· = 1t/2 + 0.01 ~ ~ A· = -1t/2 + 0.01 1t/2 < A· < 1t ~ ~ -1t/2 < A· < 0 A· = 1t + 0.01 ~ ~ -1t < A· 
~ 

The angle ranges ~ere .chosen to reflect the fact that most machined parts have 
edges that are straIght lmes (zero arc angle), or form complete circles (arc angle 
21t), semicircles (arc angle 1t) or quadrants (arc angle 1t/2). 

7. Discontinuity angle distribution DD 

a vector indicating the nwnber of boundary segments (if any) for which 
discontinuity angle D i falls into each of the following categories: 

D· < -1t/2 D· = 0 + 0.01 ~ 
-1t/2 

~ -D· = + 0.01 0 < D· < 1t/2 ~ ~ 
-1t/2 < D· < 0 D· = 1t/2 + 0.01 ~ 

1t/2 
~ -< D· 

~ 

The angle ranges were chosen to reflect the fact that the overwhelming majority 
of machined parts have edges that meet at right angles or zero. 

8. Parent feature distribution FD 

a vector indicating the number of instances (if any) of each type of parent 
feature (Protrusion, Depression or Corner) in the given boundary level. This 
type of feature (relatively simple to extract as a by-product of the process of 
building up a hierarchical description of the shape) was included to give some 
indication of the presence of machined features. 

9. Segment length/arc angle distribution SL 

a frequency count of fragments representing both segment length and arc angle 
type; each fragment represents one of the segment length ranges enumerated 
under (5) above, and one of the arc angle categories enumerated under (6) 
above. The entire set of such fragments can be regarded as a two-dimensional 
feature vector, and could in theory categorize each line segment much more 
accurately than the use of separate length and arc angle distribution counts. 

10. Arc angle triplet AT 

a frequency count of fragments based on the properties of each line segment and 
its preceding and succeeding vertices; each fragment represents the categories 
(as defmed under (6) and (7) above) into which the arc angle Ai' the preceding 
discontinuity angle D i -1 and the succeeding discontinuity angle D j respectively 
fall. The complete fragment set can be regarded as a three-dimensional feature 
vector. The potential advantage of this and the following type of feature is the 

92 



ability to characterize a s~ape u~ing the .relationship between one segment or 
v~rtex an~ the ':lext - whic~ rmght be llTIportant in the light of the studies 
discussed m sectIOn 4.2.4. This feature could also have relevance as an indicator 
of .an obje~t's angular shape, of potential importance in searching for classes of 
object which match on angles but not linear dimensions. Examples of these 
triplet features are shown in Fig 4.2. 

11. Discontinuity angle triplet DT 

a freque.ncy ~ount based on the properties of each vertex and its preceding and 
succ~eding.l~e segments; eac~ fragment represents the categories into which 
the discontmUlty angle D i, the lme classes of the preceding and succeeding line 
se~ent pair Li ~d Li+\~ ~d the length ratio R\ = 10g2(L/Li+\) respectively fall. 
In this case, the discontmUlty angle categories are as defmed in· (7) above the 
line class categories are ' 

LL (both segments straight lines) 
LA (segment i a straight line, segment i+ 1 a circular arc) 
AL (segment i a circular are, segment i+l a straight line) 
AA (both segments circular arcs) 

and the length ratio categories are 

Rl < -3.5 -l.5 <= Rl < -0.5 l.5 <= Rl < 2.5 
-3.5 <= Rl < -2.5 -0.5 <= Rl < +0.5 2.5 <= Rl < 3.5 
-2.5 <= Rl < -l.5 +0.5 <= Rl < +l.5 3.5 <= Rl 

Again, the complete fragment set can be regarded as a three-dimensional feature 
vector. This feature, emphasizing the relative length and type of adjacent 
segments, was intended to complement the angle-based feature described in (10) 
above. Examples of these triplet features are shown in Fig 4.2. 

12. Parent feature composition PF 

a frequency count of fragments based on the properties of each type of parent 
feature and its composition; each fragment represents the overall feature type (as 
defmed under (8) above), together with the numbers of straight-line and circular 
arc segments making up the feature, thus providing a measure of the feature's 
complexity. Again, the complete fragment set can be regarded as a three
dimensional feature vector. Examples of these features are shown in Fig 4.2. 

4.4.4 Inner boundary position features 

The final kind of feature aimed to provide an indication of the type, number, and relative 
position of inner boundaries. Enumeration and classification of these boundaries can 
yield useful features, but the question of how to recognize and represent patterns of holes 
must also be addressed. Ample evidence exists, both from informal conversations and 
from examination of the structure of parts classification systems, that this is an important 
area. 

The problem was tackled by grouping all inner boundaries into specified families on the 
basis of shape, size and proximity - criteria suggested by Zakia (1975) as having deep 
roots in the way humans perceive objects. The spatial distribution of each family of inner 
boundaries could then be examined for the presence of one or more specified regular 
patterns, which could then be used as features characterizing the entire set of inner 
boundaries. The feature set used was as follows: 

93 



DiSC, triplets 
~. R : LL : 0 

Z LA -1 -) 
NR LA 2 

Arc triplets 

Z : R : R 

R Z Z ~ 
/ , 

Pnrent fentures 

P 3: 0 

C 0 

Fig 4.2 Illustrations of some local boundary features. Discontinuity angle tripletfeatures 
indicate the environment of each boundary angle, showing successively the angle type, 
the types of line enclosing the angle, and the relative lengths of these two lines. Arc angle 
triplet features illustrate the angular environment of each line (arc angle class plus 
discontinuity angle with each adjoining line). Parent feature composition fragments 
indicate the presence of local shape features (protrusions, depressions, corner features, 
etc), together with their composition in terms of numbers of straight lines and circular 
arcs. 

94 



1. Number of inner boundaries NB 

a simple count of inner boundaries in the drawing 

2. No of distinct inner boundary families BF 

a count of distinct inner boundary families identified 

3. No of curved inner boundaries CB 

number of inner boundaries falling into shape classes Circular or Multi-curved 

4. No of straight inner boundaries SB 

number of inner boundaries falling into shape classes Rectangular, Other right
angled or Other straight-edged 

5. No of irregular inner boundaries IB 

number of inner boundaries in shape class Irregular 

6. Boundary family characteristics BC 

a frequency count of each boundary family, characterized by shape class, 
number of segments in top level of boundary, and mean length-width ratio and 
perimeter for all boundaries included in class. 

7. Boundary pattern features BP 

a frequency count of each type of pattern feature identified by exammmg 
relative positions of inner boundary centroids both within each inner boundary 
family and within the drawing as a whole. The rationale for feature selection 
was the provision of a wide variety of pattern types, guided both by studies of 
human perception and examination both of parts classification schemes and 
actual examples of machined parts. The feature types recognized by the 
prototype system include the following patterns based on line continuity (see 
examples in Fig 4.3): 

Collinear boundaries - maximum number of inner boundary centroids lying 
on a straight line 

Concyclic boundaries - maximum number of inner boundary centroids lying 
on a circular arc 

the following patterns based on closure (formation of regular or other 
recognizable polygonal shapes - the set of shapes included most common 
triangular and quadrilateral combinations recognizable as regular shapes, plus a 
limited selection of many-sided polygons): 

Equilateral triangles - number of distinct equilateral triangles formed by 
inner boundary centroids 

Right-angled triangles - as above, for right-angled triangles 
Isosceles triangles - etc. 
Squares 
Rectangles 
Rhombi 
Parallelograms 
Trapezoids 

95 



Regular pentagons 
Regular hexagons 
Regular octagons 
Other regular polygons 

00000 

00000 

00000 

o o 

o o 
o 

Fig 4.3 Examples of inner boundary pattern features based on continuity. 
In the first shape, three groups of boundaries can be recognized as 
forming a pattern through collinearity; in the second, a single group of 
inner boundaries can be recognized because they all lie on the same 
circular arc. Note that boundaries also need to be similar in size and 
shape in order to belong to the same family. 

and the following patterns (see examples in Figs 4.4 and 4.5) based on 
symmetry (arrangement of inner boundaries in patterns around the overall shape 
centroid, an important consideration in the machining of rotational parts in 
particular): 

Boundary at centroid - number of inner boundaries (0 or 1) with centroid 
coincident with outer boundary centroid 

Boundaries round centroid - maximum number of inner boundaries on arc 
centred on outer boundary centroid 

I-stars - pairs of inner boundaries equidistant from and collinear with outer 
boundary centroid 

V-stars - pairs of inner boundaries equidistant from outer boundary centroid 
and making an angle of 1200 

L-stars - pairs of inner boundaries equidistant from outer boundary centroid 
and making an angle of 900 

T-stars - sets of three inner boundaries equidistant from outer boundary 
centroid, making one angle of 1800 and two of 900 

E-stars - sets of three inner boundaries equidistant from outer boundary 
centroid, making three angles of 1200 ), 

Y-stars - sets of three inner boundaries equidistant from outer boundary 
centroid, making one angle less than 1800 (but not equal to 1200 within 
the specified tolerance), and two equal angles greater than 900 

96 



o 
Boundo.ry 0. t centroid No boundo.ry 0. t centrOid 

Boundaries round centroid - 3 Boundaries round centroid - 8 

E -sto.r CA=B=C=1200) 

Fig 4.4 Examples of inner boundary pattern features based on symmetry about the outer 
boundary centroid. Boundary at centroid indicates the presence of an inner boundary 
centred on the outer boundary centroid; boundaries round centroid indicates the 
maximum number of boundaries in any circular arc centred on the outer boundary 
centroid; T-, E-, Y-, and M-stars indicate the presence of three concyclic inner 
boundaries arranged around the outer boundary centroid in the specific configurations 
illustrated. 

97 



I -star (A=C=1800) 

Q 

R-star (A= B=C= D=900) 

X -star(A=Cj B= D) K -star (A=1800j B=D) 

Fig 4.5 Further examples of inner boundary pattern features based Oil symmetry about 
the outer boundary centroid. 1-, V-, and L-stars indicate the presence of two concyC/ic 
inner boundaries arranged around the outer boundary centroid in the specific config
urations illustrated; R-, X-, and K-stars indicate similar combinations offour concyC/ic 
inner boundaries. 

98 



M-stars - sets of three inner boundaries equidistant from outer boundary 
centroid, making one angle greater than 1800 and two equal angles less 
than 900 

R -stars - sets of four inner boundaries equidistant from outer boundary 
centroid, making four angles of 900 

X-stars - sets of four inner boundaries equidistant from outer boundary 
centroid, making two oP:Rosite equal angles greater than 900 and two 
equal angles less than 900 

K-stars - ~ets of ~our inner boundaries equidistant from outer boundary 
centrOId, making 0I!-e angle of 1800 and two opposite equal angles less 
than 900; the magmtude of the fourth angle is immaterial. 

4.5 Method of feature extraction 

4.5.1 Introduction 

The bulk: of feature extraction is perfonned by program DATALOAD, which takes as 
input the canonical shape description generated by program CANONGEN (chapter 3) -
though the basic local boundary features Li' Ai, Di' and Pi are generated at an earlier 
stage, by program SKELETON. (In the current prototype of SAFARI, some global 
boundary features, such as LW and PA, are generated by programs SKELETON or 
CANONGEN for ease of computation). 

The program reads in the canonical shape description one boundary at a time, traversing 
each boundary at progressively lower levels, and extracting relevant feature values. At 
present this requires several passes through each set of boundary segments, though there 
is no inherent reason why all global and local features for a given level could not be 
extracted in a single pass. Once all boundaries have been processed, the shape's inner 
boundaries (if any) are grouped into families on the basis of similarity of size, shape and 
position, and inner boundaries searched for the presence of the position features referred 
to above. 

More detailed descriptions of the derivation of each type of feature are presented below. 

4.5.2 Global boundary features 

1. Boundary arc/line ratio AL, no of rotational axes NR and boundary shape class SC are 
calculated in a single top-level traversal of the boundary (presently within program 
SKELETON), during which counts are accumulated of the number of both positive 
(Rp) and negative (Rn) right-angled vertices, the total length of all curved segments, 
and the number of distinct axes of rotation (arc centres not coinciding within a 
specified tolerance). Total boundary length and n, the number of boundary segments, 
are already avail able. AL and NR are readily computed when boundary traversal is 
complete, and SC is then assigned a value as follows: 

If AL < 0.1 then 

{shape is predominantly straight-edged, so classify on basis of 
number of positive and negative right angles} 

If ~ = n then 
SC = Rectangular 

else if (~+Rn) = n then 

99 



SC = Other right-angled 
e~se 

SC = Other straight-edged 

e~se if AL > 0.9 then 

{shape is predominantly curved, so classify on basis of number of 
axes of rotation} 

If NR = 1 then 
SC = Circular 

e~se 

SC = Multi-curved 
e~se 

SC = Irregular; 

2. Boundary length/width r~tio LW is computed in a single traversal of the top boundary 
level. All segment coordinates are transformed so that the boundary centroid lies at the 
origin, and the shape's major axis becomes the x-axis. As the boundary is traversed 
tallies are kept of maximum and minimum x and y values. LW is then given by 
Max ( (Xmax - Xmin)/(Y max - Y muJ , (Y max - Y min)/(Xmax - XmuJ ). 

3. Boundary perimeter2/area ratio PA is computed (presently within CANONGEN) in a 
single traversal of the bottom boundary level, using triangulation to calculate its area 
as outlined in section 3.3.6. 

4.5.3 Global level features 

1. Mean segment length ML, segment length variance LV, mean segment arc angle MA, 
segment arc angle variance AV, mean discontinuity angle between segments MD, and 
discontinuity angle variance DV are all calculated for each boundary level in a single . 
pass which accumulates totals of each of these parameters and their squares, and then 
uses conventional formulae to calculate means and variances. Concavity index CI is 
calculated in a similar fashion. 

2. Degree of rotational symmetry RS and degree of planar symmetry PS are calculated 
together, separately from the other level features. This cannot be achieved in a single 
pass through each boundary level. Indeed, the construction of efficient algorithms for 
determining shape symmetry is still a research issue in its own right (e.g. Leou and 
Tsai, 1987). As noted above, some limitation on the symmetry calculation process is 
necessary to restrict answers to a finite number. The algorithm used generates 
approximate symmetry measures by comparing cumulative distance and angle 
traversed at the end of each line segment when boundary traversal is initiated from 
two vertices i andj (where i is the canonical boundary start point, andj is successively 
set to every (other) vertex in the current boundary level), and incrementing symmetry 
counts if cumulative distance and angle from these two starting-points remain 
identical (within specified tolerances) the whole way round the boundary. Rotational 
symmetry is calculated by traversing the boundary from the two starting-points in the 
same direction, planar (mirror-image) symmetry by traversing in opposite directions. 
Repeating the process in each direction for all j yields the two symmetry measures RS 
and PS for that level. While these measures are in no sense rigourous, they have the 
benefit of simplicity and consistency, and can be computed reasonably efficiently - an 
important design criterion. They do in practice yield intuitively sensible results if 
appropriate tolerances are set. 

100 



4.5.4 Local boundary features 

1. Segment length distribution W, arc angle distribution AD discontinuity angle 
distribution DP, parent f~ature .dis.tribution F.D, segment length;arcangle distribution 
SL, arc angle tnplet AT, discontmUlty angle tnplet DT, and parent feature composition 
P F are again all computed in a single pass ~ough ea~h boundary level. The single
element parameters can all be calculated by mcrementmg the appropriate element of 
an accumulator array; the more complex parameters require comparisons with 
previous values stored in temporary records. 

4.5.5 Inner boundary position features 

1. ~umber of ~er boundaries NB.' no of c.urved inner b~)Undaries CB, no of straight 
moer boundanes SB, and no of rrregular moer boundarIes IB can readily be derived 
from data stored in each boundary header record. 

2. No of distinct inner boundary families BF and boundary family characteristics BC 
cannot be computed until inner boundaries have been grouped into families. In the 
interests of economy, a full clustering approach was rejected in favour of a (single
pass) gro~ping .of boundaries on the basis of class, size (perimeter) and shape 
(length/wIdth ratio), followed by a check on the cohesiveness of any family containing 
more than two boundaries. This is done by rearranging the boundaries within each 
family into nearest-neighbour order, starting with the two closest (not a 
computationally expensive task since very few families contained more than 4 or 5 
boundaries), and splitting any families with an inter-boundary distance of more than 
twice the minimum distance. The process is illustrated in Fig 4.6. 

3. Boundary pattern features BP are computed by successively applying a series of 
feature recognizers, fIrstly to the entire set of inner boundaries, then to each individual 
inner boundary family in turn. 

Where fIve or more inner boundaries are present (a rare event), the entire boundary set 
is fIrst examined to identify whether their centroids form a regular polygon, by 
invoking procedure TestForPolygons. This fIrst sorts all boundaries into order on the 
basis of the angle of the vector joining their centroids to that of the (arbitrary) fIrst 
boundary in each family, to ensure that the polygon formed by linking each of the n 
boundaries present to its neighbour contains no intersecting sides (see Fig 4.7). It then 
tests this polygon for the presence of identical sides and angles. setting the count of 
Regular pentagons, Regular hexagons, Regular octagons or Other regular polygons to 
1 if appropriate. 

Where four or more inner boundaries are present, procedure TestForQuadrilaterals is 
invoked to detect and count patterns of inner boundaries in the shape of squares, 
rectangles, rhombi, parallelograms, or trapezoids. This procedure systematically 
searches every possible unique combination of four boundaries to establish whether 
their centroids form a square (all four sides equal, all four angles equal), a rhombus 
(all four sides equal), a rectangle (all four angles equal), a parallelogram (opposite 
angles equal), or a trapezoid (adjacent angles equal), incrementing counts of Squares, 
Rectangles, Rhombi, Parallelograms and Trapezoids as appropriate. A given 
quadrilateral is counted only under one heading - e.g four boundaries forming a square 
are counted just as a square, not as a rhombus or rectangle as well. 

Procedure TestForConcylicity is also invoked if four or more inner boundaries are 
present, to identify the maximum number of boundary centroids lying on any given 
circular arc. Each unique combination of three boundaries is examined, and the 

101 



Original drQWing 

0 ( ) 0 
0 ( ) 0 

F QMil Y 1 ~ 
0 ( ) 0 

( ) 

( ) 

( ) 

F QMity 2 
0 0 

0 0 

~ 
0 0 

F QMily 2' 

1 0 

0 

0 F QMily 3 
0 

0 

0 

Fig 4.6 The process of generating inner boundary families. In the illustration shown, two 
separate families are generated on the basis of similarity of size and shape; family (2) is 
then split into two on the basis of proximity. 

102 



positi?n ofthe centre ?f.the circle (n: any) passing though the three boundary centroids 
estabh.she~. All re~amJ?g boundanes are then examined to establish whether their 
centroId hes on this CIrcle. If so, a temporary count of concyclic boundaries is 
incremented, and ~ attempt made to :rmd further boundaries lying on the same circle. 
When all b?undanes ~ave bee? ex~ed, the maximum value of this count is stored 
as Concycilc boundarzes, provIded It exceeds three. . 

Where three or more inner boundaries .are present, procedure TestForTriangles is 
~voked to detec~ and count 'patterns of .Inner boundaries in the shape of equilateral, 
nght.-angle~ or 1S0sc~les. tnangles. This pro.cedure systematically searches every 
possIble umque combmatlOn of three boundanes to establish whether their centroids 
form an equilateral. triangle (all ~ee angles equal), an isosceles triangle (any two 
angles equal), or a nght-angled tnangle (one angle equal to rr./2), incrementing counts 
of Equilateral triangles, Right-angled triangles, and Isosceles triangles as appropriate. 
A given triangle cannot be counted as both equilateral and isosceles, but can be 
counted as both right-angled and isosceles. 

Fig 4.7 Sorting inner boundaries by the direction of the vector linking 
their centroids with that of the first boundary in the family, in order to 
prevent the sides of the resultant polygon from intersecting. The procedure 
produces a valid ordering for all non-degenerate n-sided polygons, 
though it yields a consistent and intuitively sensible ordering only for 
convex polygons. Since the polygon detector rejects all non-convex 
polygons, this limitation does not affect the validity of the polygon 
detection process. 

Procedure TestForCollinearity is also invoked here to identify the maximum number 
of boundary centroids lying on any given straight line. Each unique pair of boundaries 
is examined, and the direction of the line passing though their centroids established. 
All remaining boundaries are then examined to establish whether their centroid lies on 
this line. If so, a temporary count of collinear boundaries is incremented, and an 
attempt made to fmd further boundaries lying on the same line. When all boundaries 

103 



have been examined, the maximum value of this count is stored as Collinear 
boundaries, provided it exceeds two. 

Finally, procedure TestFor~entroidF~atures ~ invoked provided two or more inner 
bound~es are ~res~nt. This categonzes all Inner boundaries within a given family 
accor~g to therr ~st.ance f~om the outer ?oundary centroid - effectively grouping 
them mto ~oncentnc rmgs (FIg 4.8). Each nng containing two or more boundaries is 
then ex~ed for the ~re~ence .of sta.r features (Figs 4.4 and 4.5). If four or more 
boundanes are found WIthin a gIven nng, each possible combination is searched for 
the presence of R-stars, X-stars, or K-stars, as defined in section 4.4.4 above. If 

.....----- ......... , 
,/ "-

/ "-
I .",--.. ........... "" 

" ......... _-- ./ "/ " ,/ '- . .....--------' 

Fig 4.8 Grouping inner boundaries into concentric rings centred on the 
outer boundary centroid, as a prelude to generating the symmetry features 
shown in Figs 4.4 and 4.5. 

found, counts for these features are incremented. If none of the above features are 
detected, each combination of three boundaries within a ring is examined for the 
presence of E-stars, Y-starS, or M-stars, and counts incremented as appropriate. 
Failing this, each combination of two boundaries is examined for the presence of J
stars, V-stars, and L-stars. Finally, counts are stored of the maximum number of inner 
boundaries in any ring (if greater than 1), and the number of inner boundaries (0 or 1) 
coincident with the outer boundary centroid. 

4.6 Efficiency considerations 

As indicated in section 4.3, the computational efficiency of feature extraction is a 
significant though not overriding consideration. Extraction of most of the global and 
local features described above can in fact be achieved in a single pass though the 
segments forming one boundary level, hence qualifying as an O(n) process, n being the 
number of segments in a given boundary level. The exception is the symmetry 
calculation, which requires complete traversal of the current boundary level starting from 
each vertex in tum, and is hence an O(n2) process in the worst case. 

104 



The only processes giving cause for concern are the inner boundary pattern detectors 
described in section 4.5.5, though even this is polynomial-bounded. The quadrilateral 
detector examines every ,Possible combination of four inner b?undaries in tum, requiring 
n(n-I)(n-2)(n-3) comparIsons, and hence an overall complexIty of O(n4). Similarly, the 
triangle and concyc1icity detectors examine every possible combination of three inner 
boundaries, requiring n(n-l)(n-2) comparisons and hence a complexity of O(n3). The 
polygon detector is less expensive, as it makes only one attempt to match inner boundary 
patterns to a regular polygon~ s~ape. 1?e situation is in practice manageable because 
inner boundary pattern detection IS carned out only once for each complete family of 
inner boundaries (and hence seldom more than twice for any given drawing) - as opposed 
to global and local boundary feature extraction, which have to be performed once for 
each level of each individual boundary. It is very rare for an inner boundary family to 
contain more than 5 or 6 individual boundaries, thus setting a manageable upper limit to 
computation times for most drawings. However, it must be recognized that computation 
times for complex shapes with 20 or more inner boundaries could become excessive. 

;In practice, the vast bulk of cpu usage for program DATALOAD was concerned with 
database access, with feature extraction proving a relatively economical process. Table 
4.6.1 illustrates some representative results, obtained on Newcastle Polytechnic's VAX 
8700 in the same way as those presented in Section 3.4 above. 

Table 4.6.1 - cpu usage for program DATALOAD 

Drawing complexity CPU usage (s) 

No of No of local/global inner bound- data 
bound- line seg- feature ary feature base total 
aries ments generation generation loading 

1 15 0.01 * 0.42 0.60 
1 37 0.04 * 0.56 0.79 
1 73 0.10 * 0.70 0.98 
4 12 0.02 * 0.45 0.59 
4 21 0.03 * 0.52 0.85 
4 56 0.06 * 0.81 1. 34 
7 18 0.03 0.02 0.60 0.84 

10 24 0.05 0.18 0.54 1.13 
15 76 0.12 0.81 1.12 2.77 

* usage too small to measure cpu 

105 



CHAPTER 5. DATABASE DESIGN 

5.1 Database requirements for CAD systems 

~s .noted i? section. 1.4 abo~e, the value of database support for engineering applications 
IS mcrea~mgly bem~ re~1Zed -. as . are some of the essential differences between 
commercIal and engmeermg appllc.atlOns. In their review of database requirements for 
CAD, Staley and Anderson (1986) lIst a number of these differences: 

Business applications 

Few record types: many instances 

Simple relationships between data 
items 

Static database structures 

Many short transactions 

Transactions generally simple, 
involving few records 

Engineering applications 

Many record types: many instances 

Complex relationships between data 
items 

Dynamic database structures 

Fewer but much longer transactions 

Transactions may be complex, and 
involve large numbers of records 

which they then use to derive a comprehensive list of criteria that any CAD database 
system should meet. Although a list of this kind inevitably presents an over-simplified 
view of the situation, it does usefully bring out the fact that DBMS developed for 
commercial applications are not necessarily applicable to engineering data. Their views 
are echoed by many other authors, e.g. Kemper and Wallrath (1987a), who survey the 
adequacy of existing database models as vehicles to support geometric modelling, and 
suggest possible alternatives. 

Staley and Anderson's most important design criteria included: 

- ability to support multiple engineering applications 
- support for dynamic schema modification and extension 
- support for embedding semantic information in the database 
- ability to handle lengthy transactions in a multi-user environment 
- support for multiple versions of a design. 

Not all of these are relevant to the. present project. As discussed in section 2.2.1, there is a 
fundamental difference (which too few database designers seem to appreciate) between 
active and completed drawings. Support for schema modification and control of lengthy 
update transactions are clearly of crucial importance for the former, but virtually 
irrelevant for the latter. It could be argued that the reverse is true for the ability to embed 
semantic information in a database ~ though devotees of feature-based design (section 1.6 
above) would dispute this. 

Some authors (e.g. Howard and Rehak:, 1986) would go further than this, and argue that 
conventional databases alone are inadequate to support the design process. Since the 
process of creating a new design generally involves the exercise of judgement rather than 
simply following instructions, the designer needs to draw not just on stored facts, but on a 
variety of situational knowledge requiring inferences to be drawn from those facts. This 
is the kind of support offered by knowledge-based or expert systems (Hayes-Roth et al, 
1983), which apply inferential knowledge stored in the form of rules or frames to provide 
solutions to specific problems within their domain of expertise. Howard and Rehak's 
KADBASE system shows how knowledge bases and databases can be integrated in an 
intelligent CAD system, and points the way to some potentially exciting research. Again, 

106 



how~ver, it mus! b.e stressed. that the~ syste~ is aimed at managing the process of 
creatmg or modl~ymg ~ actIve drawmg. ~e the long-term implications of such 
syste.ms for dra~~g arc~ve management (like those of feature-based design) could be 
consIderable, therr rrnmedlate relevance to the SAP ARI project is limited. 

5.2 Adequacy of existing database models 

5.2.1 General observations 

The most widespread DBMS in current use (the vast majority of which is for commercial 
applications) are based either on the. CODASYL (CODASYL, 1971) or relational (Codd, 
1970) model of data - th~ugh relatlOnal DBMS are increasing in popularity to such an 
extent that they seem likely to replace virtually all existing CODASYL DBMS 
applications bef~re the end of the dec~?e. Both types of system are frrmly based on the 
concept of data mdependen,ce - th~ abihty to defme logical data structures independently 
of the way they are phYSICally unplemented, allowing the process of modelling the 
natural structure of the data for a particular application to be separated from that of 
choosing the most efficient storage structures and access paths. The essential differences 
between the two models lie in the way they represent data at the logical level, and in the 
tools they offer for data manipulation. 

5.2.2 The CODASYL model 

If, following Chen (1976), one models data in terms of entities (concrete or abstract 
objects), attributes (characteristics or properties of entities), and relationships (links 
showing an association between two or more entities), then a CODASYL database will 
represent each entity as a database record of appropriate type, and each of its attributes as 
a field within the appropriate record. Relationships between entities are represented as 
CODASYL sets (which, it should be noted, do not conform to the mathematical 
definition of a set, as member records within a set must have a defined sequence), each of 
which links one owner record to zero or more member records of a different type - for 
example, a personnel database might contain a set linking together all employees 
(member records) belonging to a given department (owner record). A given record may 
participate as either owner or member in any number of different set types, allowing 
quite complex relationship networks to be built up. 

An example of part of a hypothetical CODASYL schema for a geometric modelling 
database is shown in Fig 5.1, and a sample instance in Fig 5.2. Here, the basic entities are 
considered to be the faces, edges, and vertices of each shape, and the geometric 
coordinates or parameters of defming equations their attributes. These therefore comprise 
the three record types shown. Topological information such as face-vertex and edge
vertex connections can usefully be regarded as relationships, and thus represented as 
CODASYL sets. Note that the need to use two different constructs (records and sets), 
often cited as a disadvantage of the CODASYL system, is actually quite useful here, as it 
emphasizes the difference between geometry and topology. 

5.2.3 The relational model 

By contrast, a relational database supports only one construct: the relation or table. Each 
table (which can be regarded as a set in mathematical terms) represents a complete ~et of 
data on all entities of a given type. Each row (or tuple) of the table represents a smgle 
instance of an entity, and each column a single attribute. Note that. each attribute must be 
atomic; repeating groups of values are not allowed. Any such attnbute must be removed 
to a new relation - part of the data analysis technique known as normalization (Codd, 
1972). 

107 



SCHEMA NAME GEOMODEL 

{Definition of FACE record, specifying its identifying 
FACE NO, and the coefficients a, b, c and d of its 
defining equation} 

RECORD NAME FACE 
ITEM FACE NO 
ITEM A COEFF 
ITEM B COEFF 
ITEM C COEFF 
ITEM D COEFF 

TYPE INTEGER 
TYPE FLOATING 
TYPE FLOATING 
TYPE FLOATING 
TYPE FLOATING 

{Definition of EDGE record, specifying its identifying 
EDGE_NO, and its defining coefficients f and g} 

RECORD NAME EDGE 
ITEM EDGE NO 
ITEM F COEFF 
ITEM G COEFF 

TYPE INTEGER 
TYPE FLOATING 
TYPE FLOATING 

{Definition of VERTEX record, specifying its identifying 
VERTEX_NO, and its x, y and z coordinates} 

RECORD NAME VERTEX 
ITEM VERTEX NO 
ITEM X COORD 
ITEM Y-COORD 
ITEM Z COORD 

TYPE INTEGER 
TYPE FLOATING 
TYPE FLOATING 
TYPE FLOATING 

{Definition of FACE VERTEX set, indicating the sequence of 
vertices bounding each face} 

SET NAME FACE VERTEX 
OWNER FACE 
MEMBER VERTEX 

INSERTION AUTOMATIC 
RETENTION MANDATORY 

ORDER NEXT 

{Definition of EDGE VERTEX set, indicating the vertices 
bounding each face} 

SET NAME EDGE VERTEX 
OWNER EDGE 
MEMBER VERTEX 

INSERTION AUTOMATIC 
RETENTION MANDATORY 

ORDER NEXT 

Fig 5.1 CODASYL schema defining part of geometric modelling database. The geometry 
offaces, edges, and vertices is described by appropriate records; topology is represented 
by CODASYL sets showing face-vertex and edge-vertex links. 

108 



f 

/ 

/ 

\ 

--

, , 

.. , . , . , . , . , . 
: ~ . , 

V2 

V4 

F2 F3 

V6 

V7 

""'------------IL.-E12---'--1 --=-f)g--,~ """lE34I ~_f)-",--,g ~/ 

Key: FI, F2, .. , : faces 
[12, [34, .. : edges 
VI, V2, ' . . : vertices 
0., b, c, d : coefficients of equo. tions of plo.no.r surfo.ces 
P, 9 : coef ficients of equo. tions of linear edges 
x, y, z : coordina tes of vertices 

- -- -- : links for fo.ce-vertex set 
------------------ : links for edge-vertex set 

, 

'" \ 
1 

/ 
~~ ~y~ th~,--V6 ......... 1 _x,y_,z--,~ 

· · · , , , , , , ' , , , . 

. 

Fig 5.2 Representation o/part o/the structure o/a cube by the CODASYL database 
defined in Fig 5.1 

109 



Each. row. has to be uni(p~ely identified by one or more primary key attributes. 
RelatIonships between entltles are. repre~ented by foreign keys, additional attributes 
whose values can .be !llatched wIth pnmary key values in other tables. Thus an 
ENIPLOYEES relation m a personnel database would contain a foreign key attribute 
E~-~EPT to .indicate the depart~ent to which each employee belonged. The greater 
fleXIbilIty of this ~pproach (~onnectIOns d? not have to be established until run time) is 
undoubtedly a m~Jor f~ctor m the popularIty of relational systems - though it can bring 
problems of data mtegnty. 

The relational scheJ?a corre~pon?ing to the CODASYL example a?ove is shown in Fig 
5.3, and a sample mstance m Flg.5.4. Here, one set of relatIOns IS used to define the 
geometry of faces, edges, and vertIces, and a second set defmes the object's topology in 
terms of face-vertex and edge-vertex connections; 

Another major differe~ce betw~en CODASYL and relational systems lies in their query 
languages. CODASYL s founding fathers expected the prime route of database access to 
be from application programs written in third-generation languages such as COBOL or 
FORTRAN, and devised a set of data manipulation commands to be used as extensions to 
these languages. These imply that data should be processed one record at a time, and that 
it is up to the application programmer to specify the correct access path to the desired 
record. Codd, on the other hand, recognized the power of the set theory approach, and 
argued for data manipulation operators which operated on a complete data set, simply 
specifying what data were required and leaving it to the DBMS to devise appropriate 
access paths. The availability of (relatively) user-friendly query languages such as SQL _ 
a direct development of his approach - has probably been the biggest single factor in 
ensuring the widespread adoption of relational systems. 

Both models of data have their critics, both in the commercial and engineering field. 
Rigidity is perhaps the worst problem, and one which can be levelled with more justice 
at CODASYL than relational DBMS. CODASYL schemas have to be precompiled 
before any database creation can take place, and all but the most minor changes in 
database structure involve unloading the database, recompiling schemas and then 
reloading the database in its new format. Even in commercial database applications this 
can be a major problem; in the kind of engineering environment envisaged by Staley and 
Anderson it would be totally unacceptable. Most relational DBMS are more flexible than 
this, allowing relations to be added, modified or deleted on-line without affecting the 
operation of other parts of the database. Even here, though, the degree of flexibility 
offered falls far short of the ideal. 

Data fragmentation is a problem inherent in the relational approach, since it is a side
effect of the normalization process. In the commercial field it is often an advantage to 
separate out data items that are sometimes but not always -linked, such as parts and 
suppliers. It is of no obvious advantage to separate out items which are always linked 
(since the existence of the latter is dependent on the former, like invoice headers and 
invoice detail lines), though the penalty of having to store these two data types separately 
is not usually too great. It becomes a serious disadvantage when items that form a natural 
hierarchy, like the faces, edges and vertices of each component in a large engineering 
assembly, have to be separated out and each stored in a different relation, only to be 
reassembled (often at inordinate computational expense) whenever the assembly needs to 
be manipulated. The CODASYL approach is at less of a disadvantage here; repeating 
groups can be accommodated if required, and even where subordinate items are hived off 
into separate records, the CODASYL set structure keeps all relationships explicit. 

Other problems with the relational approach include the inherent lack of ordering of rows 
in a relational table, and the limited range of data types supported. Many types of 
engineering data (such as the sequence of edges bounding a face) are inherently ordered, 
and such ordering has to be explicitly indicated in a relational database as an extra 

110 



CREATE SCHEMA "GEOMODEL" ; 

(Definition of FACE table, specifying FACE_NO and defining coefficients 
as before. NOT NULL & UNIQUE are entity integrity constraints, 
ensuring that FACE_NO is a unique identifier} 

CREATE TABLE FACE 
(FACE_NO 
A COEFF 
B COEFF 
C COEFF 
D COEFF 

INTEGER 
FLOAT, 
FLOAT, 
FLOAT, 
FLOAT) 

NOT NULL UNIQUE, 

(Corresponding definition of EDGE table} 

CREATE TABLE EDGE 
(EDGE_NO 
F COEFF 
G COEFF 

(and VERTEX table} 

CREATE TABLE VERTEX 
(VERTEX_NO 
X COORD 
Y COORD 
Z COORD 

INTEGER 
FLOAT, 
FLOAT) 

INTEGER 
FLOAT, 
FLOAT, 
FLOAT) 

NOT NULL UNIQUE, 

NOT NULL UNIQUE, 

(Link between face and its corresponding vertices now indicated by 
another table. Note that if vertex ordering needs to be specified, it 
must be indicated explicitly within each row of the table. The CHECK 
clauses are referential integrity constraints, to ensure that the face 
and vertex numbers specified in this table match with those in the 
defining FACE and VERTEX tables} 

CREATE TABLE FACE VERTEX 
(SEQUENCE_NO INTEGER NOT NULL UNIQUE, 
FACE NO INTEGER NOT NULL, 

CHECK(FACE_NO IN (SELECT FACE NO FROM FACE», 
VERTEX NO INTEGER NOT NULL 

CHECK(VERTEX_NO IN (SELECT VERTEX_NO FROM VERTEX») 

(Similarly, edge-vertex links now indicated by a table} 

CREATE TABLE EDGE VERTEX 
(SEQUENCE_NO INTEGER NOT NULL UNIQUE, 
EDGE NO INTEGER NOT NULL, 

CHECK(EDGE_NO IN (SELECT EDGE NO FROM EDGE», 
VERTEX NO INTEGER NOT NULL 

CHECK(VERTEX_NO IN (SELECT VERTEX NO FROM VERTEX»); 

Fig 5.3 A relational schema defining the same geometric modelling database as in Fig 
5.1. Here, both geometry (face and edge equations, and vertex coordinates) and topology 
(face-vertex and edge-vertex links) are represented by relations holding foreign key 
values. 

111 



Face relation 

Face no Surface equation coefficients 

F1 
F2 

a1 
a2 

Edge relation 

Edge 
no 

E12 
E34 

Equation 
coefficients 

f1 
f2 

gl 
g2 

Face-vertex relation 

b1 
b2 

c1 
c2 

d1 
d2 

Vertex relation 

Vertex 
no 

V1 
V2 

Point 
coordinates 

xl 
x2 

y1 
y2 

zl 
z2 

Edge-vertex relation 

Sequence Face Vertex Sequence Edge Vertex 
no no no no no no 

1 F1 V1 1 E12 V1 
2 F1 V2 2 E12 V2 
3 F1 V3 3 E23 V2 
4 F1 V4 4 E23 V3 
5 F2 V1 5 E34 V3 

Fig 5.4 Representation of the cube in Fig 5.2 in relationalform. 

112 



attribute value - with the (erroneous) implication that it is an inherent property of the line 
element itself. Similarly, engineering data. often form natural arrays - and arrays, being 
repeated groups, are anathema to a relatIOnal database. Again, CODASYL databases 
suffer fewer problems here, as they ~~ (indeed must) specify record ordering within 
each set, and do generally have the facilIty to handle at least one-dimensional arrays. 

5.3 Alternative database models 

The problem with the relational database approach can be simply stated. The validity of 
the approach rests on the (normally implied) assumption that each row of a relation can 
stand alone as representing a meaningful entity in.its ~wn right (e.g. a part, or supplier, or 
employee). The !llrther we depart from this SItuatIOn, the less viable the approach 
~ecomes. Hence m the extreme case ~her~ one relation holds defInitions of all straight 
lmes from all components of all drawmgs m the database, another holds all circular arc 
?efinition~, and so on, we have a situation where the relational approach is totally 
mappropnate. 

How can this situation be resolved? Two basic approaches are currently receiving 
attention. The fIrst is to modify the relational approach to attempt to overcome the 
problems outlined above. The second is to attempt to develop new database models from 
scratch. (The third possible approach, trying to modify the CODASYL model to 
overcome its limitations, does not appear to have been considered). Rather confusingly, 
workers in both areas claim to be developing what they describe as object-oriented 
databases. 

The object-oriented approach was fIrst developed as a programming paradigm, its best
known implementation being the Smalltalk language (Goldberg and Robson, 1983). 
Essentially, it regards all computations as involving a set of objects whose identity 
persists over time even though their state (or value) may change. Objects may be simple 
(containing a single scalar variable) or arbitrarily complex. However, all objects must 
conform to two constraints: objects can communicate with each other only via messages 
exchanged though a public interface; and an object's state may be changed only by a 
method (or procedure) specifIed for that class of object. Object classes typically form 
hierarchies, with subclasses inheriting properties, methods or both from the classes above 
them. The advantages claimed for the approach are that object encapsulation (predefming 
both properties and methods, and permitting data exchange only via external messages) 
provides a useful discipline, and hides irrelevant implementation details from the user. 
Inheritance of properties from classes higher up the hierarchy can also be valuable. 

The idea of representing each real-world entity by just one object is clearly an attractive 
one, particularly for engineering applications. It is therefore not surprising that there has 
been an enormous upsurge of interest in applying the object-oriented approach to the 
database fIeld (e.g. Dittrich and Dayal, 1986). Many prototype object-oriented database 
systems have been described in the literature, and a few (such as Vbase and GemStone) 
have reached the marketplace. Unfortunately there is no clear-cut defInition of what is or 
is not an object-oriented DBMS; there is no body of underlying theory as with relational 
database, and no defming standards committee as with CODASYL. 

So far at least, the greatest progress in applying the object-oriented approach to 
engineering databases seems to have come from extending the relational model - in 
particular the work on NF2 (non-fIrst nonnal form) datab<lSes reported by Dadam et al 
(1986) and Kemper and Wallrath (1987b) as part of the AIM (advanced information 
management) project, a joint venture between IDM and the University of Karlsruhe. 
These workers have extended the conventional relational model by relaxing the condition 
that all attribute types should be atomic. Instead, attribute types may include arrays, 
ordered lists - and other relations, allowing the construction of nested relations of the 

113 



Face-edge-vertex relation 

Face Surface equation 
no coefficients 

Fl al bl cl dl 

F2 a2 b2 c2 d2 

Edges 

Edge Equation 
no coefficients 

El2 fl gl 

E23 f2 g2 

E34 f3 g3 

ElS fS gS 

ES6 f6 g6 

Vertices 

Vertex Point 
no coordinates 

Vl 
V2 

V2 
V3 

V3 
V4 

Vl 
VS 

VS 
V6 

xl 
x2 

x2 
x3 

x3 
x4 

xl 
xS 

xS 
x6 

yl 
y2 

y2 
y3 

y3 
y4 

yl 
yS 

yS 
y6 

zl 
z2 

z2 
z3 

z3 
z4 

zl 
zS 

zS 
z6 

Fig 5.5 Example o/nested relation representing a geometric structure. Note the 
repetition o/data at the lowest level, an inevitable consequence o/the hierarchy imposed 
by such nesting. 

114 



type. shown in Fig. 5.5. The advant~ge ?f this approach is that arbitrarily complex 
relatIons c~ be built up, exactly nurronng the structure of hierarchically-structured 
d~tabase objects, however. complex - hence overcoming the fragmentation problem. 
Smce arrays and ordered lIsts ~e also allowable data types, it is possible to model the 
natural structure of the underlymg data without undue difficulty. The authors propose a 
query language based on extended. SQL, permitting data description and manipulation. 
Th~y alS? addre~s the vexed questIOn. of performance, ignored by most workers in the 
obJect-?nente? fIeld at ,PreseI?-t, showmg ~o~ such complex objects might be indexed, 
how hIerarchical quenes mIght be optmuzed, and how clustering might improve 
pe~ormance. The major draw.back of t~s approach - a problem shared by all object
onented approaches to date - IS that objects whose natural structure is a network not a 
hierarchy, ar.e ~till poorly modelled. An example of this can be seen in Fig 5.5, 'where 
vertex descnptIOns have to be repeated for each edge using them. However the NF2 
approach is clearly a promising one. ' 

5.4 File organization for information retrieval 

One type of information system has remained outside the mainstream of database 
development - the bibliographic information retrieval system, which aims to locate 
documents relevant to a given enquiry. Such retrieval systems, which allow users to 
search text files of journal articles or abstracts for the presence of suitable keywords, are 
now a well-established tool of the reference librarian's trade. Although individual systems 
differ to some extent, the majority accept queries interactively from a terminal in the 
form of complete or truncated keywords, and identify any documents containing those 
keywords for display or further searching. Few, if any, have made use of database 
management software, for the following reasons: 

- many such systems pre-date the widespread use of DBMS; 
- the type of data stored (mainly free text) is not inherently suitable for storing in 

the short fIXed-length fields for which the majority of DBMS were designed; 
- there is little need for data independence; 
- only a small range of transaction types needs to be supported, characterized by a 

high (but predictable) rate of retrieval transactions, a low rate of insertions, and 
the virtual absence of updates; 

- the need to provide short response times in a busy multi-user environment. 

The most common form of organization used (which can be regarded to a limited extent 
as logical rather than physical, since it can be implemented in more than one way) is the 
inverted file. Here, the documents themselves are stored as ordinary text fIles, but an 
additional index or directory file is set up, with an entry for every key word appearing in 
any document on fIle, listing the address of each document containing that key word. 
When the system is queried, the inverted fIle is searched to yield the list of documents 
containing the specified keyword. If desired, the documents on this list can b~ fetched 
and displayed one by one. Alternatively, the search can be refmed by selectmg .more 
keywords and combining the document lists associated with each keyword accordmg to 
the rules of Boolean algebra. Given suitable access paths to the invert~d. file, and me~hods 
for combining document lists, the technique can prove highly effICIent for retneval; 
hence its widespread use. It is much less efficient when new documents are added, as the 
inverted fIle has to be separately updated for every keyword in every new d?cument. 
Many variants on the inverted flie concept have been proposed (see van RIJsbergen 
(1979), chapter 4), though few have been adopted in operational systems. 

A radically different method of data organization is the clustering technique described 
by Salton and co-workers, and implemented in their experimental SMART system 
(Salton et al, 1971). This can certainly be regarded as a logical rather than p~ysi.cal 
technique, as it can be implemented in a variety of ways, inc1udin~ physical COnt1~U1ty, 
pointers, or indexes. A similarity measure is calculated for every parr of documents m the 

115 



collection, on .the bas~ of the number 0'£ keyword.s th~y share. Using the technique of 
cluster analysIs (Eventt, 1980), the entrre collectIon IS then grouped into clusters of 
simil~ d?cume~ts. E~ch cluster can then be represented in the retrieval system by its 
centrOId m k-dimenslOnal document space, where k is the total number of distinct 
keyword~ present ~ the document. colle~tion (eff~ctively a single dummy document 
representmg the entrre cluster). An mcommg query IS frrst matched against each cluster 
centroid to find the most similar cluster(s), and then against individual documents in the 
clu~ter. Judging by the ~MART experie~ce, t.he .technique works well for relatively small 
static document collectIOns, and could m prmclple be extended to larger collections by 
inclu~g more than. two levels in t~e cluster~g hierarchy. However, the difficulty of 
adaptmg the technique to dynarrucally-growmg collections (when should a new 
document be added to an existing cluster, and when should it trigger off the creation of a 
new cluster which could necessitate substantial reorganization of the entire database?) 
has prevented any widespread adoption of the technique. 

5.5 Database requirements of present project 

The database requirements of a retrieval system for completed drawings are fortunately 
less stringent than those of a comprehensive drawing management system which has to 
support the creation, modification and storage of active drawings. For the present project, 
flexibility and ease of schema alteration were minor considerations - the structure of 
completed drawings is by defInition stable. The availability of a high-level query 
language like SQL was of no importance at all, since its expressive power is far too 
limited to be of effective use in graphical query formulation (see chapter 7 below). 
Similarly, facilities for integrity and concurrency control were not of major importance. 
The main criteria were therefore considered to be: 

1. Ability to model the natural structure of the data without distortion. This is an obvious 
but crucial test for any DBMS. 

2. Ability to provide access to each stored data item via any of its attributes, not just via 
designated keys. Data access paths for experimental systems are impossible to predict 
with certainty. 

3. Availability of reliable programming language interfaces. Much of the programming 
for the prototype system has inevitably to be done at a relatively low level; different 
parts of the system might require development in different languages. 

4. Ability to deliver reasonable performance. Shape matching is known to be a 
computationally expensive process, and any prototype system would probably have 
to be developed on a busy multi-access machine where economy of resource 
utilization was essential. 

A fmal constraint was that any database software used would have to be already available 
on existing hardware, since no funds were available for hardware or software purchase. 
This effectively narrowed the choice to RdbjVMS, a relational system, or V AX/DBMS, a 
CODASYL system. The third option, not to use general-purpose database software at all, 
but to create the set of interlinked files required to implement one of the types of 
specialist file organization discused in section 5.4, was rejected early on because of the 
volume of essentially unproductive work involved in writing file handling routines. 
(However, an investigation of the applicability of clustering shapes on the basis of 
features such as those described in chapter 4 remains an interesting possibility for the 
future). 

1. Both DBMS were capable of modelling all the data structures required for the 
prototype database; however, the CODASYL database was marginally more suitable 

116 



for .mod~l1ing the drawing-boundary-line se~ment hierarchy, and coped much more 
easily wIth array-type extracted features and inherently ordered line segments. 

2. Both D~MS p~ovided a variety of access paths, allowing any record to be retrieved via 
any of Its attrIbutes. 

3. Both DBMS had adequate interfaces to conventional programming languages such as 
COBOL, FORTRAN and PASCAL. . 

4. Preliminary investigations .suggested that the CODASYL DBMS would give better 
performance than the relatIOnal, for two reasons - both inherent in the underlying data 
model. 

Firstly, as discussed in section 5.2, the relational DBMS would fragment the natural 
drawing-boundary-line segment hierarchy, storing all drawing records in one relation 
all bound~ records in another, and all line segment records in a third. Th~ 
reconstruc~IO~ of the co~plete gr<?uI? of records making up a single drawing would 
thus be a SIgnificant retneval task m Itself. Rdb/VMS does allow a limited amount of 
physical record clustering, allowing (for example) all segment records belonging to a 
given boundary t~ be housed on t~e same physical database page as the boundary 
record, thus reducmg the computatIOnal overhead to some extent. Unfortunately this 
mechanism cannot cope with more than one level of hierarchy. The CODASYL 
database V AX/DBMS, by contrast, allows the database designer to specify two or 
more levels of physical record clustering via set membership, effectively allowing the 
entire group of records to be read into main storage in a single operation. 

Secondly, line segments are invariably processed in a fixed order, which can be 
readily implemented in the CODASYL DBMS by set ordering. Traversing a drawing 
boundary thus becomes a simple matter of following a pointer chain in main storage. 
By contrast, the relational DBMS has to retrieve the complete set of boundary 
segments and then sort them into order every time it requires access. 

Perhaps surprisingly, then, the CODASYL database management system V AX/DBMS 
was chosen in favour of its relational rival as the development vehicle for the prototype 
database. It should be noted that this does not imply that it is an ideal platform for a 
shape database system. In the long run, DBMS based on the NF2 model would probably 
prove superior - though the possibility of adapting the CODASYL model to overcome the 
limitations discussed above should not be ruled out. 

5.6 Implementation of the prototype database 

5.6.1 Logical data modelling 

Data modelling for this application is a relatively straightforward process. Three 
geometric entities can readily be identified, forming a natural hierarchy - the drawing 
itself, its constituent boundaries, and their constituent segments. To these must be added 
two entities derived from the feature extraction process described in chapters 3 and 4; the 
boundary level, representing a specific route of traversal of the line segment tree making 
up a boundary, and the family, a group of associated inner boundaries. It could be argued 
that these derived items (particularly boundary level) are merely views of other types of 
data rather than entities in their own right. However, the large number of feature values 
(mean and variance of segment length, arc angle, etc) which are clearly associated with 
the boundary level suggests strongly that this should be classed as an entity in its own 
right. Most relationships between entities are obvious except for the position of the 
segnlent entity, which could logically be linked either to the boundary or to the boundary 
level entity. As discussed below, this is effectively an implementation decision. The 

117 



preliminary entity-relationship diagram for the prototype database is thus as shown in Fig 
5.6. 

Assignment of attributes to the appropriate entity type is also straightforward in most 
cases: 

- drawing: identifying infonnation about the drawing itself, plus some derived inner 
boundary features; . 

- boundary: identification and position infonnation, together with some derived shape 
features; 

- boundary level: the majority of derived shape features; 
- segment: length, arc & discontinuity angles, and parent features; 
- family: type and number of constituent boundaries, plus derived inner boundary 

position features. 

Dru Wing 

Boundury 

SegMent ~----
/ 

F UMily 

Level 

Fig 5.6 Preliminary entity-relationship diagram/or prototype database. 

118 



The decision to assign properties such as arc/line ratio, length/width ratio and shape class 
to the boundary rather than the boundary level entity was taken because these were taken 
as overall indicators of boundary shap~ ~and in fact used mainly as preliminary indicators 
that a b,?~dary shape looked ~ronus~g). rather th~ detailed descriptions of shape 
charactenstlcs. Hence there was lIttle pomt m computmg and storing them separately for 
each boundary level. 

5.6.2 Physical implementation 

Mapping these structures on to a V AX/DBMS conceptual schema is again a 
straightforward task, except for the extracted features (arc and discontinuity angle 
triplets, segment length/arc angle distribution, and parent feature composition) which 
fonn multi-dimensional arrays. While it would have been possible to hold these as 
repeating groups within boundary level records, the arrays would have been very sparsely 
populated (for example, the discontinuity angle triplet feature can take 252 possible 
values, only 4 or 5 of which are present in most boundaries). It was therefore decided that 
further nonnalization was justified in the interests of economy of storage (particularly as 
this also has implications for speed of processing); additional entities were thus created 
both for these and the inner boundary position features, for which the same arguments 
applied. 

For similar reasons, it was decided to link all line segments directly to their parent 
boundary record rather than via boundary level records. This means that each segment 
needs to be stored once only. All segments making up a given boundary are linked into a 
single CODASYL set; this can then readily be traversed at any given level using the 
procedure outlined in section 3.2.3. The alternative, separately storing the sequence of 
segments making up each boundary level, was rejected because this would have meant 
storing many of the segments several times over, once for each level in which they. 
participated. This would have virtually doubled the size of the database. 

One fmal addition was caused by the desire to allow a search to be restricted to a single 
shape class if required. This could most easily be achieved by creating a shape class 
record for each of the classes identified in section 4.4.2, and using this as set owner to 
link all drawing records within its shape class. The fmal entity-relationship diagram for 
the database is thus as shown in Fig 5.7. 

The physical layout of a database on disk is often a· crucial factor in detennining its 
performance in use. Unfortunately, a great deal of information is needed about database 
usage before reliable decisions can be made about record placement or access method 
specification. In the absence of such information, the decision was taken to use system 
defaults for record placing and access methods for the prototype database, with two 
exceptions: 

119 



Sho.pe clo.ss Fo.Mily 

/ ~ / ~ 
Dro.Wing Position 

Feo.ture 

/ ~ 

Bounao.ry / Bounao.ry 
~ level 

/ ~ / ~ 
SegMent Sho.pe 

Feo.ture 

Fig 5.7 Final entity-relationship diagram/or prototype database 

120 



1. Two separate database areas have been defmed, one to hold geometric infonnation 
(drawing, boundary and segment records), and one to hold derived feature infonnation 
(boundary level, family and feature records). Drawing, boundary and segment records 
are then clustered as a two-level hierarchy, on the basis that most segment matching 
requires sequential segment traversal for each drawing boundary in tum. This can be 
achieved with a single disc read provided all such clustered records· can be contained 
on a single database page. For similar reasons, boundary level and associated 
boundary feature records are clustered, as are family and associated drawing feature 
records. 

2. In order to maximize the chances of accommodating a complete drawing hierarchy on 
one database page, the database page size has been increased from its default of 1 Kb 
to 4 Kb. Given record sizes of 84 bytes for drawing records, 44 for boundary records, 
and 28 for segment records, this allows drawings of up to (say) 6 boundaries and 120 
line segments to be accommodated on a single page. Over 90% of the drawings in the 
test database fall into this category. 

121 



CHAPTER 6. RETRIEVAL CAPABILITIES 

6.1 Introduction 

For a d~ta~ase to b,e of use ~ locating ~::r~tin~ designs possessing desired shape 
ch~actens?cs, a vanety, of retnev,al capabilItIes IS almost certainly needed, While a 
d~SI~ engI?eer .may be mter:sted ,m the overall shape of a part, a production engineer 
WIShing to .I?entIfy a p~ famil~ ~Ith group technology in mind may wish to identify all 
parts requmng a partIcular drillmg pattern, or all parts which can be turned on a 
particular machine. In a field where information needs are so ill-defined, flexibility is 
clearly an important requirement of any retrieval system. 

Many useful parallels can be drawn between a shape retrieval system and bibliographic 
information retrieval systems of the type discussed in section 5.4. Such systems, though 
in widespread use, do in fact have a number of significant limitations, largely springing 
from the fact that both the writer of an article and its would-be reader deal in abstract 
concepts, while the retrieval system can handle nothing but character strings representing 
words or perhaps classification codes. The mapping of one on to the other is a chancy 
process, and one that can in some ways be compared to the process of feature extraction 
in a shape retrieval system. The text strings used to characterize a document, whether 
taken from a controlled vocabulary (where index terms must be chosen from a restricted 
list) or free text, are effectively the features by which a document is characterized. The 
process of information retrieval is thus one of translating an information need into a set 
of desired features, followed by a search of a suitable collection to identify documents 
possessing those features. Despite obvious differences, shape retrieval is an analogous 
process, and both types of system share a number of common problems, particularly the 
difficulty of specifying a user's information needs, and of determining whether an item is 
actually relevant to a given query. This theme will be taken up again in chapter 8. 

6.2 Types of Shape Retrieval 

In order to develop any worthwhile retrieval system, one needs to formulate some 
hypotheses about the types of retrieval the system needs to support. It can be useful in 
this context to categorize these different types of retrieval, and then to identify the means 
by which they might be provided. Tamura and Yokoya (1984) have already attempted 
this task in the context of image databases in general, distinguishing three different levels 
of retrieval: 

Levell: retrieval by an identifier 
Level 2: retrieval by a combination of plural keys 
Level 3: similarity retrieval by a given sample. 

For shape databases, one can usefully carry this process further, an~ define six different 
types of retrieval (though it is not necessarily helpful to order them mto levels as Tamura 
and Y okoya have done): 

Type A, retrieval by an externally-assigned identifier (Fig 6.1),.c?rresponds to Tamura's 
Levell. The problems involved in retrieval at this level are tnvIal. 

Type B, fmding an exact match of an existing structure (Fig 6.2), has n? dir~ct 
counterpart in Tamura's scheme. It could however be important for regIstratIOn 
purposes (answering the question "have we made this part before?") .. It is not a 
difficult problem to solve if objects can all be represented exactly, and ill the same 
canonical form. The query structure is then simply reduced to the ,same fOI?TI of 
representation as objects in the database, and string- or graph-matchmg algonthms 
used to check whether representations are identical. 

122 



Query 
input 

Display part no 236 

236 

Results 
displayed 

Fig 6.1 Type A retrieval (by externally-assigned key) 

Display part identical to 

236 

Fig 6.2 Type B retrieval (identity matching, with query input as a sketch) 

Display part containing 

236 

Fig 6.3 Type C retrieval (finding part containing given partial structure) 

123 



In practice, this type of retrieval is unlikely to prove useful unless the query is 
expressed as a rough ~ketch, the sy~tem the~ displaying a fmished drawing in answer 
to ~e q~ery. OtherwIse the use:r ~s effecnvely required to design an object in its 
entirety m order to test whether It IS on fIle. Where this is the case, or where objects 
have to be represented as ~ r<l?g~ of toler<l?ce values, the process effectively turns into 
the more complex one of similanty matching, discussed under Type F below. 

Type C, id:ntification of all.objects w~ch partly m~tch a query Structure (Fig 6.3), again 
has no direct. counterpart m Tamura s ~cheme. It IS probably of more practical use than 
Type B re~neval, but harder to achi:ve. It require.s successive matching of some 
representation o~ ~e query. shape ag~st all potentIally-matching segments of each 
stored shape. This IS effec~Ively a parsmg process, involving successive matching of 
s~or~d . shape. eleJ?1ents ~Ith each element .of the query shape using appropriate 
similarIty estimatIon, strmg- or graph-matching algorithms, and inevitably entails a 
great deal of bac~-tracking. Representing objects in canonical form is of limited help 
here, as the requITed sequence of shape elements could be present anywhere in the 
object's stored representation. There is still advantage in ensuring that every individual 
shape element has an invariant representation, as this can greatly simplify the 
operation of the matching algorithms. 

Achieving adequate performance for this type of retrieval with a database of any size 
is also a problem. Some means has to be found to screen out obviously unsuitable 
shapes, limiting the computationally-expensive process of string- or graph-matching 
to a small subset of the whole database. This can best be achieved by analysing all 
object representations on fIle for the presence of a suitable set of easily-matched shape 
features (such as number of right-angled vertices or acute-angled arc segments, as 
described in chapter 4 above), identifying those present in the query fragment, 
screening out those stored shapes lacking these features, and searching only the 
remainder. If the database can be indexed on these features, very rapid retrieval can be 
achieved. 

Type D, retrieval by Boolean combinations of features (Fig 6.4), corresponds to 
Tamura's Level 2. The user specifies a set of desired shape features (by using 
keywords, or choosing from a text or icon-based menu), and the system retrieves all 
objects meeting the specified criteria. This type of retrieval can readily be provided if 
feature extraction has taken place as discussed under Type C above - in fact, it 
corresponds to the screenout phase of Type C retrieval. 

If a predetermined set of features has been defined (such as number and composition 
of protrusions and depressions), feature extraction can be performed once for all when 
each object is added to the database, and indexes created on these feature values, thus 
permitting rapid retrieval. However, one disadvantage of a fIxed set of features like 
this is that (like controlled vocabulary in a text retrieval system) it may have 
insuffIcient precision to defme some kinds of query, particularly where an unusual 
type of structure is being sought. The freedom to defme additional retrieval features, 
either when new types of object are added to the database, or when an unusual query 
is encountered, would clearly be desirable. Run-time feature generation would be an 
extremely difficult facility to implement. As discussed in section 5.2 above, most 
existing database models fmd it hard to cope with the run-time creation of new data 
types. While this problem could be circumvented by defining standard primitives from 
which features of arbitrary complexity could be built, it is hard to see how a system 
could be given sufficient intelligence either to recognize when a new feature was 
needed, and then to defme and extract a suitable feature from query and stored shapes 
- or to guide an end-user through the same task. 

124 



Query 
input 

Display part with features: 

rectangular block 
2 parallel holes 
1 groove 

236 

Results 
displayed 

Fig 6.4 Type D retrieval (by Boolean combination offeatures) 

Display code for part identical to 

Part no = 236 

Opitz code = 80503 

Fig 6.5 Type E retrieval (identifying part family) 

Display part similar to 

000 
236 

Fig 6.6 Type F retrieval (by similarity estimation) 

125 



Type E, identifying the part family to w~c~ a. query. structure belongs (Fig 6.5), is in 
some ways related to Type F, general sunilanty retrIeval, though it aims to generate a 
class. code as output, n.o~ a se~ of drawing identifiers. The task here is similar to 
clasSICal pattern recogrutIon; gIven an unknown object (the query structure) which 
class d?~s it fall in~o? The dif:f~iculty here arises mainly from the fact that most'pattem 
recogrutlOn tasks mv?lve as~Ignrnent to one of a fairly small number of possible 
~lasses (rep~rte? s~dIes of ~cr~ and chromosome recognition, for example, have 
mvol~e~ asSIgrung .unknown .objects to or~e of no ~ore than about five categories). 
Classifymg a workpIece according t~ the OpItz c.ode IS a far more difficult process; the 
code .runs .to more ~an 10 000 pOSSIble .categones, and (see section 4.2.1) part of the 
clasSIfication task mvolves the use of Judgement about the function as well as the 
shape of indi~idual shape fea~e~. A hierarchical pattern classifier could in theory be 
employed, usmg one set of cntena to assess whether the part was rotational or non
rotational, then another set to establish the presence or absence of appropriate internal 
machined features, and so on, but the size and complexity of the task - and the number 
of examples needed for the "training set" of examples needed to establish the ground 
rules - render it an unattractive option. 

The results from published studies of this kind have been varied. Moayer and Fu 
(1976) attempted to classify human fmgerprints in this way, with distinctly mediocre 
results. Kyprianou (1980) achieved much more intuitively satisfactory results in 
classifying rotational parts into subclasses on the basis of length/diameter ratios, 
tapering and the presence of machined features, though his system generated its own 
shape classes using the technique of cluster analysis, rather than trying to fit a pre
existing code such as Brisch or Opitz. 

Type F, similarity retrieval (Fig 6.6), corresponds to Tamura's Level 3. This form of 
retrieval - locating in the database the objects most similar to a query object - is both 
potentially the most useful and the most difficult to specify in detail. Engineers asked 
to defme what they mean by "most similar" fmd it very difficult to explain to anyone 
else just what they mean by this term. It may be that they can define similarity only 
after the event, when they have seen some search results displayed. In general terms, 
similarity retrieval involves selection of suitable shape features, definition of 
similarity measures, and choice of suitably efficient algorithms for matching the query 
object with those in the database. The mechanics of similarity estimation are discussed 
below, in section 6.3. 

Though these types of retrieval are distinct, the techniques for their implementation 
overlap to a large extent, implying that a multi-purpose system capable of providing all 
these types of retrieval (with the possible exception of Type E) could readily be 
developed. Whatever type of retrieval is provided, any practical engineering database 
would need to combine geometric and non-geometric data (materials, cost, weight, etc.). 
This should pose no special problems if geometric features are extracted as described 
above and entered in a database alongside non-geometric features; both types of feature 
could then be combined freely to formulate queries. The main design challenge here 
centres around the development of a suitable user interface to handle multi-media query 
input and results display. 

6.3 Mechanisms for shape retrieval 

6.3.1 General observations 

The parallels that have already been drawn between shape retrieval and both 
bibliographic retrieval and pattern recognition can be usefu11~ extended to the pr~cess of 
query matching. As with feature extraction, the literature m both areas descnbes an 

126 



eno~ous variety of I?atc~g teclmigues, again presenting a bewildering choice of 
possIble models. The discusslOn below IS necessarily selective, and covers only a fraction 
of l?ot~ntially relevan.t papers on the subject. The classification of methods is highly 
subJective, and comphcated by the fact that few authors restrict their systems to a single 
type of method (a point worth noting in itself). 

6.3.2 Boolean searching 

This technique is well established in the bibliographic field. Effectively, it involves a 
search for ~e pre~ence or ~bsence of .specified combinations of attributes (or attribute 
values). Objects will be retneved only if they possess the exact combination of attributes 
specifie~. Objects ar~ normally retrieved into temporary sets which can be printed out on
or off-lI?~' or combmed .by the searc~er to re~ine the .search if the initial output looks 
unpronusmg. The matching process IS very slffiple, smce most systems are based on 
inverted fIles which effectively provide an index to every word in the database. A search 
for a given combination of terms is thus generally implemented as a comparison of the 
item lists for each term specified, a process that can be made very efficient. 

This search paradigm is obviously relevant to Type D retrieval as defmed above, and 
could readily be implemented if the types of features likely to be of most use in retrieval 
could be identified and presented to the user in text or iconic form. As discussed below, 
this is not an impossible objective. Its relevance to other kinds of retrieval is more 
problematic. When estimating the similarity between query and stored shapes, one needs 
to be able to take a combination of feature values into consideration. It is unlikely that the 
presence or absence of a single feature will of itself determine a shape's suitability, 
except as a way of screening out obviously unsuitable shapes as discussed under Type C. 
Despite its widespread use in other forms of information retrieval, then, this search 
method is likely to have limited applicability to shape retrieval systems. 

6.3.3 Similarity matching 

6.3.3.1 General principles 

The general principle of similarity matching is very simple, given a set of objects and a 
set of properties characterizing them. A measure of the similarity between any two 
objects i andj (where i andj can be two stored items or a stored item and a query) can be 
computed by some comparison operation performed on their property vectors P j and Pj' 
This may be a simple count of the number of properties the objects have in common, 
some function computed directly from differences in corresponding feature values, or a 
complex sequence of operations on properties that are themselves vectors. The end
product is in general a measure of similarity (ranging from 0 where objects have no 
features in common to 1 for identical objects) or distance (where a value of 0 indicates 
that two objects are identical, and there is in general no upper limit) between objects, 
which can be used either to rank objects in order of similarity or to reject objects with 
similarity below a specified cut-off value. (Note that for a measure D to qualify as a.tI"?e 
distance measure several conditions need to hold, including the commutatiVIty 
relationship D .. =' D·· and the triangular inequality DjJ• <= Dik + DJ•k ). Similarity and 

IJ JI ., . d 
distance measures of this kind have been used both m pattern recogrutlOn an 
bibliographic information retrieval systems. 

6.3.3.2 Simple feature matching 

One of the earliest examples of similarity retrieval in the bibliographic field was the 
experimental SMART system (Salton, 1971), designed as a vehicle to test alternative 
document indexing approaches. Unlike most commercial information r.etriev~ systems, .it 
aims to rank all documents in a test collection for relevance to an mcommg query m 

127 



order that as accurate an idea as possible can be gained of the system's retrieval 
effectiveness. The measure nonnally used to assess similarity between a document and a 
query is the cosine correlation, a measure of the correlation between the occurrence of 
index tenns in a query q and a document d: 

C(d,q) = 
T T 

L (Dt
2

) * L (Qt
2 » 1/2 

t=l t=l 

where D t is the occurrence of tenn t in the document, and Qt its occurrence in the query, 
and T is the total number of tenns. This is a true similarity measure, ranging from 0 if 
document and query have no tenns in common to 1 if they share an identical set of terms. 

Similarity estimation is an essential fITst step in cluster analysis (see section 6.3.4), and 
the practitioners of this art have studied the question of similarity and distance measures 
in some detail (Everitt, 1980). Similarity measures suggested for binary data (features 
which are either present or absent) are the simple matching coefficient (a+d) / (a+b+c+d) 
or Jaccard's coefficient (a+d) / (a+b+c), where a represents the number of features which 
the objects in question have in common, b and c the numbers of features present in one 
object but not the other, and d the number of features absent from both objects. The 
choice between coefficients depends largely on the significance to be placed on negative 
matches. For quantitative data, a possible similarity measure is Gower's coefficient 

s· . = -------------------
~J 

where Xik is the value of feature k in object i, Rk is the range of values taken by feature k, 
and Wi'k is the weight reflecting the validity of the comparison between i and j over 
feature~ k (1 if valid, 0 if not). However, Rk is very sensitive to extreme values of k, and a 
more robust comparison can often be obtained by calculating a distance measure between 
i and j such as the Euclidean distance 

or the absolute metric 

128 



In either case, it is normal to transform all raw feature· values to zero mean and unit 
standard deviation, to give each feature equal weight. 

Many workers in the field of pattern recognition have used techniques of this kind 
tho~~h normally ~ part of a more com~lex system such as that described by Yachida and 
TSUJI (1977), which used such techniques as the fIrst stage of a hierarchical parts 
recognition system combining the use of global and local shape features, or the context
driven template matcher of Ben-Bassat and Zaidenberg (1984). which selected 
appropriate sets of features for matching on the basis of previous comp~sons. 

Clos~r !O th~ shape retrieyal fiel~, Lee (19~O) has suggested similarity measures for 
classIfymg tnangles as equilateral, Isosceles, nght-angled or other, and quadrilaterals into 
squares, parallelograms, and so on. He also presents a series of similarity measures for 
classifying human chromosomes, but these are so specific that they are virtually 
impossible to apply to general similarity estimation. 

6.3.3.3 Matching using transformations 

To some extent, it can be argued that all similarity estimation involves some element of 
mathematicaJ. transformation. However, a number of specific types of transformation 
have been repeatedly used by different groups of workers. Most of these, such as the 
Hough (Hough, 1962), Fourier (Zahn and Roskies, 1972) and state-space (Mokhtarian 
and Mackworth, 1986) transformations, are of prime use in recognizing shape features 
from noisy digitized images, and hence of little use in the present context. However, the 
use of a much simpler transformation, using local segment parameters to generate plots 
of 9, the cumulative curvature, against s, cumulative arc length, appears to have much 
more relevance. 9-s plots have been used by Perkins (1978) and Turney et al (1985), 
among others, as a more robust alternative to segment-by-segment matching for both 
complete and partial boundary matching. The use of this technique overcomes many· of 
the problems of defining an edge discussed in section 2.5.1. 

6.3.3.4 Stochastic methods 

The prime technique discussed under this heading is statistical pattern recognition (Chen, 
1973). The basic aim of the method is object recognition via classification - though it 
should be noted that (unlike the clustering techniques discussed below) the method needs 
to be used in conjunction with a pre-existing classification scheme. A large initial feature 
set is selected, and the values of these features analysed within a training set of items 
whose classification is known, with the aim of identifying a small set of features with a 
strong statistical association with a particular class, or more specifically with the power 
to discriminate between classes .. Unknown items subsequently encountered can then be 
classified by analysing for the same features, and then predicting probable class 
membership using discriminant analysis or similar methods. Statistical methods have 
been used successfully in a number of areas, including OCR (Greanias et al, 1963), 
radiodiagnosis (Kruger et al, 1972) and classification of blood ce~~ (~ui et al, ~977). 
Their usefulness in shape retrieval seems limited, however - classifIcatIOn alone IS not 
capable of providing the range of retrieval capabilities discussed above. 

Other stochastic techniques have been described in the literature, such as the shape 
matcher of Bhanu and Faugeras (1984), which attempts to matc~.unknown an~ reference 
shapes by assigning vertex labels so as to minimize the pto?abihty of lo~al ffilsmat~hes. 
This work has limited relevance to the present project, WIth one pOSSIble exception -
matching of inner boundary patterns. 

6.3.4 Clustering 

The aim of cluster analysis, as discussed in section 5.4, is to generate a complet~ly 
objective classification of the objects under investigation, based purely on the propertIes 

129 



of those objects. A similarity measure is computed for each pair of items in the 
collection, using measures of the type described in section 6.3.3.2. An item-item 
similarity matrix is then generated, and items aggregated into clusters on the basis of 
their ~imilar~~ to e~c~ other. As the ~eshold su:marity for joining a cluster is relaxed, 
new It~ms JO~ eXl~tmg c1u~ters,. which may m turn merge with each other, thus 
generat~g a h!erarchi~al cl~sificatl?n or dendrogram. The technique was fIrst applied to 
the classificatIon of bIOlogICal specImens (Sokal and Sneath, 1963) but has since found 
adherents both in the information retrieval field (e.g. Salton, 1971),. and the pattern 
recognition fIeld (Duda and Hart, 1973). 

While clu~tering alone c.annot provide th~ full range of retrieval capabilities required by a 
shape retneval system, It could have an Important part to play in shape classifIcation or 
similarity retrieval (types E and F as defined in section 6.2 above), especially when 
combined with a suitable query interface (see section 7.2.4 below). Rather than 
performing a sequential search of the entire database, or comparing lists of drawing 
identifIers in an inverted me, a system based on clustering could identify the cluster most 
similar to a given query, and allow users to browse through individual drawings within 
that cluster, selecting those they considered most useful. Given that most people seem to 
be able to judge shape similarity in a fraction of the time it takes to read an item of text, 
this could prove the method of choice for small to medium-sized systems - though the 
problems of coping with additions to the shape database (see section 5.4) cannot be 
ignored. 

6.3.5 Syntactic pattern recognition 

The fundamental axiom of syntactic pattern recognition (Fu, 1982) is that all images are 
made up of primitives whose relationship with each other can be described by a formal 
language, or shape grammar. Suitable parsing algorithms can thus be devised either to 
extract desired features from image descriptions or to recognize patterns of image 
elements common to both unknown and reference structures. A wide variety of 
applications has been reported,ine1uding the characterization of bubble-chamber 
photographs in particle physics (Shaw, 1970); the automatic classification of human 
chromosomes into median, submedian or acrocentric on the basis of their digitized out 
lines (Lee and Fu, 1972); and the automatic recognition of aircraft type from silhouettes 
(You and Fu, 1979). This last paper is of particular interest for its use of attributed' 
grammars, which augment normal rewriting rules with additional semantic rules, making 
it possible to pass on attribute values from drawing primitives (or terminal symbols) such 
as individual boundary vectors to compound structural features (non-terminal symbols) 
such as tail assemblies. Some use has also been made of higher-order shape grammars 
such as web, plex, graph and tree grammars (Fu, 1982; Lin and Fu, 1984) in areas such as 
fingerprint classification (Moayer and Fu, 1976), though the results obtained hardly seem 
to justify the increase in complexity involved. 

The use of syntactic pattern recognition techniques in engineering has already been 
discussed (Section 1.6). Kyprianou's (1980) use of a pattern grammar was clearly useful 
in allowing recognition of local shape features such as slots, bosses and pockets. ~e 
later workers such as Choi et al (1984) and Henderson and Anderson (1984) did not 
specifIcally devise shape grammars, they clearly made use of syntactic co~cepts in 
defIning and recognizing local shape features for machining. Where syntactIc pattern 
recognition techniques appear to have been less successful is in reco~izing gl?bal shape 
properties such as symmetry, parallel edges, or repeated features, which are likely to be 
important in feature-based retrieval. It is not clear that any major advantage stems fro~ 
slavish adherence to the syntactic (or any other single) method. Most recent advances m 
the fIeld seem to have come from the application of grammatical concepts where 
appropriate, within the context of more general methods. 

130 



6.4 Design criteria for a prototype shape retrieval system 

A number of conclusio~s can be drawn from the preceding discussion. Firstly, while a 
prototype system could m theory attempt to offer all types of retrieval capability except 
p~r~ap~ Type E: the s~gle most use~ type. of capability to offer would be Type F, 
similarIty m~tc~g. This ',Vould auton;t~tlcally mclud~ .Type B, identity matching (though 
not necessarily Its sketch mput capabilIty). If the abilIty to match incomplete as well as 
complete qu~ry shapes ',Vas provided, this would e~ectively also allow Type C, partial 
~hape matc~g. Evaluat~on of system perfonnance m response to Type C queries would 
m turn provIde the basIS for development of Type D (Boolean feature combination) 
capabilities. 

This implies strongly that the prototype system needs to use one or more of the 
similarity-matching techniques outlined in section 6.3.3. There appears to be little 
justification for building Boolean search facilities into the systeinat present, and· no 
advantage in using techniques of statistical or syntactic pattern recognition - the fonner 
lacking sufficient discriminating power, and the latter likely to prove computationally 
very expensive without any guarantee of good results. As observed above, clustering 
could prove a useful way of improving system perfonnance in the future, but should be 
considered as an enhancement of other similarity-matching techniques rather than as a 
substitute. It also has the problem that objectively evaluating the results of a clustering 
technique is fraught with difficulties. 

The choice between different similarity-matching techniques, and indeed between the 
different feature types discussed in chapter 4, is more problematical, since no clear-cut 
guidelines emerge from a study of the literature. It was thus decided that the way forward 
would be to create a prototype system capable of supporting a wide range of feature types 
and similarity-matching paradigms, effectively acting as a test-bed in much the same ~ay 
as the SMART system had done for text retrieval twenty years before. 

The design criteria for such a system thus include: 

1. The system must be able to support Type F retrieval as defmed above (this 
automatically includes Type B), and preferably Type C as well. 

2. The system should be able to accept query specifications in the fonn of complete or 
incomplete shapes drawn from the same domain as those stored in the database. 

3. The system should be capable of matching queries at a range of diffe~ent levels (e.g. 
matching outer boundary shape only, outer boundary shape plus moer boundary 
positions, or outer and inner boundary shapes). 

4. The system needs to be able to support a variety of shape-mat~hing. paradigms, using 
as wide a range as possible of the feature types charactenzed m chapter 4, and 
capable of extension to handle other feature types where necessary. 

5. Results using different shape-matching paradigms must be comparable, thus ~owing 
valid conclusions to be drawn on their comparative effectiveness. If pOSSIble, the 
system should rank retrieved shapes in order of s~ilarity in ~he same way as the 
SMART system, thus allowing the SMART retrIeval effiCIency measures (see 
Chapter 8) to be used if desired. 

6. While computational efficiency is not a major consideration, .matching algorithms 
which are known to be inefficient should be avoided where pOSSIble. 

Criteria for interface design are discussed separately, in Chapter 7. 

131 



6.S Capabilities of the prototype system 

The above crit~ria were reflected in the design of RElRIEVE, the program which 
perfonns matchin¥ b~tween query an~ stored shapes. This program accepts queries in the 
fonn of fIle~ specifymg cOl?plete or .mcomplete query shapes, together with a statement 
o~ the run-tm;te sear~h options requrred. It then matches the query shape successively 
wIth all (or, if requrred, a subset of) s~ored ?rawings, computing a distance measure 
be~ween the. query an~ each sto~ed ~awmg u~mg the specified matching technique, and 
builds up a lIst of retneved drawmgs m ascending order of distance from the query shape 
This list can be printed when matching is complete, or used to generate a graphicai 
display of retrieved shapes. 

Queries are submitted to the program as files for two reasons - firstly (as discussed in 
chapter 7), ~e process of graphical query fonnulation, and subsequent translation of the 
~uery ~hape mto the same fonnat as the shapes stored in the database, is a complex one, 
mvolvmg several sepcu:ate program ~odules. The most effective way of interfacing 
between query fonnulauon and ~atc?illg pro~~s is to use intennediate files. Secondly, 
some reusable query representatIOn IS essential if the same query is to be re-run several 
times using different search parameters, to compare the effectiveness of alternative 
matching procedures. 

As discussed above, the prototype version of the system is intended as a test-bed for 
comparing the retrieval effectiveness of alternative feature sets and matching techniques. 
The range of alternatives offered at present is meant to be illustrative rather than 
exhaustive. It is expected that this range could usefully be extended in the future. TIuee 
basic types of search are offered at present, though many variations of each are permitted. 
These comprise global feature matching, local feature matching, and what will be 
referred to as segment matching, effectively a form of 9-s matching as discussed in 
section 6.3.3.3. Each can be used for matching of outer boundaries only, or for matchfug 
inner boundary positions or shapes as well. 

Global feature matching is, as one might imagine, based on the global features defmed 
in section 4.4.2, plus (if appropriate) inner boundary position features 1 - 5 as defined in 
section 4.4.4. It relies on computing a distance measure (a true distance measure, as it is 
based on Euclidean distances between feature values) between query and stored shape . 
boundaries based on nonnalized differences between global feature values from both 
boundary and boundary level records. All query and stored shape boundary levels are 
examined, in the sequence specified below (section 6.6.3). 

Local feature matching uses a combination of the local features defmed in section 4.4.3, 
plus inner boundary features from section 4.4.4 if appropriate. Two alternative means of 
calculating difference measures (almost certainly not true distance measures in this case) 
are used. The fIrst, referred to below as local matching, is basically analogous to global 
matching, aiming to assess overall similarity between query and stored shapes. It 
computes a difference measure on the basis of differences in frequency of each feature 
present in either query or stored shape, and would therefore tend to exclude shapes 
containing large numbers of features not present in the query. The second, existence 
matching, works on the principle that a shape containing specifIed features should be 
retrieved however many additional features it contains. In this case, a tally is kept of the 
number of query features present in the stored shape, and used to compute a difference 
measure as specifIed below. As with global matching, all. query and stored shape 
boundary levels are examined in tum whichever method is specifIed. 

Segment matching aims to compute difference measures between query and stored 
shapes by measuring the differences between their 9-s plots at co~p.arable boundary 
levels. As observed above, this means of searching should be less sensItIv~ to changes J? 
boundary segment composition. It also provides a test of the hyp?~eSIS that there .IS 
value in trying to cast shapes into canonical fonn; if the hypotheSIS IS correct, a valId 

132 



difference measu~e can be obt~ed by ~omparin~ query and stored shapes just once at 
each le::vel, startmg ~rom theIr can?rucal startmg point. (The standard method of 
comparmg 9-s p~ots. mvolves repeatm~ the comparison process using each possible 
boun?ary st~ p~mt m turn, a computatIOnally expensive process). Again, a number of 
run-ttme optIOns IS offered. 

Finally, combined matchi~g may be ~ecified. This uses one of the feature-based 
methods ~global, l~cal, or eXIstence matching) as a preliminary screening search (the user 
can specify a maxtmum n~ber of shapes, a maximum difference threshold, or both), 
followed by segment matchmg on the subset of shapes retrieved by the preliminary 
search. 

Some limitations on the:: types ?f matching available have to be made where incomplete 
query shapes are ~pecified,. smce many parameter values (particularly global shape 
features) are undefmed .f~r mcomplete shapes. <?lobal matching is meaningless in this 
case and therefore prohibIted. Bot~ local and eXIstence matching are permitted, though 
the fea~re .set they use ~as to be slightly curtailed. Segment matching using a canonical 
start pomt IS also meanmgless, and therefore not offered by the present version of the 
system. (Repeated local 9-s comparisons would however be an effective, if 
computationally expensive, way of searching for partial shape matches, and would 
therefore be a useful facility to offer in any future version of the system, particularly if 
combined with a preliminary screening step based on local or existence matching). 

6.6 Detailed program operation 

6.6.1 Initialization and query input 

The program begins by reading in the sequence of run-time parameters which will govern 
the operation of the current session. These include a specification of the search paradigm 
required (global, local, existence or segment, separately or combined), the level of 
searching required (outer boundary shapes only, outer boundary shapes plus inner 
boundary positions, outer boundary shapes plus inner boundary class, all boundary 
shapes), the type of output required, the maximum difference cutoff and maximum 
number of drawings to be retrieved, whether the search should be limited to a subset of· 
the database, as well as parameters specific to the match type or search level chosen. 

The program is then ready to process queries according to the parameters specified. As 
indicated above, each query has to be submitted as a file generated as outlined in chapter 
7, below. The program accepts a query fIle name and attempts to open and read in the 
contents of this file, building up a representation of the query in main storage (using a 
series of linked lists) which exactly mirrors the structure of stored shapes in the database 
(Fig 6.7). A number of validity checks are performed at this stage, including a check that 
all query boundaries have the expected number of segments, that traversal at all levels 
involves a total angle of 2n, and that specified match type and query structure are 
compatible. If shape matching is to be limited to a given shape class, the appropriate 
ShapeC lass record in the database is located to identify the correct DrawingC lass set to 
search. 

6.6.2 Shape matching - general 

The required set of drawings (which may include the entire database) is now fetched one 
by one from the database and matched using the appropriate technique (see below). The 
overall process for any single match type is identical, with one exception; with feature 
(but not segment) matching, it is possible to specify a pre-screening step, rejecting out of 
hand any drawing for which outer boundary PA, LW or AL ratios diverge from 
comparable query values by more than a specified amount. The main purpose of this is to 
reduce search times; it seems to have little effect on retrieval performance in most cases. 

133 



\ 

\ 

I 
I 

\ 

I 
L 

Query 
hender 

--
F o.Mil y -~ 

- --
""ri---< . ~ 

1 SegMent r g g ~ 

Boundo.ry 
level 

- --

Fig 6.7 Illustration of linked list structure representing query in main storage. 

134 



Whatever matc~g pr~cess is specified, the fIrst step is to match the outer boundary of 
the current drawmg WIth the outer boundary of the query, thus yielding a difference 
measure between the query and the current drawing. This process is not quite as 
strai.ght.forwar? as it ~eems, as each boundary can be defined at more than one level, and 
(as mdicated m sectIon 4.4), many shape featu!es ~e inherent ~roperties of a specific 
boundary level, not the boundary. as a w.hole. This raises the questton of which level from 
the query boundary to match ~Ith which level of the drawing boundary - particularly 
when q, the number of levels m the query boundary, and d, the number in the drawing 
boundary, will often be different. 

Since each successiv.e ~o~d~ level presents a view of the boundary at a progressively 
greater le:vel of detail, It IS 10gIC~ t? match corr.esponding boundary levels from query 
and drawmg where q = d. Indeed It IS necessary if a query shape is to yield a difference 
measure o~ zero when n;tatched with itself. Where q <> d, it is superfIcially tempting to 
treat both m a symmetnc way, and (for example) to match the fIrst (or last) min(q d) 
levels. This is however unsound for a number of reasons. In the fIrst place, a qu~ry 
specification and the drawing it retrieves are not symmetric. The former is open-ended, a 
statement of those features the user considers desirable, and a specification which may be 
met in a number of ways, possibly unforeseen by the user. The latter is a fIxed object 
which may or may not be relevant to an enquiry. If a query boundary has three levels, it 
is fundamental to the search process that all three levels are matched against every 
comparable drawing boundary in the database, however many levels this has. Otherwise 
difference measures obtained with one drawing are not comparable with those obtained 
with another, and hence no similarity ranking is possible. 

(In passing, it may be remarked that this fundamental asymmetry between drawing and 
query inevitably has the consequence that the overall difference measure M between 
query and drawing. cannot qualify as a strict dist~c~ meas.ure, as th~ me~ure M dq 

computed by reversmg the roles of query and drawmg IS not m general IdentIcal to the 
~easure Mqd computed as det~ed below,since it may involve co~parisons betwe~n 
different numbers of levels. This does not appear to detract from ItS use fulness m 
ranking drawings in order of similarity). 

The solution chosen was hence to ensure that exactly q comparisons took place between 
each query and drawing boundary. Where q < d, some drawing levels will be ignored. 
Where q > d, all drawing levels will be used, some more than once. In either case, the 
program attempts to identify the q likely closest matches between query and drawing 
boundary levels, and derives its distance measure from these, using the algorithm set out 
below. The process is illustrated graphically in Fig 6.8. 

If matching is limited to outer boundaries, the process ends once a difference measure 
has been calculated. Assuming the query-drawing difference measure is less than the 
specified cutoff value, the drawing's reference number, original fIle name and difference 
measure are added to the list of drawings already retrieved. This is maintained in order of 
increasing difference value; if the list size is exceeded by adding a new drawing, the last 
drawing on the list is automatically removed. 

If inner-boundary searching is specified, the precise sequence of events dep~nds <?n the 
exact match type and search level specified. However, the overall p~oc~ss IS agam the 
same - one or more further difference measures is calculated by matchmg mner-boundary 
features, weighted appropriately, and added to the outer-boundary. difference m~asure to 
give an overall measure of query-drawing difference. Processmg then contmues as 
specified in the paragraph above. 

135 



Q < D 
Query 
bounclaries 

Key: 

Dro.Wing 
bounclo.ries 

Q D 
Query 
bo unclar ie s 

Q > D 
Query 
bounclo.ries 

Dro.Wing 
bounclo.ries 

Dro.Wing 
bounclo.ries 

boundories octuoll y MO tched == == == == potentiol MO tch rejected 

Fig 6.8 Matching between query and drawing inner boundaries. Exactly Q comparisons 
(where Q is the number of query inner boundaries) are recorded whatever the value olD 
(the number of drawing boundaries). 

136 



I~ combined feature and. segm~nt matching is specified, a two-stage process takes place. 
Frrstl.y, a.fea~re search IS ~arne? out on ~e s~t of drawings to be searched, and retrieved 
drawmg Identifie:s s~ored m an mtermediate lIst. Each drawing in the intermediate list is 
then fetche~ agam m turn fro~ the database, and subjected to segment matching. A 
combined difference ~eas,?"e ~ .the~ computed, and if this is less than the specified 
cutoff value, the drawmg IdentifIer IS added to the fmal list of retrieved drawings as 
before. 

With feature matching at the inner boundary position level, the required difference 
measure can be calculated from inner boundary position feature records without 
reference t.o t~e. inner .boundary records themselv~s. With all other match and le~el types, 
h?wever, mdivIdual ~er~boundary representations from query and drawing must be 
drrectly compared. This rruses a problem analogous to that of matching boundaries with 
different numbers of levels - which query boundaries should be matched with which 
drawing boundaries when query and drawing will have different numbers of inner 
boundaries Q and D? It turns out that the solution is also analogous. To ensure 
comparability between comparisons with different drawings, it is again important to 
ensure that exactly Q comparisons take place between each query and drawing, ignoring 
some drawing inner boundaries where Q < D, and using some more than once where Q > 
D. Two additional questions remain - is a basically linear traversal of each inner 
boundary list, using a variant of the boundary level traversal algorithm described above, 
acceptable in this case? How should the special case of a drawing with no inner 
boundaries (for which there is no analogue at the drawing level, since each boundary has 
by definition to have at least one level) be treated? 

The short answer to the frrst question is "yes". In theory, one could match all Q query 
inner boundaries with appropriate combinations of.Q drawing inner boundaries, select~g 
the combination giving the best fit after exhaustive trial-and error matching - or, more 
elegantly, using a label assignment algorithm such as.that used by Bhanu and Faugeras 
(1984). However, a stated design objective of the present system is the avoidance 
wherever possible of algorithms that require backtracking. It also seems sensible to 
exploit the fact that inner boundaries in both query and stored shapes are ordered firstly 
by distance from outer boundary centroid, and secondarily according to the angle 
between their centroid vector and the shape's prime direction (see section 3.2.3 above). 
Thus wherever a single-pass comparison of inner boundary lists is possible, it should be 
attempted. Hence the level-traversal algorithm was adapted for following and comparing 
inner boundary lists. 

The second question is harder to answer. Q inner boundary comparisons are clearly 
needed to maintain comparability even when a drawing has no inner boundaries. (Note 
that the reverse case - a query with no inner boundaries - is no problem, because Q = 0 
and hence no comparisons take place with any drawing inner boundaries, another 
example of the fundamental asymmetry between query. and .drawing). ~e .o~y obvious 
solution, somewhat lacking in elegance, is to compute. a senes of null similanty values, 
based on the absolute values of the relevant parameters in the query, and then to use these 
instead of difference measures where necessary. For example, if computing a measure of 
inner boundary position differertce between a query with four bouIl:daries and a drawing 
with none, the program will simply use the appropriately norm.allZed sum of the four 
query boundary centroid distances instead of summing actual dIstances between query 
and drawing boundary centroids. 

6.6.3 Feature matching in detail 

This process starts with an initialization step that includes an optional pre-screening 
stage, as indicated in section 6.6.2. This computes an initial difference measure between 
query and drawing 

137 



Mqd = 2.S*Abs(ALq -ALd ) + AbS(log2(PAq /PAd )) + o.S*AbS(log2(Lwq/LW
d

)) 

where AL (as defined in section 4.4.2) provides a measure of overall curvature and hence 
shape class, PA an estimate of the shape's low-level thickness and to some extent 
complexity, and LW a measure of ~verall aspect ratio. The me.asure is purely empirical 
but seems to be successful at screerung out about half to two-thirds of the entire drawing 
me (more for some queries) if a cutoff threshold is set at a level of between about 2 and 
3. Assigning the higher weighting to the AL ratio appears significantly to improve 
screenout of obviously un suitable drawings, again suggesting the importance of shape 
class in retrieval. 

6.6.3.1 Boundary feature similarity matching 

If the drawing is not rejected by this screenout process, procedure 
MatchFeatureSimilarity is then called to compute a difference measure between query 
and drawing outer boundaries, using the following algorithm (presented here in slightly 
simplified form), which generates both minimum and cumulative level difference 
measures for all query boundary levels, as discussed in the previous section: 

Fetch Boundary and first BoundaryLevel records for both query and 
stored drawing; 

Compute B, the difference measure derived from feature values in 
Boundary records, using appropriate match type, and set C, the 
cumulative level difference measure, to zero; 

While unprocessed query BoundaryLevel .records remain do 

Begin 

Compute M, the minimum difference measure from feature values in 
current BoundaryLevel records using appropriate match type, set 
temporary difference T = M. and indicate current pair of· 
BoundaryLevel records as current minimum; 

While unequal numbers of unprocessed query and drawing 
BoundaryLevel records remain do 

Begin 

If more BoundaryLevel records remain in query than in drawing 
then 

fetch next BoundaryLevel record from query 

else 

fetch next BoundaryLevel record from drawing; 

Compute new difference measure L from feature values in 
BoundaryLevel records using appropriate match type; 

If L < M then 

Begin 

138 



Set M = L, and indicate current pair of BoundaryLevel records 
as current minimum; 

If more BoundaryLevel records remain in query than in drawing 
then 

set intermediate difference I = T 

End; 

Set T = T + M 

End; 

Set C = C + M + I; 

Fetch next BoundaryLevel record after current minimum from query; 

If more BoundaryLevel records remaining in drawing then 

fetch next BoundaryLevel record after current minimum from 
drawing 

End; 

compute final difference measure M, calculated as Mtot = B + C, 
Mavg = B + C/ q, or ~n = B + min (M), according to run-time option 
selected. 

If query and drawing boundaries have equal numbers of levels, this reduces to a single 
pass through both, allowing total, average or minimum level difference measures to be 
calculated as indicated above. If there are fewer query levels than draw ing levels, the 
inner loop allows each query level to be matched against all "spare" drawing levels, and 
the closest-matching pair selected, without incrementing the cumulative difference 
measure. If there are more query levels than drawing levels, the inner loop matches 
"spare" query levels against each drawing level in the same way - but this time 
increments the cumulative difference measure, so that each query level is effectively 
matched as required. The detailed matching processes differ depending on whether 
global, local or existence matching is specified, as detailed below. 

6.6.3.2 Global feature matching 

If global matching is used, the query-drawing difference measure B calculated from 
boundary records is a weighted distance measure computed from values of the features 
AL, PA, LW, and NR using the absolute metric 

S.D. (Xk ) 
D·· = 
~J 

Similarly, the difference measure L calculated for each level is the weighted sum of Dij 
for the features ML, LV, MA, AV, MD, DV, RS, PS and C/. Weighting of each measure is 
currently performed simply by dividing the total by the number of contributing 
parameters, except again for AL, where early experiments suggested that increasing the 
weight of this parameter could improve retrieval performance. 

139 



6.6.3.3 Local feature matching 

With local matching, the boundary record difference measure B can either be set to zero 
or calculated in the same way as for global matching, depending on the run-time option 
chose~. No specificall~ local features are stored .in boundary records, so that strictly 
speaking, no computatIOn cm: be performed at this stage. However, the option to use 
global ~easures. as a possIble performance enhancement has been provided for 
comparat.lve testmg purposes. Note that where query boundaries are incomplete, this 
measure IS always set to zero. 

The boundary level difference measure L is calculated from a combination of the 
distribution parameters LD, AD, DD and FD, stored in boundary level records and the 
mor~ complex. fea.tures SL, AT, DT and PF, stored in boundary feature records. Again, the 
preCIse combmatlon of features used can be specified at run time. While both are 
processed in the ~ame logical fashion, there are ine~'itably differences in the way this is 
lffiplem~nted. w.Ith each parameter selecte.d, a difference measure is calculated by 
computmg the difference and sum of each parr of corresponding values, and dividing one 
by the other: 

= 

N 

L Abs (Di -Qi) 

i=l 

N 

L Abs (Di +Qi) 

i=l 

where N is the total number of possible values for the feature in question. For the 
distribution features, this can readily be computed by successively comparing counts iri 
each array element. For the more complex features, lists of query and drawing feature 
records are compared, and counts of feature value sum and difference accumulated as 
follows (Fig 6.9): 

- where an unmatched feature record is found in either list, its value is added both to the 
cumulative sum and cumulative difference; 

- where a matching record is found, the sum of feature values from both records is 
added to the cumulative sum, and the absolute difference in feature values added to 
the cumulative difference. 

All values are weighted by dividing by the total number of features selected, in order to 
maintain as much comparability as possible between measures. 

6.6.3.4 Existence matching 

Existence matching uses the same feature set as local matching, but adopts rather 
different matching principles. Whereas local matching attempts to measure similarity by 
considering all features present in either query or drawing (in other words giving weight 
to negative and positive feature matches), existence matching considers only those 
present in the query. The presence or absence of drawing features not specified in the 

140 



(a) 

Feature Frequency Frequency 
range in query in drawing Sum Difference 

record record 

0.1 - 0.3 2 1 3 1 
0.3 - 0.5 3 1 4 2 
0.5 - 0.7 4 5 9 1 
0.7 - 0.9 5 2 7 3 
0.9 - 1.1 1 5 6 4 
1.1 - 1.3 0 1 1 1 
1.3 - 1.5 0 0 0 0 

Total: 30 12 

Lqd 12 / 30 = 0.4 

(b) 

Query features Drawing features 
Sum Difference 

Type Frequency Type Frequency 

0324 2 2 2 
0334 2 2 2 
0357 1 0357 2 3 1 

0552 2 2 2 
0553 3 3 3 
0567 2 0567 2 4 0 

Total: 16 10 

Lqd = 10 / 16 = 0.625 

Fig 6.9 Illustration of similarity calculations (a) for simple features from boundary level 
records (showing part of a feature array), (b) from more complex features (showing 
sample boundary feature records). 

141 



queI?' is inunaterial. F~ennore, the actual. value of specified features is immaterial 
provIded they reach a gIv~n threshold. This obviously implies a slightly different 
approa~h to feam:e comparIson. Rather than computing a difference measure directly 
from differences m featu!e values, feature values from drawing records are classed as 
present or absent depending on whether they exceed a specified threshold (or in a few 
cases, fall into a specified range). A difference measure can then be computed ~ 

(no of possible features - no of features present) 

(no of possible features). 

As with local matching, the boundary record difference measure B can be set to zero or 
calculated from glob~ parameters ~s required. The same parameters are used as for 
global or local matching, but the difference measure is computed on the basis of the 
number of fe.ature~ whose values differ from those in the query by less than a specified 
amount. Agam, this measure has to be set to zero where query boundaries are incomplete. 

The boundary level difference measure L can be caiculated from the same combinations 
of features as local feature matching, using a process identical except for the formula 
used to calculate the difference measure: 

= 

N 

Count( Di 
i=l 

N 

Count ( Qi : Qi > 0 
i=l 

where T is a threshold whose value can be specified at run time. A comparative 
illustration of the operation of existence and local matching is shown in Fig 6.10. 

6.6.3.5 Penumbral matching 

It can be argued that local feature (or existence) matching as specified above suffers from 
a fundamental flaw; it assumes that all parameters in the feature arrays are independent of 
each other. This is manifestly not the case, since most are (arbitrary) divisions of 
continuous variables. The feature matching method above assumes, for example, that a 
query specifying the presence of two line segments in the length range 0.7-0.9 can be 
satisfied only by a drawing with two line segments in exactly the same length range. In 
practice, such a query could well be satisfied by a drawing with line segments in the 
length ranges 0.5-0.7 or 0.9-1.1, since the dividing lines are necessarily arbitrary and 
could well have separated line segments with infinitesimal differences in length. 

Whether this effect actually degrades retrieval performance in practice is a subject for 
further investigation. It is clearly more of a problem for some parameters than others. The 
parent feature distribution PD, which can take only four discrete values, is obviously not 
susceptible. The angle distribution features AD and DD are probably at risk only to a 
minor extent because of the deliberate bias of angle ranges towards right angles. But the 
length distribution features W, SL and to some extent DT could well be seriously 
affected. 

Several possible ways of overcoming this problem could be considered. The I?atching 
process could be extended to include neighbouring feature ranges - though this would 
probably increase the number of false positive matches generated. The database could be 
enhanced, for example by defining an extended length distribution feature specifying two 
overlapping length distribution ranges. A line of relative length 0.8537 could thus be 

142 



(a) 

Feature Frequency Frequency Feature Feature 
range in query in drawing relevant? qualifies? 

record record 

0.1 - 0.3 2 1 Y N 
0.3 - 0.5 3 1 Y N 
0.5 - 0.7 4 5 Y Y 
0.7 - 0.9 5 2 Y N 
0.9 - 1.1 1 5 Y Y 
1.1 - 1.3 0 1 N N 
1.3 - 1.5 0 0 N N 

Total counts: 5 2 

= (5 - 2) / 5 = 0.6 

(b) 

Query features Drawing features Feature Feature 
rele- quali-

Type Frequency Type Frequency vant? fies? 

D324 2 N N 
D334 2 Y N 

D357 1 D357 2 Y Y 
D552 2 N N 

D553 3 Y N 

D567 2 D567 2 Y Y 

Total counts: 4 2 

Lqd = (4 - 2) / 4 = 0.5 

Fig 6.10 Illustration of similarity calculations for the same set offeatures as in Fig 6.9, 
using existence matching with a threshold T = 1. 

143 



counted both as a 0-?-0 .. 9 le.ngth.line and as a 0.8-1.0 length line. Searching could then 
match query length dlstnbutIOns m, say, the 0.7-0.9 range with drawing lines in either the 
0.6-0.8 or 0.8-1.0 ranges. 

The strategy adopted for the prototype system was to provide two possible matching 
modes - t~e convention~ mo~e described above and penumbral matching. This is a form 
of rel~atIOn me!h0d, m w~lch each query or drawing feature value V'i used in the 
compansons detailed above IS computed from the weighted average of its stored value V. 
and that of its neighbours, as follows: I 

V'· 1. 
V'· 1. 
V'· 1. 

= 
= 
= 

O,S*Vi + O.2S*Vi +1 + O.2S*Vi _1 (1 < i < N) 
O.7S*Vi + O.2S*Vi+1 (i = 1) 
O.7S*Vi + O.2S*Vi_1 (i = N) 

Analogous definitions are used for the more complex two- and three-dimensional 
fea~res SL, AT, DT and. PF. An ex. ample o~ p~nUI?bral matching is shown in Fig 6.ll. 
While penumbral matching of the slffipler distnbutIOn parameters is computationally no 
more expensive than simple matching, its use with more complex features is at present 
computationally unattractive because it requires the run-time generation of additional 
feature records. This difficulty could readily be overcome in a future version of the 
system if required. 

6.6.3.6 Inner boundary position matching 

If inner boundary position matching has been specified, the program then computes a 
difference measure on the basis of differences· in the number and relative position of 
inner boundary centroids. This level of matching compares drawing and position feature 
records rather than the inner boundary records themselves. As with boundary feature 
similarity matching, the approach taken depends on whether global, local or existence 
matching has been specified. As far as possible, the approach adopted for a particular 
type of matching is continued in this section - global matching calculates difference 
measures on the basis of summary statistics such as inner boundary counts, local 
matching compares values of specific features, and existence matching looks for the 
presence of specific features. The matching process described below does not make 
exhaustive use of all feature types (in particular it makes very little use of data in . 
boundary family records), but could readily be extended if a higher level of 
discrimination were required. 

If global matching is specified, matching is limited to drawing records; a distance 
measure is computed between query and drawing on the basis of parameters NB, CB, SB, 
IB and BF (as defmed in section 4.4.4), using the same metric as in section 6.6.3.2. If 
local matching is used, drawing records are optionally matched in the same way as for 
global matching. Position feature records BP (asdefmed in section 4.4.4, and illustrated 
in figs 4.3-4.5) are then matched as outlined in section 6.6.3.3. If existence matching is 
used, drawing records are optionally matched on the same parameters as for global 
matching, but using the techniques outlined in section 6.6.3.4. 

Whichever method of matching is selected, the difference measure computed is then 
multiplied by a position weighting factor (supplied at run time) and added to the outer 
boundary difference measure as a combined indicator of shape difference. 

6.6.3.7 Inner boundary shape feature matching 

If the highest level of shape matching is specified, searching of inner bou~dary shapes, 
the program then attempts to compute a measure of inner boundary shape <l:ifference. For 
the reasons discussed in section 6.6.2, this involves fmding the closest pOSSIble match for 
each query boundary, then summing the total difference measure over all query 

144 



(a) 
Transformed Transformed 

Frequency frequency frequency 
range in query in drawing Sum Difference 

record record 

0.1 - 0.3 2.25 1 3.25 1.25 
0.3 - 0.5 3 2 5 1 
0.5 - 0.7 4 3.25 7.25 0.75 
0.7 - 0.9 3.75 3.5 7.25 0.25 
0.9 - 1.1 1. 75 3.25 5 1.5 
1.1 - 1.3 0.25 1. 75 2 1.5 
1.3 - 1.5 0 0.25 0.25 0.25 

Total: 30 6.5 

Lqd = 6.5 / 30 = 0.2167 

(b) 
Query features Drawing features 

Sum Difference 
Type Frequency Type Frequency 

0314 0.33 0.33 0.33 
0323 0.33 0.33 0.33 

0324 0.33 0324 0.67 1. 00 0.33 
0325 0.33 0.33 0.33 

0333 0.33 0.33 0.33 
0334 0.67 0334 0.33 1. 00 0.33 
0335 0.33 0.33 0.33 
0344 0.33 0.33 0.33 
0347 0.17 0347· 0.33 0.50 0.17 
0356 0.17 0356 0.33 0.50 0.17 
0357 0.33 0357 0.67 1. 00 0.33 
0358 0.17 0358 0.33 0.50 0.17 
0367 0.17 0367 0.33 0.50 0.17 

0542 0.33 0.33 0.33 
0543 0.5 0.50 0.50 

0551 0.33 0.33 0.33 
0552 0.5 0552 0.67 1.17 0.17 
0553 1.0 0553 0.33 1.33 0.67 
0554 0.5 0.50 0.50 
0557 0.33 0557 0.33 0.67 0.00 

0562 0.33 0.33 0.33 
0563 0.5 0.50 0.50 
0566 0.33 0566 0.33 0.67 0.00 
0567 0.67 0567 0.67 1.33 0.00 
0568 0.33 0568 0.33 0.67 0.00 
0577 0.33 0577 0.33 0.67 0.00 

Total: 16.00 7.00 

Lqd = 7 / 16 = 0.4125 

Fig 6.11 Effects of specifying penumbral matching on the two matching cases shown 
above (assuming both sets of features are complete) . Note that additional feature records 
need to be created in the second case, where feature Dxvz needs to generate penumbral 
neighbours in two dimensions, namely Dx(y+l)z, Dx(y-l)z' Dxy(z+l)' and Dxy(z-lJ' 

145 



boundaries to generate the required measure, which is again weighted and added to the 
com~ined indi~ator described in the 1?revious section. Procedure MatchFeatureSimilarity 
(sectIon 6.6.3) IS used to compute a difference measure between each pair of boundaries. 

'r?e algo~t~ for selecting t~e closest-matc:hing pair of boundaries for matching is 
vlrtUally IdeI?tIcal. to the. ~gon~ for selectmg the closest-matching pair of boundary 
levels, d~scn~ed m detail. m .sectl0I? 6.6.3:1, and is therefore not described again. The 
only major difference, as mdlcated m sectron 6.6.2, is the need to deal with the special 
case of a drawing with no inner boundaries. 

6.6.4 Segment matching 

6.6.4.1. Principles of segment matching 

Segment matching as defmed here provides a completely different way of matching 
query and stored shapes, and one that can usefully complement feature matching. It is in 
fact essential if Type B retrieval (identity matching) is to be provided. All a search of 
extracted global or local features can do is to confrrm that query and stored shapes share 
a number of common aspects. A difference measure of zero does not prove that query 
and drawing shapes are identical. As discussed in section 6.3.3.3, the principle of 
expressing closed boundary shapes as plots of e, the cumulative angle traversed, against 
s, the cumulative arc length, is well established. e here is a single-valued function of s, 
which increases from 0 to 21t as the boundary is traversed completely in an anti
clockwise direction. (Some authors prefer a slightly different transformation, subtracting 
2ru/S (where S is the total boundary length) from e; to give a horizontal plot which 
effectively shows the extent to which the shape differs from a circle). Circular arcs in the 
original boundary are transformed into straight lines in the e-s plot, with gradient 
indicating their curvature. Straight lines in the original boundary become lines with zero 
gradient in the plot, and vertices become discontinuities or vertical lines (Fig 6.12). 

Such a plot can easily be used to generate a measure of the difference between two 
shapes, by summing the area between their e-s plots (Fig 6.13) - or indeed by integrating 
any measure derived from differences in e between query and stored shapes for a given s.
As discussed in section 6.5, the process is usually a computationally expensive one 
because it has to be repeated many times over for each pair of boundaries being 
compared, using a different starting point each time, to find the closest-matching relative 
orientation of the two shapes. The present program uses what is effectively a heuristic 
approach by comparing each pair of query and drawing boundaries just once (at each 
level selected), using the canonical start point for each boundary identified in earlier 
processing. This approach has the advantage of greatly increased computational 
efficiency, requiring only a single pass through each set of line segments for each level -
though it runs a risk of missing similar shapes where the canonicalization process has 
assigned different start points. 

Calculation of a difference measure between two boundaries is best achieved, first by 
normalizing both boundary perimeters to the same length, then by sub?ividing both 
boundaries into an equal number of corresponding subsegments, each termmated when a 
discontinuity is encountered in either boundary (Fig 6.9). A distance f!1easure. can ~hen 
readily be computed for each pair of corresponding subSegments, by mtegratmg elt~er 
the absolute magnitude or the square of the angular difference D between cumulatIve 
query angle e and drawing angle ed over the length L of the subsegment. If the absolute 
difference is u\ed, this gives a difference measure for each sub segment of: 

146 



360 

Angle 

e 

o 

360 

Angle 

e 
./ 

./ 

Length 5 

./ 
./ 

./ 
./ 

./ 

./ 
./ 

./ 

./ 

o 

360 

Angle 

e 

o 

360 

Angle 

e 

o 

./ 
./ 

./ 
./ 

./ 

Fig 6.12 Some common shapes expressed as 9-s plots. 

147 

./ 

Length 5 

,--~ 

I 
, __ --1. 

I 

Length 5 

/ 

/ 
/ 

/ 

"",-- --./ 

Length 5 

~-



B 

360 

Angle 

e 

o 

Query shape 

A r 

c D 

Query 

A 

Stored shape 
A 

B'--;::---,-----.;-----.-J. E 

Stored shape 

,-------1 
I 
I 
I 

B c D E 

Length s 
r A 

l!'ig 6.13 Similarity matching between query and stored shapes. Both shapes are divided 
lllto subsegments as shown in the top illustration. The lower illustration shows cumulated 
angle plotted against cumulated length/or both shapes; the angular difference between 
query and stored structures is summed over the entire boundary to yield a global 
distance measure D indicating the difference between the two shapes. 

148 



where D s is the difference. between cumulatiye query and drawing angle at the start of the 
subsegment, and Df.the ~ference at the finIsh. If the square of the angular difference is 
used, the corresponiling difference measure for each subsegment becomes: 

M = L * s 

where D s and D f are start and finish angular differences, as before. Whichever measure is 
used, it can then be summed over the entire set of sub segments making up one boundary 
level and used to give an overall measure of difference between the two boundaries. 

6.6.4.2 The segment matching process 

Segment matching of query and drawing boundaries begins with selection of the 
appropriate traversal level for each boundary. A range of options is provided under 
which a pair of boundaries may be matched at ' 

- top level only 
- bottom level only 
- combined matching, top-level followed by bottom-level matching, 

or 
- all level matching, successive matching of all query levels in a similar way to that 

outlined in section 6.6.3.1. 

In the two latter cases, difference measures from different levels are added, normally 
weighting lower-level difference measures by an attenuation factor specified at run time. 

For each query-drawing pair selected for matching, the following algorithm is invoked. It 
traverses query and drawing boundaries, repeatedly identifying corresponding 
subsegments and calculating e and· s values in each, and hence deriving a difference 
measure which is then cumulated over all subsegments. It computes the second measure 
Ms defmed above - preliminary experiments suggested that this measure may be slightly 
less sensitive to very small differences in shape than M a' though in most cases both 
measures give identical similarity rankings. The square root of M s is in fact used in 
subsequent calculations. 

Let L represent current normalized subsegment length, 
Sq and Sd the (normalized) length of the current query and drawing 

line segments, 
Aq and Ad the current query and drawing line segment arc angles, 
Dq and Dd the current query and drawing line segment discontinuity 

angles, 
Lq and Ld lengths traversed along current query and drawing line 

segments, 
Tq and Td cumulative angles traversed around query and drawing 

boundaries including the current subsegment, 
Pq and Pd cumulative angles traversed up to the beginning of the 

current subsegment, 
Ds and Df the differences betwe.en cumulative· query and drawing angle 

at the start and finish of each subsegment, 
and M the overall difference measure to be computed. Then: 

Calculate normalization factors required to set each boundary 
perimeter to 100, and zeroize Lq , Ld , Pq , Pd and Mi 

149 



Get first line segments of query and drawing boundaries at 
appropriate level; 

If Sq <= Lq then 
Add Dq to P q , get 

If Sd <= Ld then 
Add Dd to Pd , get 

next query segment, and zeroize L q; 

next drawing segment, and zeroize L
d

; 

While more query or drawing segments remain do 

Begin 

Set L min (Sq-Lq,Sd-Ld); 
Set Tq Pq + L * A / Sq; q 
Set Td Pd + L * Ad / Sd; 
Set Ds Pq - Pd , and Df T -q Td ; 

Add L * (Ds * Df + (Ds - Df )2 / 3) to M; 
Set Pq = Tq , and Pd = Td ; 

Add L to Lq and Ld ; 

If Sq <= Lq then 
Add Dq to Pq , get next query segment, and zeroize Lq; 

If Sd <= Ld then 
Add Dd to Pd , get next drawing segment, and zeroize Ld 

End. 

6.6.4.3 Inner boundary matching 

The matching process above can obviously be applied to outer or inner boundaries. 
However, a complete identity match requires more than an indication that all boundary 
shapes are identical. It needs also to establish identity of position and size. Hence a 
complete inner boundary match involves a pairwise comparison of query and drawing 
boundaries (in the same sequence as that used for inner boundary feature matching, 
section 6.6.3.7), computing the following difference measures for each query-drawing 
boundary pair: 

(a) Position difference, the Euclidean distance between query and drawing boundary 
centroid positions, calculated as 

PD = (CDl+CDd2_2*CDq*CDd*COS (CAq-CAd » 1./2 

where CD q' CD d, CAq, an~ CAd are r~spectively centroid distru:ces and ~entroid 
angles of query and dIawnig boundarIes. In use, the measure IS normalIZed by 
dividing by the average centroid distance for all inner boundaries in the database. 

(b) Class and size difference, a measure similar to the initial screening measure described 
in section 6.6.3, except that as well as comparing AL, LW and PA ratios, it also 
computes measures of size and orientation similarity (unimportant at the outer 
boundary matching level, but important in distinguishing between shapes which are 
identical in every respect except relative inner boundary size or orientation). The 
additional terms in the measure are perimeter difference (logz of the ratio o! query 
and drawing boundary perimeters) and axis difference, the angle between major axes 
of query and drawing boundaries after allowing for possible rotational symmetry. 

150 



(c) Inner boundary shape difference, calculated as described in section 6.6.4.2 above. 

The three difference .measures f~r each query-drawing boundary pair, weighted according 
t~ parameters supplIed. at ~n tun~, are then added to generate a total inner boundary 
dIfference measure, WhICh ill tum IS added to the outer boundary measure to give a fmal 
measure of difference between query and drawing shapes. 

As with feature matching, the matching process need not involve all ievels. Any of the 
following four levels of matching may be specified at run time: 

- outer boundary shape only 
- outer boundary shape p~us inner boundary P?sition (using measure (a) above) 
- outer boundary shape, Inner boundary posItIOn, class and size (using measures 

(a) and (b» 
- complete matching of all boundaries (using all the above measures). 

6.6.5 Accumulation and display of results 

As indicated in section 6.6.2, the program successively matches the query fIle with all 
drawings from the specified target set within the database, building up a list of retrieved 
drawings in order of similarity, using the specified match type. At the end of the 
matching process, this is used to generate a display of retrieved drawings in an 
appropriate format, specified at run time. Further details, and examples of output, are 
described in the next chapter (section 7.7). 

Once results have been displayed, the program is ready to accept the next query, us.ing 
the same set of run-time parameters to specify the level and type of matching. 

6.7 Mirror images 

A decision was taken at an early stage to regard the mirror-image of an unsymmetrical 
object as a separate shape. Despite the fact that two-dimensional objects such as those 
represented in the test database can be converted to their mirror-images simply by turning 
them upside-down, it was decided to allow mirror-images to retain their separate identity, 
for two reasons: 

- parts may have different finishes on upper and lower surfaces, which are therefore not 
freely interchangeable; 

- in any future extension of the system to cover 3-D object representations (which 
cannot readily be converted to their mirror-images without passing into the fourth 
dimension), it will be important to be able to distinguish a face from its mirror-image. 

In the meantime, however, the system needs to be able to make the connection between 
mirror-images where necessary. This is an easy task in some areas, less so in others: . 

- all global and most local features are completely symmetric, so that matching on 
these features, however performed, will always retrieve mirror-~ages .. The only 
exceptions to this are the local triplet features AT and DT, which ~e inherently 
directional, and are thus unsuitable for use if mirror-images are to be retneved. 

- all inner feature boundary pattern features are inherently symmetric; again, matching 
of these features will always retrieve mirror-images. 

151 



- boundary .segment matching as described in section 6.6.4 is obviously directional and 
!hus pr?vldes the most relia~le mean.s of distinguishing between mirror-images if this 
IS .requ1!ed. A prot;>le.m ObVIOusly. arIses when no distinction is to be drawn between 
nurror-Im~ges. This IS ove~come. m the present system by the expedient of matching 
each draw~g boundary ~Ice .wIth each query ~oundary, once traversing the query 
b?un~ary m the same ~hrectl(~n as the drawmg boundary, once in the reverse 
drrectIOn. ~ven thoug~ thI~ proVIdes only for ~oring about an axis perpendicular to 
the ~ano.rucal s~art lme, It appears to prOVIde an effective (if rather inefficient) 
solutIon m practIce. 

- inner bou~dary position, cl~s or. shape matching requires inner boundaries to be 
processe~ m a set order! startmg w~th .those furthest from the outer boundary centroid 
and working gradually mwards. WIthin a group of boundaries whose centroids all lie 
a fIxed. dis~ance fr~m the outer boun~ary centroid, boundaries are arranged anti
clockwIse, m. centroId angle. order (sectlo~ 3.2:3). The prograIil therefore generates a 
~econd orde~g ~or query .tImer boundarIe~, m order to be able to match drawing 
mner boundanes m mrrror-Image order: agam, not a totally satisfactory solution as it 
deals with only a single plane of mirroring. ' 

The success or otherwise of these expedients can be judged from the results presented in 
chapter 8. 

6.8 Efficiency considerations 

Although computational efficiency was considered in section 6.4 to be a design criterion 
of minor importance, some discussion of the question is clearly warranted here. In many 
ways, the effIciency of a system such as· this is unusually diffIcult to evaluate, as it falls 
into the category neither of data processing systems where processing requirements -are 
so simple that one can assess performance purely by considering fIle access 
requirements, nor of complex mathematical or scientifIc software where I/O 
considerations can be ignored. Both central processing and disc access contribute 
signifIcantly to overheads in a system such as this. To assess system efficiency in detail 
would be a significant task in its own right. 

One can however make a number of general observations. Firstly, all algorithms used 
here are polynomial-bounded, setting a reasonable upper limit on the resources they 
consume. Most are in fact simple O(n) or O(n2) processes. For example, feature matching 
of a single boundary requires one simple set of comparisons for each drawing level 
processed, provided global matching or local/existence matching using the simple 
features located in boundary level records are used. Disc access is almost certainly the 
rate-limiting step here; the matching process is hence of complexity O(n), where n is the 
number of levels processed in searching the average boundary. 

How does this relate to q and d, the number of levels in query and drawing boundaries? 
In the best case, no backtracking at all takes place, so the total number of levels 
processed is Max(q,d). In the worst case, Abs(q-d) abortive matches take place for each 
successful one, so the number processed is qd - Min(q(q-l),d(d-l». In the average .case, 
one could assume Abs(q-d)!2 abortive matches between the frrst pair of boundanes, a 
number that would effectively halve each time, giving an estimate.ofMax(q,d)+Abs~q-d). 
The overall complexity is thus certainly at worst O(qd), and m many cases will be 
effectively O(d) for query shapes with relatively few levels, and O(q) for more complex 
query shapes. 

Local or existence matching using the more complex features housed in ~oundary feature 
records is a less efficient task as the entire set of feature records for a smgle level of the 
drawing boundary has to be ;ead in from disc and compared with corresponding query 
records. Whether the rate-limiting step is the reading in of feature records or therr 

152 



comparison remains to be established. In either case, however, the processing load per 
level is effectively proportional to the average number of feature records per boundary 
level in the stored drawing. If penumbral matching is used, additional features have to be 
generated and inserted in an ordered feature list, an O(n2) process. 

Inner boundary matcJ:ling uses a v.ersion .of the level-matching algorithm analysed above 
t? select bound3!Y prurs for ~atching. It IS t~eref?re reasonable to ass~me that processing 
tImes for matchmg Q query rrmer boundanes WIth D from the drawmg will in the best 
case be proportional to Max(Q,D), in the worst case QD - Min(Q(Q-l),D(D-l», and in 
the average case, Max(Q,D) + Abs(Q-D) - again at worst O(QD). 

Segment matching is obviously a more computationally-expensive process than feature 
matching, as a complete sequence of line segments has to be matched for each level, not 
just a single level record. The process is analogous to local/existence matching using 
boundary feature records, as discussed above. Again, it remains to be established whether 
the rate-limiting step is the reading in of segment records or their comparison, but in 
either case the processing load per level is effectively proportional to s, the average 
number of segment records per boundary level. The load is normally limited in practice 
by restricting matching to just top and bottom levels rather than comparing all levels, as 
for feature matching. Segment matching at the inner boundary level is the most expensive 
task of all, as the entire process has to be repeated at least max(Q,D) times, which could 
result in a worst-case complexity of O(n3) where n is the total number of segment records 
to be compared per drawing. 

Some quantitative figures on cpu usage by program RETRIEVE are presented in section 
8.4.6 below. 

153 



CHAPTER 7. INTERFACE DESIGN 

7.1 General considerations 

The design ?f ~ suitable us~r interfa~e. for input of queries and display of results is an 
area .o~ CruCIal nnportance ill detenrurung user a~ceptability. The problems involved in 
prov~dmg users WIth the means t~ ~onnulate quenes of the six types distinguished in the 
p.reVI?US chapter are far from tnvIa1 .. The systems designer is placed in an awkward 
~I~atl(~n by the v,ery nature:: of the subJ~ct. The accurate fonnulation of a graphical query 
IS m~vltably a tnc~ and. t.nne-consummg task, and one that may well require a certain 
modicum of drawmg ability. Users have to work much harder to make their wishes 
known to the system than with a conventional DBMS or bibliographic retrieval system 
and hence are likely to be less tolerant of poor system performance. . , 

~e qu~~tion of who would use such a system also has to be addressed. Although "user
fnendly query languages such as SQL have been offered by commercial database 
management systems for many years, experience suggests that few engineers or 
managers actually use such facilities direct, except for very straightforward queries. Even 
fewer managers use bibliographic retrieval services direct. In both cases, an intermediary 
with a detailed knowledge of the database and the query language generally inputs the 
actual query, and forwards the results to the original enquirer. The development of 
graphical front-end interfaces (see section 7.2.2 below) may alter this situation - though if 
one remembers that in their time both SQL and COBOL were hailed as end-user 
languages that would make programmers redundant, a measure of cynicism is justified. 
The implications for graphical database design are probably that one· should aim where 
possible for a system that can be used both by inexperienced and skilled operators, and 
leave the question of who should use such systems to be settled later. 

Four main types of interface have so far been used by graphics database designers: 

- Command languages (essentially text-based) 
- Menu-driven interfaces (text or graphics-based) 
- Example-based interfaces (text or graphics-based) 
- Novel graphics systems. 

Some of these appear to be inherently more suitable for some types of query than others. 
By analogy with bibliographic retrieval systems, one might for example expect a 
command language to prove most suitable for type D retrieval (Boolean feature 
combination), while an example-based interface would seem ideal for type F retrieval 
(similarity matching) .. 

7.2 Some existing systems 

7.2.1 Command language-based systems 

This type of interface, where users type in a series of (textual) commands from a 
formally-defmed command language, has been the standard method of acces~ to both 
database management and infonnation retrieval systems for many years. Some::, like SQL, 
are in such widespread use that they have become intemation~ standards. It IS ~herefore 
not surprising that most early image database systems reh~? aI~ost e:rc1usIve::I~. on 
command languages. Database researchers were relatively familIar WIth t.herr capabilltle.s, 
particularly in formulating complex queries, and found a worthwhile challenge m 
extending them to cover new types of data. One of the earliest systems of this kind was 
GRAIN, already described in some detail in Chapter 1, above. ~e G~ lllIl:guage, 
based on relational algebra, provided conventional operators allowmg ret~eval of UI?-ages 
by Boolean combinations of features, as well as additional commands to display retneved 

154 



pictures as line draw~gs. or r~~er images, and .to invoke user-defmed similarity 
~easu.res .. It also had a limited abilIty to handle quenes on spatial relationships between 
Hems m pIctures. 

Similar picture query lan~ages described in the literature have included SQUEL (Spatial 
QUEry Languag~), descnbed by Herot (1980), and ISQL (Image Structured Query 
Language), descnbed by Assmann et al (1984), based respectively on the conventional 
query languages QyEL and S9~· Perhaps more surprisingly, the more recent 
GRIM_DBMS descnbed by RabItt1 and Stanchev (1989) also relies on a text-based 
command language for query formulation. 

7.2.2 Menu-based systems 

Systems where users formulate queries by combining text descriptors or icons selected 
from screen displays, are attractive both for their simplicity for casual users, and for their 
ability to mix text and ~raphics D:t queries ~ required. Perhaps the most relevant example 
of a pure menu-based mterface IS the D~ink feature-based design system described by 
Patel (1985). Here, ~e user chooses desrred structural features from a list displayed on 
the scr~en, and comb~es them .to generate a representation of the desired design object to 
be fed mto a geometrIC modellmg package. A query structure representing a complete or 
partial design could be built up in exactly the same way, by combining desired features 
(represented either as text or as icons) with specified orientation. 

Pure menu-based systems tend to lack flexibility, and can prove tedious in operation for 
experienced users. A more recent development that is rapidly gaining in popularity is the 
WIMP environment (the acronym standing variously for Windows; Icons, Menus & 
Pointers or Windows, Icons, Mice & Pull-down menus, according to taste). This provides 
the user with a separate screen window for each task being undertaken, a mouse or 
similar pointing device to select appropriate actions (often represented on the screen by 
icons) or choices from menus which are "pulled down" when required. Environments of 
this type are increasingly being used to provide graphical front-ends to conventional 
databases (e.g. Burgess (1986), Wu (1987) and Kim et al (1988», information retrieval 
systems (Frei and Jauslin, 1983), and multi-media databases (Frasson and Er-Radi 
(1986), Leong et al (1989». While each system described in the literature differs in detail 
from its neighbours, most offer the user a graphics environment in which they can build· 
up a query, examine the structure of the database, browse through a thesaurus of 
permitted index terms (in the case of the bibliographic system), or display the results of a 
search. The use of high-resolution bit-mapped screens allows full mixing of text and 
graphics, and some systems can handle surprisingly complex queries (Kim et al, 1988). 

7.2.3 Example-based systems 

Systems where the user provides a text or graphical example of the kind of output 
desired, and the system then searches for the best possible match(es), are again a 
potentially attractive proposition where graphical input of queries is required. The QPE 
language described in Chapter 1 obviously falls into this category. Like its text-b~ed 
parent QBE, it allows the user to formulate queries by filling in a specimen of desrr~d 
output on a table displayed on the screen. Unlike QBE, it can. displa~ an~wer~ ill 

graphical form (as a sketch or raster image), and permit entry of spatIal quenes VIa a li~ht 
pen, trackball, or joystick. A wide range of pictorial operators is also supported, allowmg 
the computation and display of the centre point of a line or region, the ~e betwee~ the 
nearest points in two regions, or the union or intersection of any two lmes or regIOns. 
However, the majority of commands remain essentially text-based. 

Another example-based system briefly described in the literature is ARES (Ichikawa et 
al, 1980). While few details of the system are available, it appru:ently allow~ users. to 
input a sample image which is then subjected to a featur~ extractIon process mvolv~g 
application of error-correcting codes to the bit map of the lIDage, and then matched WIth 

155 



existing. images in .the database. The fonn in which the query image is submitted to the 
system IS not descnbed. 

7.2.4 Novel systems 

One . completely novel approach to pictorial data retrieval is that of Herot (1980). His 
~patIal Data Manage~ent Syste~ (SDMS), th<?ugh conceived as a graphical query 
~terf~ce for a convent~~nal. rel~tlOnal database, IS in many ways even better suited to 
plcton~ dat~bases. EntIt~es ill hIS prototype system were displayed to the user as icons 
(warships, displayed as silhouettes, were used as examples). A "world view" of the entire 
database was shown on one screen; every ship was displayed as a miniature icon colour 
coded to indicate its state of readiness, and grouped to show present location. A'second 
~creen all<?wed the us.er to "zoom in:', showing any desired part of the database (e.g. ships 
ill the In~an ocean) ill grea~er detail. As the u~~r homed in on a particular ship, its icon 
was magnified to fill the entrre. screen, .and additIOnal data about the ship (tonnage, speed, 
present commander) automatIcally displayed. This kind of data organization proved 
particularly useful where users simply wished to browse through the database or had 
difficulty in fonnulating their queries. It was supplemented by a more convention'al query 
language which could be used to put specific queries to the system. 

7.3 Interface design criteria 

7.3.1 Query formulation 

Criteria for selecting query languages are by no means clear-cut. In their review of query 
languages for pictorial databases, Chang and Fu (1981) argued that· the most effective 
approach to query language design was to extend existing text-based languages, rather 
than to design new ones from scratch. While conventional query languages were unable 
to handle the full range of pictorial queries, those based on the relational database model 
could provide a substantial proportion of the required query facilities, and could readily 
be extended without distorting their essential structure. The use of an existing relational 
DBMS as the basis for an image database system simplified the design task, as well as 
providing useful database features such as applications independence, security and 
integrity. 

This view now seems rather naive. Chang and Fu made no attempt to characterize the 
type of user they had in mind when comparing query languages - but it seems clear that 
the needs of end-users such as geographers or engineers were given scant consideration. 
Few end-users have ever been happy with conventional database query languages even 
for numerical and text applications - hence the increasing interest (see below) in 
graphical front-ends to conventional databases. It is completely unrealistic to expect 
engineers to fonnulate queries to a graphical database in a dialect of SQL! 

A more thoughtful review of graphical interface requirements comes from Kim et al 
(1988), in the presentation of their graphics-based database query language PI~ASS~ -
which is explicitly designed with end-users in mind. They stress the ease WIth which 
inexperienced users can use graphics-based interfaces to build quite co~plex que~es, and 
to explore the structure of a database if required. They suggest four deSIgn pnncipies for 
graphical interfaces, as follows: 

- The graphical interface should be able to provide information to the user about the 
structure of the underlying database; 

- The user should be able to fonnulate queries incrementally, using the results from one 
step as the starting point for the next; 

- There should be a facility allowing the user to browse the database freely; 

156 



- Graphical feedback should be provided to assist query fonnu1ation. 

Lat:r workers such as Leung et al (1989) have endorsed and extended these principles 
addmg two more: ' 

- There should. be cons~tency between different parts of a language that deal with the 
same type of infonnatlOn; . 

- The level of detail provided by the system at any given point should be user
selectable. 

While some of these points ~e debatable (how much does an end-user really need to 
understand about the underlymg structure of a database?), they do provide a useful 
context for evaluating potentially useful features for new systems. 

7.3.2 Display of results 

As proposed above, a graphics database system shou1d be able to provide users with a 
choice of output fonnats. At the lowest level, a graphical query cou1d be satisfied by 
display of drawing number or design file name, leaving it up to the user to examine the 
drawing or file to establish whether it meets the criteria specified. Most users, one feels, 
wou1d expect a drawing of each retrieved object to be displayed, probably in order of 
presumed similarity to the query. Some users wou1d undoubtedly require a copy of the 
original design file, on which to base a modified design. 

The difficu1ty of precisely specifying search criteria in advance is also recognized above, 
as the need to provide a means of incremental query fonnu1ation, so that the user can if 
necessary apply a trial-and-error process of formu1ating a query, running it, examiriing 
the results, and modifying the query accordingly. This clearly implies the need for a 
system to be able to display results from intermediate search steps at any time. It also 
suggests that the technique of relevance feedback (Salton, 1971) may be of use. Here, the 
user first formulates some approximation toa query, the system displays the resu1ts, and 
the user selects the items which appear most relevant. The system then uses.this feedback 
to modify the query, repeating the process until the user is satisfied, or no further 
improvement in retrieval performance can be achieved. In a situation where many user 
queries may well be ill-defined, such feedback would clearly be highly desirable. Its 
implementation as part of a similarity retrieval system is not fundamentally difficu1t - the 
system cou1d simply use drawings selected by the user as queries in their own right. 

7.3.3 Applicability of existing types of interface 

Command languages (with suitable display facilities for retrieved drawings) can readily 
handle type A and D queries as defmed above, for either 2-D or 3-D objects. They can b.e 
used for incremental query formu1ation, in browsing, or to show database structure if 
required. Their limitations stem from the fact that they are essentially text-based. Even 
when extended to allow specification of shape or position information, they are far to.o 
unwieldy for anyone but the . most dedicated enthusiast. As far as any. end-use~ 1S 
concerned, they are effectively unable to handle any type of query which requITes 
graphical input. 

Menu-based query formulation could be used for all types of ret~eval, p~rticul~ly th?se 
involving graphical input (types B, C, E, and F). If used inte1l1gently m a wmdowmg 
environment, it can prove sufficiently flexible to be acceptable to. most .users, bo~ for 
specific query formu1ation or browsing. Incremental query formu1atton gu1ded by display 
of intermediate search results can easily be provided. Menu-based methods may well 
prove the only feasible means of formulating 3-D queries. 

157 



~xample-base? query fonnul~tion i~ an attractive proposition for query types B, C or F 
if sample quenes can be easily built up on the screen, or submitted in the form of 
sketches. The method is not really suitable for incremental query formulation and would 
~e di!ficult t~ adapt for 3-D queries, but is well suit~d to browsing. The main difficulty 
lIes m ensunng that the example has been descnbed to the system with sufficient 
accuracy - a particular prob~em with sketch input, where some degree of interpretation is 
necessary ("are those tw.o sl~es sUPI?osed to be parallel?"). Several sketch interpretation 
systems have been desc~bed m th~ lIterature (e.g. Liardet et ~ (1978), Kato et al (1982»; 
these could be used to clean up freehand sketches of deSIred objects prior to feature 
analysis and database query as desc~ibed above. In p?nciple, a language like QPE could 
also be used for example-based retrIeval. However, Its textual bias means that it suffers 
from the same inherent problems as command languages, and is thus only really suitable 
for type D queries. . 

Novel methods of data organization and display such as Herot's could readily be applied 
to an engineering database, particularly if used in conjunction with some form of 
clustering or parts classification scheme, as suggested in section 6.3.4. Identifying parts 
similar to a given object would involve displaying a "world view" of icons representing 
typical members of each part family; "zooming in" to a selected part family would then 
display each of its individual members, allowing users to identify parts of interest to 
them. From the user's point of view, the advantages would be considerable - no query 
language to learn; no need to defme the query object in any detail; no draughting ability 
required; no problems with 3-D objects (as long as desired features could be recognized 
from the 2-D drawing). It could well be the method of choice for handling type F 
(similarity retrieval) queries - though it would be of little use for formulating specific 
queries of types B, Cor D. 

7.4 Interface design for the prototype system 

The discussion above has highlighted the need for a shape retrieval system to operate in a 
wide variety of query and display modes. No single type of interface is likely to be 
suitable for all types of user and all types of query. Any attempt at tailoring interface 
design to the needs of specific users atthis stage would be doomed to failure - no reliable 
information is yet available on how searchers would actually use such a system. . 

With this and the design criteria discussed in Section 7.3 in mind, therefore, the eventual 
aim of the prototype system is to offer the following query interfaces: 

1. An example-based interface, where a complete or incomplete query structure can be 
built up on the screen, and then submitted for feature extraction and shape matching as 
described in Chapter 6. It is expected that this would be the mam method for 
specifying type B, C or F queries. Query fonnulation would us~ either keyb.o~d input 
or a mouse or similar pointing device to specify line type, SIZe and pOSItIOn - the 
former where accurate query specification was paramount, the latter where ~peed and 
ease of use was of more importance. A relatively straightforward extenSIOn to the 
system could allow users to select any retrieved drawing and find those drawings most 
similar to it, thus providing a measure of relevance feedback. 

2. An extension to (1), in which input could be submitted to the system as a rough sketch, 
which could be digitized either by following its outline. with. a stylus and tablet, or 
placing the sketch in front of a digital camera, extractmg lmes from the resultant 
image, and "cleaning up" the sketch as outlined in section 7.3.3. 

3. A menu-based interface, allowing users to select and combine query features 
(represented as text descriptors or icons), perf?nn Boolean sero:ches on the database, 
examine results and amend queries where reqUIred, much as e.nv1saged by Fr~son and 
Er-Radi (1986). This would be the prime method for fonnulatmg type D quenes. 

158 



4. A br~wsing interface, based on Hero~'s ideas as described in the previous sec:or; 
Dra~illgs. would be. clustered accordmg to similarity measurements com:':';:E~ as 
specified ill t~e prevIOu~ chapter, and Icons repr~senting each cluster displayed on :"'1e 
~creen. SelectIOn of.an lCon ",,:ou~d. then allow dIsplay of all drawings 'O~ sub-clas~es I 

ill the cluster; s~lectIOn .of ~ mdlvldualdrawing would display full inicl~atlon abouT 
the object and Its drawmg file. Inexpenenced or casual users would normallY access 
the databa<;e in this mode. . 

B~tween th~':I1' these interfaces offer a comprehensive set of query specification to!'ls. 
with the ability to handle a range of query types and interaction modes. However. the\ 
canno~ all be integrate.d with the shape matching process as closely as one would like. 
The sl~e and ~omplexlty ?f the shape flle needed to represent an example-based query 
(see Fig 6.3, m the prevIOus chapter), plus the need to perform canonicalization and 
feature extraction on the query shape before matching takes place, mean that formulation 
of example-based queries and shape. ma.tching must remain loosely-coupled processes. 
By contrast, menu-based and browsmg mterfaces do not require complex intermediate 
files to link with the shape-matching process, and can therefore be tightly coupled. The 
main implication of this is that incremental query formulation should be much easier for 
menu-based than example-based queries, and response times should be significantlY 
shorter. . 

Implementation of the full range of options was considered too amhitious a tash. tP he 
attempted within the present project, particularly as some options required specla.l
purpose hardware which was not readily available. Option 1 was selected tor 
implementation in the initial prototype, on the following grounds: 

- it provides a means of formulating the potentially most useful type,; of L1uer:. 
(similarity matching and partial shape matching); 

- its retrieval performance is readily susceptible to evaluation, unlike. say. option 4. 
where there is no objective means of assessing how well the system has clu~tered or 
displayed the shapes in the database; 

- it could be readily implemented without recourse to special-purpose hardware. 

7.5 Implementation of the query formulation module 

7.5.1 Overview 

The overall purpose of the query formulation interface is to allow a u"er to build up an 
example query shape on the screen. which can then be subjected to feature extraction and 
shape matching as indicated in the previous chapter. This effectively requires that the 
user is provided with a graphics editor. though one with strictly defined capabilItle..; 
Valid queries obey similar syntax rules to valid drawings - one or more boundarIes. each 
consisting of one or more line segments. each of \vhich may be a straight line or circular 
arc. No boundary segment may touch or intersect any other <;egment. The only difference 
is that query boundaries do not need to be closed. 

The query formulation program thus needs to be able to build up such .query shapes on 
the screen, to allow the user to verify their correctness and modify them if necesqry. and 
to store the results in a form that can then be subjected to feature extractIon The most 
straightforward way to achieve this is clearly to 'set a cursor at some (arbmary I <;tan 
point. and let the user specify length. type and direction of each lme sepnent untt! :he 
query boundary is complete. Each line segment is assumed to start where the pr(::'\l('U" 
sq:ment finishes. Limiting the user's freedom of action in th1<; way makes It much ea~ler 
to ensure the validity of the final query. Incomplete boundanes can be handleJ en 3. 



number of ways, but the most satisfactory is to allow the user to derIDe dummy segments 
which can connect two nonnal boundary segments (Fig 7.1). TIlls has the advantage that 
queries inv~lving ~? s~tch~s ~f boundary which a:e not physically connected, but 
whose relatIve pOSItiOn IS still nnportant, can readily be specified. It also greatly 
simplifies the process of feature extraction, as programs SKELETON, CANONGEN and 
DATALOAD (all of which rely on shape boundaries being closed) can be readily adapted 
to process queries with dununy segments. 

Some of the more detailed design options were constrained by the available hardware and 
software ~ DEC VT240 tenninals (providing what by today's standards are only medium
resolution graphics displays), and GKS (Graphical Kernel System) graphics. GKS, an 
international graphics standard defining a set of routines which can be called from 
applications programs to provide notionally device-independent graphics input and 
output, can in theory support virtually any type of interaction between user and machine. 
However, the low level and stereotyped nature of the functions it provides acts as a 
severe deterrent to the designer's imagination. For example, GKS provides no functions 
to draw a circle on the screen, or to accept numeric input from the keyboard, leaving this 
to the applications progranuner. There is thus a. very strong incentive to choose a design 
that is simple to program, rather than one that will prove easy to use. 

I 
I 
I 
I 

DUMMY segMents 

Fig 7.1 Use of dummy segments to indicate incomplete query shapes. In 
the first example, the three solid segments constitute the que,ry, the dashe.d 
dummy segment notionally closing the boundary ~ut playzng no part zn 
query matching. Hence this query should match wzth rectangular shapes 
of any length. In the second example, ~he dummy seg~ents indicate that 
either long side may include protrusIOns or depre~slOns - though th~ 
relative positions of the two halves of the query are ,"!p~rtant, so t~t It 
should match only shapes derived from rectangles of Similar length/Width 
ratios. 

160 



Some features of GKS. did prove useful. It is relatively easy for the programmer to set up 
(text) menus from which the program user can choose with a suitable pointing device 
(mouse or arrow keys) - though the position of the menu on the screen has to be specified 
in device-dependent coordinates. Considerable use was made of such menus for guiding 
the flow of control: at each .stage, a menu of legal commands was displayed on the right 
of the screen, thus preventmg the user from selecting an inappropriate command and 
reducing the amount of error-handling necessary. ' . 

T.wo !llain option.s were available for ~owing the user to indicate the length and 
drrectlOn of each lme segment: keyboard mput, where the user was prompted to enter the 
relevant numeric values from the keyboard (as text strings, which were then converted to 
numeric values by the applications program), and locator input, where a graphics cursor 
was moved around the screen (by mouse or arrow keys) until it reached the desired 
position, when depression of a mouse button or the <enter> key made its current 
coordinates available to the program. Perhaps surprisingly, the former type of input 
proved much more successful in practice for query formulation, as the accuracy of 
locator input did not prove sufficient to ensure that supposed right angles really were 
900 , or that opposite sides of a supposed rectangle were equal· in length within the 
tolerances required by the feature extraction programs. Keyboard input was thus used 
exclusively in evaluating the initial prototype. 

7.5.2 Detailed program operation 

On startup, program QUERYFORM displays an initial explanation screen, followed by 
an initial choice menu, inviting the user to start· constructing a drawing boundary or to 
exit the program. Assuming the user chooses the Start boundary option, the system then 
creates a header record for that boundary, and prompts the user for the position and start 
direction of the first line (see Fig 7.2). Queries are built up in a screen window initia)ly 
spanning an X-coordinate range of -120 to +120, and a Y-coordinate range of -100 to 
+100. If the user simply hits the <enter> key, the program chooses default values for 
boundary start position and direction. Note that although the feature extraction and shape 
matching programs make no use of Cartesian coordinates of line end-points or arc 
centres, an arbitrary coordinate system has to be used in the query formulation program, 
so that GKS can display the query shape on the screen. Most of this can be hidden from. 
the user, but some fixed starting-point and direction for the whole process have to be 
specified. 

The user is then invited to choose one of the following commands: 

Add line: add a new straight-line segment to the current boundary 
Add arc: add a new circular arc segment to the current boundary 
Add dummy: add a new dummy segment to the current boundary 
Quit boundary: abort construction of the current boundary. 

In all but the last case, the system prompts the user for appropriate parameters to defme 
the current line, creates an appropriate segment record to hold. thes~ param~ters, and 
displays the resulting line on the screen - as a solid line for a strrught-IU?-e or crrcular ~c 
segment, as a dashed line for a dummy segment. If the current boundary IS not closed (I.e. 
boundary start and end points are not coincident), the user is then prompted for the next 
command, now having a slightly wider choice: 

Add line: add a new straight-line segment to the current boundary 
Add arc: add a new circular arc segment to the current boundary 
Add dummy: add a new dummy segment to the current boundary 
Undo last: remove the last line from the current boundary 
Rescale: rescale the current query display 
Close boundary: add a segment to close the current boundary 
Quit boundary: add a dummy segment to close the current boundary. 

161 



a.rea. 
Currentl y 0. vo.ilo.ble 

Menu choices 

I 
I 
\ " . 

,~ Stnrt bound 

X Exit progrQM 

StQrt X ) 

Fig 7.2 Query input screen at start of boundary creation process. Note 
use of three separate screen areas for query shape display, keyboard input 
and command menu. Coordinate axes are displayed only when boundary 
creation is first initiated; the cross in the query display area denotes the 
default start position for the current boundary. 

The Add line, Add arc and Add dummy commands have the same effect as before, except 
that a new line or arc segment is validated by checking that it does not intersect any 
existing boundary segment. If it does, the segment is rejected, and the user invited to 
enter another command. Undo last deletes the last line from the current boundary, and 
may be used repeatedly; Rescale changes the scale of the query display, allowing the user 
to zoom in or out as required. Close boundary may be used as a quick way to terminate 
boundary construction, allowing the system to calculate the length and direction of the 
last segment; Quit boundary effectively allows construction of an incomplete boundary 
to be terminated, adding a dummy segment for compatibility pwposes. 

162 



A typical input screen with a partly complete query shape is shown in Fig 7.3. 

Once the boundary is c~mplet~, t!te user is invited either to .enter another boundary or 
quit the program. There IS n? lmut to the number of boundanes (?r segments) that may 
be entered, though the operatIon of the GKS segment-drawing routmes and the validation 
procedures which ensure that no line segments intersect make the entry of a complex 
shape a somewhat tedious process. If the Quit program option is chosen, and at least one 
valid boundary has been created, the program will write the "raw" query formulation to 
ftle, for input to the feature extraction stage. 

--.....~=====t Currently n va.ila.ble'F========i1 
Query shnpe Menu choices 

AcIcI line 

AcIcI o.rc 

AcIcI clUMr'ly 
CCCrdino. tes of 
current screen 

position Uncia lnst 
/ 

{ 

\ 

~Current coorcls: -20 50 Current clirection 180 

SegMent length > 

Keyboo.rd 
input Window 

Rescnle 

Close 

Quit 

Fig 7.3 Query input screen showing partly-~ompleted query shape. Note 
representation of dummy segment as dashed lme. 

163 



7.6 Feature extraction 

Before the "raw" q~e~ shape can b~ matched with shapes in the database, it must be 
converted . to a similar fO?D' TIlls process involves three separate steps, each 
corresponding to one processmg stage for stored shapes (see Chapter 3): 

1. generation of a hierarchical boundary representation' 
2. casting the representation into invariant fonn; , 
3. feature extraction and query file generation. 

Building a hierar~hical boundary representation is accomplished by program 
QUERX"s~L,. de~ved ~om program. SKELETON (described in section 3.3.3). 
Processmg IS IdentIcal, WIth one exceptIon; dummy segments cannot themselves be 
extended to fom:t higher-!evel segments i? s.hape hierarchies, though they can be included 
as bottom-level mtermediate segments WIthin such hierarchies (Fig 7.4). 

, , 
/ , , , , , 

/ , , , 

[ I 

------ DUMMY segMents 

) 

>( ) 

,- " -I , 
/ 

I / / , 
, I / , 

r 'Ii 

Higher-level segMents 
genera. ted by hiera.rchy 
bUilder 

Fig 7.4 Rules for inclusion of dummy segments in shape hierarc~ie~. 
Dummy segments can be included only as intermediate segments wlthm 
hierarchies, as shown in the first example. They cannot themselves be used 
as the basis for higher-level segments as in the second example. 

Program QUERY CAN casts query representations into canonical form using the same 
method as CANONGEN (section 3.3.4). Dummy segments have ~ length of zero. Hence 
when comparing alternative paths aro~d the boundary, a p~th WIth a real segment at a 
given position will always be selected ill preference to one WIth a dummy segment at that 
position. 

164 



Program QUERYFEAT extracts all relevant features of the type described in chapter 4, 
using procedures analogous to program DATALOAD (section 4.5) and stores the fmal 
query representation in a me suitable for input to program RETRIEVE (section 6.6). For 
queries without dummy segments, the feature extraction process is exactly as described 
in section 4.5; where dummy segments are present, some features cannot be defmed so 
that null values have to be set. As indicated in section 6.5, program RETRIEVE t~sts 
each query for the presence of dummy segments, and curtails the range of feature types 
matched where necessary. 

The rules for determining feature validity in incomplete query boundaries are simple. 
Where dummy segments are present in a given boundary at a specified level, none of the 
global features defmed in section 4.4.2 are assigned a value. Local boundary features 
(section 4.4.3) are computed where values can be calculated without reference to dummy 
segments (Fig 7.5). Inner boundary position features (section 4.4.4) are held to be 
dependent on relative positions of boundary centroids, not individual segments, and are 
therefore calculated. This is not strictly valid, since the presence of a dummy segment in 
the top level of a boundary implies that the boundary centroid position cannot be defmed. 
However, changes in the shape of individual boundary segments seldom have a major 
effect on the boundary centroid position. It was therefore considered worthwhile to 
include such features for boundaries with dummy segments, at least in the initial 
prototype, since it was a reasonable hypothesis that their effect on retrieval performance 
would be beneficial. 

B 

c 

E 

./ 
./ 

,/ 

F 

Fig 7.5 Local shape feature !J.eneration jromincompiete shapes. Ar~ 
angle values are valid for lme segments Be, CD, DE and ~A, 
discontinuity angle and triplet values for angles C and 0; arc angle trzplet 
values only for segment CD. 

165 



7.7 Display of results 

As indicated in section 6.6.5, program RETRIEVE allows the user to select one of a 
number of output formats, following the principles outlined in section 7.3.2: 

(a) A list of drawing identifiers, fIle names, and difference measures, displayed on the 
screen in order of increasing difference from the query (i.e. descending similarity). 
The list header contains full details of all run-time parameters specified. 

(b) The same output as (a), but directed to a print fIle (Fig 7.6). 

(c) If a suitable graphics terminal is available (DEC VT240 or similar), retrieved 
shapes may be directly displayed. The query is first drawn on the screen, then 
retrieved shapes, in similarity order, together with identifiers and distance 
measures. Drawings are scaled so that up to four may appear on each screen. 

(d) The same output as (c), but directed to a Tektronix plot fIle (which can also be 
displayed on a laser printer - see Fig 7.7). . 

(e) The same output as (c), but directed to a Postscript fIle for output to a laser printer. 

No relevance feedback facility is available at present. 

166 



Mat.ch .)f query DRAW048 (draw048.QUE) by RETRIEVE~ vet'sion 4.0 
Drawings searched: 1 - 188 retrieved: 30 limit: 60 cutoff: 250.00 
Init. cutoff:l.21 IB ~e~ghtin9 - P?sitian: 0.20 class: 0.40 shape: 0.10 
Feat.ure Mat.ch 18 POSItIons only MIrror images All classes 
Local feature matching taking minimum level and faat~re values 
Features used - Arc Triplets Parent Features SegLength Distribution 

End 'Jf 

Dt'awing n (I 

54 
147 
164 

34 
111 

76 
102 
127 

74 
79 
83 

140 
70 

101 
96 
24 
75 

154 
80 

149 
65 
69 

139 
1 71 
175 

35 
25 

137 
39 
72 

repot't - t.'Jta I CPU 

File name 

ENG09 
ENG 119 
ENG137 
MORECIRC 
ENG71 
ENG38 
ENG63 
ENG94 
ENG034 
ENG035 
ENG43 
ENGi14 
ENG023 
ENG61 
ENG62 
CIRCLES 
ENG36 
ENG123 
ENG37 
ENG124 
ENG22 
ENG21 
ENG112 
ENG122 
ENG162 
MORECIRC35 
CIRCLE25 
ENGI07 
TRIANGLE 
ENG27 

t.ime used (m s) 1790 

0.3006 
0.3030 
3.7345 
3.7451 
4.1110 
4.1121 
4.1986 

.4.2023 
4.2150 
4.2448 
4.2536 
4.2732 
4.3171 
4.32B3 
4.3283 
4.3471 
4.3500 
4.3596 
4.3692 
4.3777 
4.4044 
4.4273 
4.4432 
4.4478 
4.5259 
4.7934 
4.8013 
4.B266 
4.9122 
4.9484 

Fig 7.6 An example of printed output, showing ranking of retrieved 
drawings in similarity order. 

167 



Query name 

Drawings retrieved, 
Drawing no 108 

D = 1 

Drawing no 
D 

115 
53 

DRAW089 

in similarity order 

Drawing no 
D = 

114 
13 

~ .. O 
~ 

Drawing no 
D = 

119 
53 

Fig 7.7 A graphical display of retrieved drawings, again ranked in 
similarity order. Note that the values of the difference measure D shown 
here are multiplied by 10 and then rounded to the nearest integer. 

168 



CHAPTER 8. TESTING AND EVALUATION 

8.1 Scope of the evaluation process 

Th~ ~receding c~a.pters h.ave ?escribed th~ SAP ARI system, and the reasoning behind the 
declsIO~s taken m Its ~eslg?, m some detail. Som~ measure of evaluation of the prototype 
system IS clearly requITed m order to t~st the basl~ validity of its approach before further 
development can be undertaken. ~t IS pe~haps. Important at this stage to distinguish 
be~we~n program and system testmg, which. aImS t? ensure that the system's design 
objectives have been met, and system evaluatIOn, which tries to establish whether these 
objectives are in fact worthwhile. 

For conventional computer systems such as invoicing or stock control the distinction 
between these two processes is clear-cut. Testing involves verifying that all possible 
types of ~p~t to the. system lead .t~ correct outputs or changes to data stores. For a large 
system, this IS a deCidedly non-triVIal task, but can at least rely on the truth of one axiom 
- for every input, it is possible to defme unequivocally what the system's response should 
be. In other words, there is always a set of "correct" values against which the system's 
output can be checked. Evaluation, on the other hand, is much more subjective, centring 
on aspects such as user acceptability or value for money. Often, it is not carried out at all, 
the fact that someone has been prepared to fund the systems development process in the 
fIrst place being considered suffIcient justification for its existence. 

For systems which aim in one way or another to emulate human judgement, the picture is 
more complicated. At the lowest level, it is still essential to verify that each system 
component behaves in the way its designer intended. Program testing can be carried out 
in exactly the same way as for conventional software, by comparing output values with 
those expected by the designer. Overall system effectiveness is however a much more 
diffIcult concept to measure, as it may be impossible to define a "correct" output for a 
given input. For example, a medical expert system, faced with a given set of symptoms, 
may well come up with a diagnosis which one specialist would endorse and another 
would reject. Even if further investigation of the patient revealed that the expert system's 
diagnosis was in fact correct, one cannot rule out the possibility that it reached the right 
conclusion for the wrong reasons. Similarly, a bibliographic retrieval system may 
perform according to its designer's specification in that the references it generates in 
response to a given query always contain the keywords specified. Whether this set of 
references is actually useful to the enquirer (the real criterion of system effectiveness) is 
another matter. 

One can thus distinguish at least three levels of evaluation for such a system - testing of 
program correctness, measurement of system effectiveness, and assessment of overall 
fItness for purpose. For prototype systems such as SAFARI, the second of these is 
probably of prime importance. This is not to downgrade the importance of 
comprehensive program testing, which is just as necessary here as it is for any other 
system. It is simply a recognition that any number of standard techniques are applicable 
(e.g. Myers, 1979). 

Assessment of a system's overall fitness for purpose, while a key issue for operational 
systems or later prototypes, is simply not possible with early prototypes: Such ~ 
assessment requires a variety of factors to be evaluated, including e.ffectIveness m 
providing the required output, acceptability of user interface, response tImes, and cost
benefit ratios. Most of these factors can be evaluated only when it has been shown th~t 
the system does in fact work - and in some cases only after the system has been m 
operation for a significant period of time (cost-benefIt analysis, for example, requires a 
system to have been operational for long enough to have produced measurable effects on 
the behaviour of its users). 

169 



Choosing a~propriate meas~es of system .effectiveness thus appears to be a crucial issue. 
The eval?atIOn process requrr~s some objective success criteria to be set, together with 
some rellab1e way of measurmg how well these criteria have been met. What criteria 
should be chosen, and how can they best be measured? 

8.2 Evaluation techniques used with related systems 

One obvious ~ource. of evaluation. measures wo~d seem to be the literature on related 
systeI?s -. wh!ch rruses the questlon of what kind of system SAP ARI really is. This 
q~estIOn IS discussed further (and hopefully resolved) in Chapter 9. Meanwhile, one 
~g~t expect to. look to four re1.ated types of sys~em, all. o~ which .att~mpt in some way to 
mImIC human Judgement, for Ideas on evaluatIOn - blbllographic information retrieval 
systeI?s, ~xpert (knowledge-based) sys~e~s, image database systems of the type 
descnbed ill Chapter 1, and pattern recogrutIOn systems. . 

8.2.1 Information retrieval systems 

Informati<?n retrieval ~yste~ (see chaI?ter 5) have a long history, predating the computer 
by a conSIderable penod. Smce the rmd 1950s, a substantial body of research into their 
effectiveness (summarised in Sparck Jones, 1981) has been built up. Six evaluation 
criteria, originally proposed for the Cranfield experiments on index language 
effectiveness (C1everdon et al, 1966), appear to have stood the test of time: 

1. The recall of the system, i.e. the proportion of relevant material in the system actually 
retrieved in response to a query; 

2. Its precision, i.e. the proportion of retrieved material that is actually relevant; 

3. Its coverage, i.e. the extent to which all relevant material is included in the system; 

4. The time lag between receipt of a query and delivery of the system response; 

5. The form of presentation ofthe output; 

6. The effort required by the user to obtain search results. 

The frrst two of these measures (illustrated as a Venn diagram in Fig 8.1) can be regarded 
as prime indicators of system· effectiveness, i.e. ability to present users with useful 
material while screening them from irrelevant information. They have the advantage of 
being easily expressible as numeric quantities, thus allowing valid comparisons to be 
made between the performance of different systems. The remaining measures are harder 
to quantify, and hence less immediately appealing as performance indicators. The third 
measure is in any case primarily of interest to the manager of the data collection rather 
than to the system designer, while measures 4 - 6 can be regarded principally as 
indicators of user acceptability .. 

To assess precision and recall values, it is essential to have some me<I?s of judg~g .the 
relevance of a retrieved item to the query. Such judgements are notonously subJectIve. 
Only the person framing the original query can really tell whetI:ter a given docume~t 
contains useful information. Even then, (s)he may well not Judge the document s 
usefulness by the same criteria as those used to formulate the query. The difficulty. of 
emulating human relevance judgments accounts for many of the problems of evaluatmg 
that performance. Failure to appreciate these difficulties invalidated a number of early 

170 



Retrieved 

Reco.ll = 

iteMs 

1M n NI 
INI 

N 

PreCision = 1M n NI 
IMI 

Fig 8.1 Diagram illustrating the definition a/precision and recall 

studies. Retrieval experiments now nonnally use either the enquirer's own relevance 
judgements (accurate but possibly idiosyncratic),or that of a panel of independent 
experts (objective but possibly based on a misunderstanding of the query). 

Despite this, precision and recall (or measures derived from these parameters) have 
become the de facto standard for evaluating retrieval systems, or comparing the relative 
effectiveness of different types of search strategy or indexing language. For any given 
system, they tend to show complementary behaviour as the retrieval cutoff point is 
varied. Any action which increases recall (such as broadening the scope of a query) will 
decrease precision, and vice versa. Hence one can characterize the behaviour of most 
retrieval systems by plotting precision-recall graphs of the type shown in Fig 8.2. 

Graphs of this sort are a somewhat cumbersome way of recording effectiveness, 
particularly when comparing the relative perfonnance of two systems. A single numerical 
measure of effectiveness was fIrst proposed by Swets (1963), who postulated the 
following criteria for the ideal retrieval measure: 

1. It would be a pure effectiveness measure, reflecting only the system's ability to 
distinguish between wanted and unwanted items; 

2. It would be independent of retrieval cutoff point; 

3. It would be expressible as a single number; 

4. It would provide an absolute scale on which the perfonnance of different systems 
could be compared. 

171 



1.0 
~ 

~ 
c ~ 0 
lfl ~ 
U 

~ OJ 
L 

0.- Y 

o 0 
Reco:ll 1.0 

Fig 8.2 Typical precision-recall graph illustrating the inverse 
relationship between these two measures. As a search formulation is 
broadened, recall invariably rises and precision diminishes. 

His own E measure, based on statistical decision theory, is potentially able to satisfy all 
of the above criteria. However, it relies on the assumption that the numbers of both 
relevant and non-relevant documents retrieved at a given level of some control variable 
(such as depth of indexing or number of search concepts combined) are normally 
distributed with respect to that variable. Since this is rarely the case in practice, his . 
measure has limited validity and is seldom used. 

For systems capable of ranking output in presumed order of relevance, two single
number measures of effectiveness, which meet the above criteria and make no 
assumptions about the underlying distribution of the data, have been proposed. Both were 
used in the evaluation of the SMART system (Salton, 1971), and both compare the actual 
ranking of retrieved documents with the best and worst possible cases. Normalized recall 
(so called because it is computed by considering recall values at each possible document 
ranking level) can be computed as: 

n n 

L (Ri) - L (i) 

i=l i=l 

~ = 1 -

n (N - n) 

where R· is the rank at which relevant document i is actually retrieved, n is the total 
number ~f relevant documents and N the size of the whole document collection. In a , 
similar fashion, normalized precision is defmed as: 

172 



n n 

L (1og R i ) - L (1og i) 

i=l i=l 

log 

It ~ important to note that ~ither ?f these measures. can stand alone as an indicator of 
retneval perform~ce. DespIte therr .n~es, normalIzed precision and recall are not a 
complementary parr of perf?rmance mdicators, nor do. they bear an inverse relationship 
t~ each other. The only difference b.etween ~~m lies in the weighting assigned to 
differen~ document ranks - the normalIZed preclSIO:r;t measure giving more weighting to 
the rankings of the fIrst few relevant documents retneved, the normalized recall measure 
being more sensitive to the ranks of the last few relevant documents retrieved. 

Several other composite measures of system effectiveness have been proposed (see van 
Rijsbergen (1979), chapter 7), though none would seem to have any compelling 
advantages over those outlined above. 

8.2.2 Expert systems 

Whatever performance measures are chosen, the evaluation of an information retrieval 
system is essentially a test of its relevance judgements. In the same way, the evaluation 
of an expert system is a test of its decision-making. In both cases, it is necessary to 
compare performance with that of human subjects faced with the same decisions. 
However, the expert systems community does not appear either to have made use of the 
formal performance measures described above, nor to have developed its own measures. 
(This may of course simply be a reflection of the relative youth of the discipline). 

The need for careful and objective evaluation, and the problems of achieving this in 
practice, are, however, well recognized by expert systems researchers. The review by 
Gaschnig et al (1983) notes the importance of formal testing, though it illustrates the 
difficulty of comparing machine judgements with those of humans by comparing the 
results of two trials of the MYCIN medical diagnosis system in different hospitals. 
Despite identical experimental design, the. performance of MYCIN appeared to be 
substantially better in one hospital than another, a difference attributed at least in part to 
differences in diagnostic style between the two hospitals. 

This review contributes a number of generally applicable insights. It stresses the need for 
objective standards against which performance can be assessed, ~e ne~d for careful 
experimental planning to avoid bias, the value of sensitivity analyslS (testm~ t~e ~ffects 
on performance of small changes in input parameters), aild the value of e.hmmatmg as 
many variables as possible before measuring system performance. It also lists. a ~umber 
of potential pitfalls, including failure to clarify what is being evaluated, bIasmg .the 
results by selecting too narrow a range of test cases, failin~ to sele~t an appropnate 
standard, overgeneralizing from results obtained, and attemptmg detailed evaluatIOn at 
too early a stage of development. 

173 



8.2.3 Image database systems 

While some pictorial databas~ systems, such as those described by Chang et al (1980) or 
Chock et al (1984), are deslgne~ to ~~dle quer~es for which an unequivocal "right" 
answer can be def11?-ed (such. as Identifymg all gnd cells on a given map classified as 
"forest", or calculatmg the distance between two identified city centres) most have a 
wider scope. For example, ARES (Ichikawa et al, 1980), GRAIN (Chang e~ al, 1980) and 
RE?I ~Chang. and Fu.' 1980) all allow users to input queries involving similarity 
estImatIon, which requIre the system to make relevance judgements. However, none of 
these authors present any examples of output from their systems let alone an evaluation 
of ~e~ performance. The only wor~~rs in this area who ackn~wledge the problem of 
achievmg acceptable values of precIsIOn and recall appear to be Rabitti and Stanchev 
(1989) - and even they give no actual evaluation results. 

8.2.4 Pattern recognition systems 

Parallels between the SAFARI system and image recognition systems have already been 
drawn in Chapter 4. Such systems again aim to mimic human judgement, in this case in 
recognizing familiar shapes within a digitized image. Perhaps because most image 
recognition systems deal with relatively well-defmed situations (such as whether a given 
object is present in a given scene or not), the question of evaluation is clearly considered 
of less importance than with information retrieval systems or expert systems. If a system 
has been designed to decide whether a given image is that of a hammer or a pair of pliers, 
there is not much difficulty in deciding whether its decision is. correct or not. Even with 
more complex recognition tasks, such as identifying, counting and locating (say) steering 
knuckles in a whole heap of assorted motor parts, a "right" answer can still be defmed 
without the need to involve a panel of independent observers. -

Like most of the work on image databases referred to in the previous paragraph, studies 
such as those of Yachida (1977), Perkins (1978), Turney (1982), Bhanu (1984) and 
Stockman (1985) thus appear to have little to contribute in the area of evaluation. Indeed, 
one might legitimately criticize some of these studies for the small number of test cases 
they use to demonstrate the validity of their approach. . 

8.3 Evaluation approach chosen for SAFARI 

8.3.1 General observations 

The above studies highlight the need for an objective evaluation of th~ prototype 
SAFARI system, to determine the extent to which its underlying ass~ptIOns form a 
valid basis on which to build an operational system. Since the system IS expected to be 
able to handle graphical queries in the same way that a bibliographic system handles. text, 
performance measures based on precision and recall would seem to be hig~y 
appropriate. The fact that they can yield a numerical indication of p.erfo~ance IS 
particularly helpful, as one can then readily judge whether any given modificatIOn to the 
system is likely to be beneficial or not. 

Objectivity in the selection of test data, and in the assessment of the relevance of output 
shapes to the original query input, are clearly of crucial importance, .t~o.ugh not e~y to 
ensure. Also of major importance is the need to limit the scope of the IIDt1al evaluatlo?- to 
those parameters that can realistically be tested with an early :p~ototype. An ObVIOUS 
example is the need to test system effectiveness (through precIsIon,. ~ecall or related 
measures) before making any attempt to investigate the acceptabilIty of the user 

174 



interf<l:ce. Unless o,ne kn~ws. that a ~ystem is capable of delivering reliable results 
assessmg user reactIOns to Its mterface IS unlikely to prove worthwhile. ' 

The prototype version of SAFARI aims primarily to retrieve drawings similar to a . 
query shape ~Typ~ F retrieval). It is thus re~onable to start by testing the sys~~;::'~ 
performance m this area. Unless t~e ~ystem ~ j~dgments of shape similarity can be 
de~onstrated to b~ ~easonable, there IS lIttle po~t .~ extending its scope to other types of 
ret.~eval. ~e ~eclslon was thus taken ~o base 1ll1tIal evaluation purely on the system's 
abilt!y to IdentIfy and r~ those dra~mgs most similar to a given query shape. This 
requrre? (a) a reaso~abl.e-slzed collectI~n of test shapes both for the database and to act 
as quenes, (b) .an objectIve standard f~r Judging the similarity of stored and query shapes, 
and (c) a relIable measure comparmg system performance with the standard. The 
following sections describe these aspects in tum. 

8.3.2 The test database 

Ideally, ~me would base a t~st database for a. system like SAFARI on a random sample of 
all pOSSible shapes from ItS chosen domam, so that all possible types of shape and 
geometric feature stood an equal chance of being represented. Unfortunately, such a 
concept is impossible to translate into reality - any attempt at identifying shape or feature 
classes in advance immediately introduces an element of prejudice. Failing this, some 
collection of shapes assembled for some other pmpose, such as drawings of spare parts 
stocked by an electrical goods ftrm, might sufftce, though such a collection could well 
contain a preponderance of shapes of a particular type. The situation is not unlike that in 
the text retrieval world, where many authors (see e.g. Sparck Jones, 1981) have lamented 
the lack of comparability of retrieval experiments using different document collections, 
and called for standard collections that any experimenter can use. 

The logistic difftculties of assembling such a collection of shapes for the evaluation of 
SAF ARl proved to be considerable. Only a limited proportion of industrial parts falls into 
SAF ARl's restricted domain of shapes. Hence the drawing collections of local 
engineering ftrms were of little use as collections,even though some of their individual 
parts could be used. For the initial test database, therefore, shapes were taken from a 
variety of sources - actual machined parts, illustrations from parts catalogues, and 
textbooks of engineering drawing (perhaps particularly suitable, as one might expect 
examples to be deliberately selected to cover as wide a range of drawing types as 
possible) providing the largest numbers of shapes. 

The majority of shapes were drawn using the DOGS CAD system at Newcastle 
Polytechnic, though a minority were produced using the MEDUSA system, as a test of 
compatibility. In several cases, identical shapes were drawn at different orientations and 
sizes, or using different CAD systems, in order to check that SAF ARl would in fact 
process their different representations in the same way. In all cases, drawings were made 
available to the SAFARI system as IGES-fonnat transfer files, as described earlier. The 
test database eventually contained 187 such shapes. 

The prime purpose of this test collection was obviously to act as a database of stored 
shapes against which queries could be put. It also provided the majority of test data for 
the shape analysis programs described in Chapters 3 and 4. Log files were gener~ted by 
test versions of all programs, and a random selection of these were carefully exammed to 
ensure that test shapes were in fact being processed as expected. A check was also made 
that the segment hierarchies generated by program SKELET<?N ~chapter 3) appeared 
intuitively sensible, and program modifications made where (as m Fig 3.33) this appeared 
not to be the case. 

A subset of this test collection was also used to provide the query shapes for the initial 
evaluation experiments. Although it can be argued that such "queries" are somewhat 

175 



artificial, the same can be said of virtually any query shape put to the system at its present 
sta~e of devel<;>pment .. It can equally be argued that the only truly realistic way to test 
retnevaf effectI~eI?-ess IS to us~ eXll!llples of actual queries put to an operational system _ 
somethmg that IS Just not possIble m ~e p!~sent context, as no operational systems exist. 
In any c~se, assessment of ~e syst~~ s abilIty to rank stored shapes in order of similarity 
to any gIVen stored shape IS a realIStIc test of any system that aims to provide relevance 
feedback in the way described in section 7.3.2 above. 

8.3.3 Standards for judging similarity 

8.3.3.1 Selection of a suitable standard 

As discussed abo~e, th~ only completely realistic standard for· judging retrieval 
performance - users own Judgement of the relevance of each stored item to their original 
queries.- c~ot be used at this st~ge of prototype development because no body of users 
or quenes eXIsts. Some comprorruse was therefore essential if any worthwhile yardstick 
was ~o be defined. S~ce initial testing was t? be limited to type F (similarity matching) 
quenes, the most sensIble approach was consIdered to be to ask a group of potential users 
to identify those drawings from the test database with highest similarity to a series of 
query shapes. Assuming some reasonable degree of consensus between subjects, the 
results of such an experiment could then yield a reasonably objective indication of the 
drawings that the system ought to retrieve in response to each of the query shapes tested. 

The only "potential users" available in sufficient numbers and willing to participate in 
such an experiment were mecharlical engineering undergraduates at Newcastle 
Polytechnic. These students were considered acceptable subjects; as there was no reason 
to suspect that their judgements of shape similarity would differ materially from those of 
eventual users of any shape retrieval system. All students were skilled in engineedng 
drawing, and had experience of using CAD systems. It therefore proved relatively easy to 
explain the purpose both of the system and of the experiment to them. 

8.3.3.2 Experimental design 

All 187 drawings in the test database were printed out using a high quality laser printer; 
and photocopied on to cards. Two separate sets of cards were produced, the fIrst (printed 
on buff card) showing the complete drawing, the second (printed on yellow card to 
minimize the risk of confusion) showing outer boundaries only. (This was done so that 
the system's performance in outer and inner boundary matching could be judged 
separately if required). Since a number of shapes in the database had been drawn with 
identical outer boundaries, differing only in inner boundary pattern, this left each "outer 
boundary" pack with a significant number of duplicate shapes. With the agreement of 
three independent observers (the author's wife and children), 17 such duplicate shapes 
were identified and removed from each yellow pack. 

16 of the 187 drawings from the buff-coloured "complete drawing" ~ack v.:e~e t~en 
selected as "query" shapes by the same observers, without .the author s partI~~patlO~; 
These 16 drawings were then removed from each pack, leavmg 171 to act as stored 
shapes. An identical procedure was adopted for the yellow "outer boundary only" pack. 
Again, 16 drawings were selected as query shapes (6 identical to "complete drawing" 
queries, 10 different), and removed from each yellow pack, this time leaving 154 "stored" 
shapes. The two series of query shapes are illustrated in Figs 8.3 - 8.4 and 8.5 - 8.6. 

Two experimental sessions were held, involving a total of 58 students. At each s~ssion, 
the purpose and background of the experiment were explained, and each student gIven a 
pack of "stored" shapes a set of 8 "query" shapes of the same colour, and a form for 
recording results. Stude~ts were then asked to take each "query" shape in tum, and after 

176 



32 44 

46 47 

57 62 

67 72 

Fig 8.3 The first eight outer-boundary query shapes 

177 



75 103 

115 120 

170 175 

176 183 

( ) 

Fig 8.4 The remaining outer-boundary query shapes 

178 



o 
o 

'-----, 

000 

9 

48 

57 

80 

Fig 8.5 The first eight all-boulldary query shapes 

179 

47 

49 

72 

89 



100 
109 

120 
122 

o 
o 
o 

154 159 

[0001 
175 176 

o 0 
o 0 

Fig 8.6 The remaining all-boundary query shapes 

180 



examining the pack of "stored" shapes, to write down on the form the drawing numbers 
of any stored shapes they considered identical to the query shape plus up to five shapes 
they considered closely similar, in order of similarity to the query. Students all worked 
individually, and were allowed up to an hour to complete the task. Quite deliberately 
they were given no guidance on how to judge similarity - though at the end of the sessio~ 
they were invited to comment briefly on the method they had adopted. Nor was any 
pressure put on students to complete all eight queries if they were running short of time 
or losing interest. At the com}?letion of the experiment, forms were analysed and counts 
recorded of the number of subjects who had ranked each "retrieved" drawing in similarity 
positions 0 (identical), 1, 2, 3,4 and 5. 

8.3.3.3 Experimental results 

Results for four of the test queries, reflecting varying degrees of consensus, are presented 
below in some detail. Full results for all queries are tabulated in Appendix A. 

Query 170 (outer boundary only) produced the most consistent results of any of the 
queries. It was one of a series of drawings used to illustrate the effects of changing 
dimensional parameters in otherwise identical shapes, so the degree of consensus here 
was perhaps not smprising. Table 8.3.1 indicates the number of students ranking each of 
the retrieved drawings at the specified position (e.g. 1 of the 16 students considered that 
drawing 167 matched the query exactly; 12 of the 16 students ranked drawing 166 third 
in similarity to the query). The drawings themselves are illustrated in Fig 8.7. 

Tab1e 8.3.1. Query no: 170, no of subjects: 16 

Drawing Exact Frequency at ranking position 
No matches 1 2 3 4 5 

167 1 13 1 1 0 0 
169 0 b 13 2 1 0 
166 0 3 1 12 0 0 
168 0 0 1 1 5 7 
172 0 0 0 0 9 6 

Query 89 (all boundaries) again elicited a high degree of consensus with the highest
ranking drawings (11 of the 13 subjects judging query 89 c~m~idered shape 108. t? be 
identical to the query, and 12 that shape 114 was the most similar of those remammg). 
Although there was a good measure of agreement over which remaining shapes should be 
included in the similarity listing (apart from drawing 150, sel~cted ~y only one stud.ent, 
and which seemed at least to the author, a distinctly eccentnc chOIce) there was lIttle 
consensus over th~ir actual ranking. Students' choices are listed in table 8.3.2, and 
illustrated in Fig 8.8. 

Tab1e 8.3.2. Query no: 89, no of subjects: 13 

Drawing Exact Frequency at ranking position 
No matches 1 2 3 4 5 

108 11 1 0 0 0 0 
114 0 12 1 0 0 0 
115 0 0 4 5 1 0 
119 0 0 3 1 4 0 

90 0 0 2 3 3 1 
150 0 0 0 0 0 1 

181 



Drawing no 167 Drawing no 169 

Drawing no 166 Drawing no 168 

Drawing no 172 

Fig 8.7 Students' judgements of the five shapes most closely resembling query shape 170. 
based only on outer boundary shape 

182 



Drawing no 108 

Drawing no 115 

Drawing no 90 

Drawing no 

Drawing no 

~ 
~ 

Drawing no 

o oJ 

114 

119 

150 

Fig 8.8 Students' judgements of the shapes most similar to query shape 89, based on the 
complete shape (outer and inner boundaries) 

183 



Two examples of queri~s where less co~se?,sus was apparent are also presented here. 
Query 175 (all boundanes) h~s.a lo~ger tail th~. the two previous examples, and two 
schools of thoug?t could !:'e distmgmshed, one gIvmg drawing 27 the highest similarity, 
th~ other favounng draw~g 82 (Table. 8.3.3). Examination of the drawings themselves 
(FIg 8.9) ~ugges~s a ,PossIble explanatIon - s~ud~nt~ preferring drawing 27 could have 
been lookmg pnmarily for outer-boundary similarIty, while those favouring 82 gave 
more weight to similarities in inner boundary patterns. 

Table 8.3.3. Query no: 175, no of subjects: 12 

Drawing Exact Frequency at ranking position 
No matches 1 2 3 4 5 

82 0 4 5 2 0 0 
27 0 5 1 1 1 1 
87 0 1 3 3 3 0 
37 0 2 1 1 0 5 

145 0 0 0 3 4 2 
31 0 0 1 0 0 0 
83 0 0 0 1 0 0 
24 0 0 0 0 1 0 

Finally, query 32 (outer boundary only) illustrates a case where students showed little or 
no agreement after position 2 on the list (Table 8.3.4; Fig 8.10). The most plausible 
explanation for this is that there were in fact only two drawings similar to the query shape 
in the entire pack. Support for this view comes from the fact that 9 of the 16 students 
judging this query left positions 3, 4 and 5 in their lists blank. Again, however, consen~us 
was apparent in the choice of the first two drawings selected. 

Table 8.3.4. Query no: 32, no of subjects: 16 

Drawing Exact Frequency at ranking position 
No matches 1 2 3 4 5 

33 0 13 0 0 1 0 
82 0 0 9 1 0 0 
87 0 0 1 2 2 0 
23 0 0 2 0 0 0 

145 0 0 0 1 2 1 
138 0 1 0 0 0 0 
161 0 0 1 0 0 0 
102 0 0 0 1 0 1 

66 0 0 0 1 0 0 
29 0 0 0 1 0 0 
24 0 0 0 0 1 0 

128 0 0 0 0 1 0 
118 0 0 0 0 0 1 

39 0 0 0 0 0 1 
65 0 0 0 0 0 1 

It is left for the reader to judge for him or herself whether these rankings ru:e plausible. ~ 
the author's view they are, though in a sense this is a secondary pomt. !he mam 
conclusion that can be drawn is that the students' judgements were largely c~nsistent, ~d 
therefore a reasonable base from which to derive similarity rankings for use m evaluatmg 
the prototype version of SAFARI. 

184 



Drawing no 82 Drawing no 

Drawing no 87 Drawing no 

Drawing no 145 Drawing no 

Drawing no 83 Drawing no 

o 
Fig 8.9 Students' judgements of the shapes/most similar to query shape 175 (all 
boundaries) 

185 

27 

37 

31 

24 



Drawing no 33 Drawing no 82 

Drawing no 87 Drawing no 23 

Drawing no 145 Drawing no 138 

Fig 8.10 Some o/the shapes students judged similar to query shape 32 (outer boundary 
only) 

186 



8.3.3.4 Subjects' comments on the process 

Some useful insights into subjects' methods for matching query shapes can be gained 
from th~ comments that some of them rec?rded. Students matching shapes only on outer 
boundarIes had fewer cues to go on, and this was reflected in some of their comments: 

"I ch~cked all .query shal?eS', sort~g .out ,all ~h~pes that looked nothing like the 
quenes, occasIOnally taking ?~t s~~s ~~~ly similar to the query shapes, 
then sorted through the remammg similars, PICking out those most similar to the 
queries" 

"I looked for geometric similarities fIrst, then subdivided the closest ones by size 
and number of correct features" 

"Primary shape sort; fmal shape sort; leave sorted shapes out of pack" 

Note the principle of rapid screening to remove totally unsuitable shapes, followed by 
more detailed consideration of those remaining. 

Students working with all-boundary queries made similar comments to those above, but 
also gave more specifIc clues to their method of working, e.g: 

"Identify major outline; major shapes, both internal and external; compare minor 
shapes/variations" 

"Look for major outer shape initially, then any significant internal shapes; fmally 
narrow down slight differences" 

"Shape first, contents (circles, etc) second - unless close similarities here; external 
attributes last" . 

This suggests that the order in which SAP ARI performs· its matching operations (overall 
outer boundary shape, inner boundary pattern, then detailed shape comparison) may find 
parallels in the way human subjects assess shape similarity. . 

8.3.3.5 Derivation of standard similarity ran kings 

The remaining task in this phase was to derive a composite ranking of stored drawings in 
order of similarity to each query. ill many cases (such as query 170), the ordering was 
obvious - one simply needed to pick out the highest-frequency rank for each drawing 
from the tables above. ill others (such as query 175) it was not. A combined rank
frequency score was thus devised to allow a single ranking for each query. A number of 
alternative measures were considered. The simplest was the sum of weighted rank 
frequencies: 

5 

F = L f· * i 
l. 

i=O 

where Ii is the number of rankings for each drawing at position .i, with! = 0 for exact 
matching. This suffers from the problem that one h~ to ass~~ arbItrary ranks to 
drawings which fail to appear in all lists in order to aVOId unrealIStically low scores. A 
variant which avoids this problem is: 

187 



5 

F' = L. fi * (6 - i) 

i=O 

though it could be ar~ed that thi~ gi.ves insufficient weight to exact or very similar 
matches. It also requues normalIZatIOn to allow for variation in the number of 
respondents. The final measure chosen, S, defined as: 

n 

overcomes these problems. (Again, /; is the number of rankings for each drawing at 
position i, and n is the total number orsubjects perfonning the test). It is a true similarity 
measure in that a value of 1.0 indicates all subjects consider query and stored shapes to 
be identical, while a value of 0 indicates that no subjects consider there to be any 
similarity between query and stored shapes. The higher weightings for earlier rankings 
reflect the presumed importance of high similarity ratings. Drawings were then ranked in 
order of S value, as shown in Appendix A. 

The final decision to be taken concerned cutoff point. As already observed, the long 'tail' 
of entries for query 32 is almost certainly a reflection of some subjects' desire to make 
sure all the boxes on their results forms were filled, rather than any real conviction that 
the drawings were particularly similar to the query. To use these results to judge system 
performance would not seem reasonable. An arbitrary cutoff was therefore applied - any 
drawing whose S score was less than 0.1 was deemed not to be sufficiently similar to the 
query and was therefore dropped from the list. 

8.3.4 Measures of system performance 

From the discussion above, it should be clear that the most appropriate measures of 
system effectiveness for use with SAFARI are precision and recall, or some parameter 
derived from them. Single-value measures have obvious attractions, and those defmed for 
the SMART system would seem to be particularly appropriate. Like SMART, SAFARI is 
an experimental system aiming fustly to establish the fundamental validity of its 
approach, but eventually to throw light on the effectiveness of different. methods of shape 
indexing and searching. Again like SMART, SAFARI ranks all output m presumed order 
of similarity to the query, rather than setting an arbitrary cutoff between "retrieved" and 
"not retrieved" items. At least at present, the shape collections it houses are small eno~gh 
that users can if necessary examine every item in the database for relevance to prOVIde 
the standards necessary to judge system performance. Hence the stan?ard measures 
chosen to judge the retrieval effectiveness of SAFARI were the normalIzed recall and 
precision measures P n and Rn defmed in section 8.2.1. 

188 



8.4 Evaluation of SAFARI's retrieval effectiveness 

8.4.1 Design of evaluation experiments 

Experimental design for this phase of the study was relatively straightforward. Dummy 
9uery ftle~ w~re generated from. the database for all 26 query shapes in the format 
~lustrated m FIg 6.3. P:-- batch verSIOn of program RETRIEVE was created, allowing run
tIme parameters to be mpu~ from a command ftle, thus creating a permanent record of the 
par~eter .v~ue~ used. ~nnted output was generated in the format shown in Fig 7.6, 
showmg similanty rankings and dIstance measures of all retrieved drawings. Cutoff 
~imit~ .for .these experiments were s~t artifici~ly high to ensure that all drawings 
Identified m the human ~hape I?atchmg expenments were actually retrieved by the 
system, however low theIr ranking. In order to ensure that similarity rankings were 
?il'ectly compar~ble with th~se g~~erated by the studen~s, the program could be set to 
Ignore all drawmgs whose IdentifIers were on a specified "stop list" (the electronic 
equivalent of removing query and duplicate cards from the drawing packs as described in 
section 8.3.3.2). 

For each query, the similarity ranking of each drawing identified as relevant in the human 
shape-matching experiments described in section 8.3.3 was recorded, and entered on a 
spreadsheet containing the formulae required to calculate values for the P and R 
measures defmed in section 8.2.1 above - either for individual queries, or for ~e entirg 
set of queries relevant to a given set of run-time parameters. As indicated in section 6.6.1, 
it is possible to specify a number of different run-time parameters for each search 
conducted, including the matching paradigm to· be used, the precise combination of 
feature types selected, the level of search exhaustivity ,and the relative weighting of 
difference measures calculated by different parts of the matching process. In order to 
judge the potential of each matching paradigm,. a large number of test runs was 
performed, each using a different combination of run-time parameters, in order to fmd 
the most effective level of exhaustivity and set of shape features to be used with each 
paradigm. For example, the most effective combination of features found for local feature 
matching was to use arc angle, discontinuity angle and parent feature distribution 
features as defined in section 4.4.3 to compare outer boundaries, and the boundary 
pattern features defmed in section 4.4.4to compare inner boundary positions. 

Varying the level of search exhaustivity or the number of feature types used in matching 
in fact made very little difference to performance once a certain minimum threshold was 
passed. Hence no exhaustive attempts were made to identify the optimum combination of 
parameters once this performance plateau was reached. The main lessons to be leamt 
from these preliminary experiments were that to give adequate retrieval performance it 
was necessary (a) to use at least two feature types in the calculations, and (b) to base 
overall difference measures between query and stored shape boundaries on the single 
most closely matching pair of boundary levels, rather than averaging difference measure 
over all boundary levels. Detailed results of these preliminary tests are omitted from this 
thesis for reasons of space, but are available from the author on reque~t. Ex~ept where 
otherwise indicated, the results presented below are all based on what I~ belIeved to be 
the most effective combination of search parameters for that search paradigm. 

8.4.2 Detailed results from typical queries 

Some results from a typical search are illustrated in Fig 8. ~ 1, and prese~ted in tabular 
form below. The results shown in the figure are based on eXIstence matchmg (~ ~efII?-ed 
in section 6.6.3.4) using features based on parent feature and arc angle distn~utlOn 
(features 6 8 10 and 12 from the list in section 4.4.3), followed by segment matching as 
defmed in' se~tion 6.6.4. This combination, though far from optimum with all queries, 
was found to give good all-round performance in most situations. 

189 



Drawings retrieved, 
Drawing no 8 

D = 6 

Drawing no 
D = 

Drawing no 
D 

7 
16 

99 
51 

\\A 
\V 

Drawing no 
D 

4 
92 

in similarity order 

Drawing no 
D = 

Drawing no 
D = 

Drawing no 
D 

Drawing no 
D 

6 
14 

92 
20 

129 
66 

45 
94 

Fig 8.11 Results from SAFARI (using existence matching followed by segment matching) 
for query shape 9 - illustrating the eight stored shapes judged to be most similar to the 
query 

190 



T~ble 8
1
.4

b
·2

al
·1 ~hows the firhins.t 12 dradwfi?gs r~trieved in response to this query, respectively 

~smg !? 0 J..eature matc g as e med m s~ction 6.6.2 (using all the global features 
hs~ed m sectlOI?- 4.4.2), local feature matchmg (as defined in section 6.6.3.3), and 
eXIstence matching, both ba~ed on the parent feature and arc angle distribution features 
enumerated above, followed m each case by segment matching. 

Table 8.4.2.1 - system response to query shape 9 

Global matching 

Drawing Difference 
No Measure 

8 
6 
7 
4 

99 
45 
94 
92 
28 
57 
50 
60 

0.61 
1.38 
2.73 
4.50 
4.70 
4.75 
4.78 
6.72 
7.01 
8.22 
8.38 
8.38 

Local matching 

Drawing Difference 
No Measure 

8 
6 
7 

45 
94 

4 
99 

3 
28 

165 
92 

1 

0.61 
1.38 
2.12 
5.41 
5.45 
5.51 
7.30 
8.80 
9.44 

10.33 
10.42 
10.80 

Existence matching 

Drawing Difference 
No Measure 

8 
6 
7 

·92 
99 

129 
4 

45 
94 

128 
120 

50 

0.61 
1. 38 
1.58 
2.04 
5.07 
6.56 
9.23 
9.40 
9.41 
9.46 
9.71 

11.68 

All of the 12 shapes retrieved in response to this query (an asymmetric bracket) show 
some family resemblance to the query, though the resemblance is perhaps less obvious 
with some of the later shapes. The results compare well with student judgements of 
relevance (Table 8.4.2.2): 

Table 8.4.2.2 

Drawing 
No 

8 
6 
7 

Similarity 
Measure 

0.600 
0.583 
0.292 

The three methods of matching also agree with each other remarkably well over the fIrst 
three drawings retrieved, though they diverge considerably over the lower rankings. Note 
that the actual values of the difference measure D have no significance for the system 
other than as a way to rank drawings in order of presumed relevance to a query. The fact 
that drawings 8 and 6 have the same D values for all three methods reflects the fact that 
both of these drawings were judged identical to the query at the feature-matching stage. 
Only at the segment-matching stage (common to all three methods) was any difference 
detected. 

Some measure of the robustness of these rankings can be gained by examining D values. 
In the case above, the fIrst three rankings in each list look reasonably secure. However, 
the next four D values in the global matching list are all very similar, and a very small 
change in parameter weightings could easily have resulted in a ~erent orderin~ for 
drawings 99, 45, 94 and 92 - emphasizing the importance of presentmg the ~ser WIth D 
values as well as actual rankings. Ideally, one might expect some step change m D values 

191 



between the last "relevant" drawing and the first "non-relevant" one, though this would 
be a very severe test of a system's discriminating power. 

The results fro~ another typical. query ar~ shown in Fig 8.12 ~d Table 8.4.2.3, though 
here the system s performance IS not qUIte so good, and a higher cutoff is needed to 
retrieve all shapes judged relevant by students. Again, the diagram shows the results of 
parent feature and arc angle distribution-based existence matching followed by segment 
matching, while the table below compares global feature matching, local feature 
matching and existence matching. Most of the 20 retrieved shapes are again a plausible 
response to the query, though some (such as drawing 168) contain features which human 
judges considered undesirable. 

Tabl.e 8.4.2.3 - system response to query shape 47 

Gl.obal. matching Local. matching Existence matching 

Drawing Difference Drawing Difference Drawing Difference 
No Measure No Measure No Measure 

59 0.00 59 0.00 59 0.00 
142 0.60 142 0.38 142 0.37 

53 0.91 53 0.55 53 0.50 
168 6.21 168 3.30 15 2.04 

68 6.68 68 8.05 68 2.48 
134 10.66 15 17.04 168 5.98 
187 11. 30 134 19.43 78 14.39 

12 12.64 187 20.01 172 14.51 
36 15.33 172 20.33 36 19.21 

174 17.26 151 20.70 134 19.71 
15 17.51 36 21.72 187 20.34 

172 17.98 174 22.00 151 20.74 
151 18.60 26 24.06 12 20.84 

26 18.68 12 24.83 174 22.32 
98 19.86 98 25.73 167 27.22 
31 23.09 167 26.86 166 27.53 
78 23.59 78 27.08 169 27.62 

3 27.59 170 28.04 170 27.86 
108 28.33 3 31. 67 125 29.82 

89 28.35 166 32.65 26 29.98 

This compares moderately well with student judgements of relevance (Table 8.4.2.4): 

Tabl.e 8.4.2.4 

Drawing 
No 

59 
53 

142 
68 
12 

Simil.arity 
Measure 

0.883 
0.567 
0.492 
0.183 
0.150 

Again, there is a high degree of agreement between the thr~e methods used over the first 
three rankings, though divergence sets in lower down the lIst. The system appears to be 

192 



Drawings retrieved, 

Drawing no 59 
D = 0 

Drawing no 
D = 

Drawing no 
D 

Drawing no 
D 

53 
5 

68 
25 

78 
144 

in similarity order 

Drawing no 
D = 

Drawing no 
D = 

Drawing no 
. D = 

Drawing no 
D 

1 :2 
4 

15 
20 

168 
60 

172 
145 

Fig 8.12 Retrieval results for query shape 47, again illustrating the eight most similar 
stored shapes 

193 



quite good at picking out very similar drawings, but perhaps less good at predicting how 
hun:t~ subjects will rank less similar iteI?s. ~rawing 12, for example, does not appear till 
posItIon 1~ on the local featll!e mat~hing Ii.st, and 13 on the existence matching list. 
Some possIble reasons for relatIve retneval failures such as this are discussed below. 

8.4.3 Comparative results - outer boundary queries 

System rankings of drawings deemed relevant by student judges are presented below for 
three o! the 16 queries. (R~sults for the re~aining queries are shown in Appendix B). 
Four differe.nt .sy~tem r~gs are ~hown m each case, each resulting from a different 
method of similanty e.stImatlOn, as lIsted be!ow. In each case, the parameter combination 
chose~ was that .which . w~s found t~ gIve the best overall' retrieval performance. 
Matching was ObVIously llffilted to drawmg outer boundaries for these experiments. 

- global feature matching, based on all the global features listed in section 4.4.2; 

- local feature matching, based on arc angle distribution,' discontinuity angle 
distribution and parent feature distribution (features 6, 7 and 8 from the list in section 
4.4.3); 

- existence matching, based on the parent feature and arc angle distribution features 
listed earlier (6,8, 10 and 12 from the list in section 4.4.3); 

- segment matching, combining top and bottom-level 9-s matching as defmed in 
section 6.6.4.1, with an attenuation factor of 0.3 (section 6.6.4.2). 

Results are presented in tabular form for each query, showing for each method the rank, at 
which each drawing judged relevant by human subjects was actually retrieved, and 
normalized recall and precision measures Rn and P n' Retrieved drawings are listed in the 
order in which they were ranked by human subjects. The query shapes are illustrated in 
Fig 8.5. 

Tabl.e 8.4.3.1 - Query shape 44 

Drawing Gl.obal. Local. Exist Segmatch 
No rank rank rank rank 

42 9 1 7 1 
41 3 5 3 3 
43 15 11 35 13 

180 5 8 14 51 
104 2 4 2 14 

40 30 3 8 17 

~ 0.9516 0.9876 0.9459 0.9122 
Pn 0.7822 0.9154 0.7693 0.7244 

This was a query where local feature matching performed well, and other ~es .of 
matching gave adequate results. All feature match~g methods.re~dily detected s~anty 
between the query (a scalene triangle) and other. tnangles of similar shape. (dra~mgs ~ 1, 
42 and 104), even where the ends were rounded off, though global matching failed WIth 
drawing 40, where comers were rounded off to a very marked extent. The system was 
less successful in fmding the two right-angled triangles 43 and 180; the query shape 
contained no right angles, so the system made no attempt to look for them. 

194 



Table 8.4.3.2 - Query shape 75 

Drawing Global Local Exist Segmatch No rank rank rank rank 

83 1 1 1 9 140 3 2 13 3 74 20 12 8 1 
76 2 6 5 7 

~ 0.9733 0.9817 0.9717 0.9833 
Pn 0.9049 0.8942 0.8183 0.8781 

Generally good perfo.~ance, though each method had at least one flaw. Students judged 
four stored shapes s~ar. to the query, a circular disc with four rectangular notches 
equally spaced around Its cIrcumference. All were basically circular, but 83 (like 75) had 
four n?tches, 1.40 ~ad two, 74 was a perfect circle, and 76 had two rectangular 
protrusIOns on Its c~c~erence. Both global and local feature matching performed 
adequately, thoug~ glvmg too ~ow a rank to the perfect circle (which generated few 
feature types). EXlsten~e matching (based on a search for arc angle triplets and parent 
features) ranked drawmg 140 too low, and segment matching retrieved drawings in 
reverse order of similarity! 

Table 8.4.3.3 - Query shape 120 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

129 2 1 4 83 
118 1 2 2 118 
124 21 21 1 141 
128 3 8 3 1 

~ 0.9717 0.9633 1.0000 0.4450 
Pn 0.9021 0.8441 1.0000 0.3526 

An excellent result for existence matching, fair for global and local feature matching, but 
hopeless for segment matching. Students' judgements here seemed to have been based 
purely on angular similarity. In response to a query in the form of an E-shaped bracket 
with the central arm significantly shorter than the others, they retrieved shapes with 
equal-length arms (129), with an almost non-existent central arm (128), and with a 
central arm longer than the others (124). Existence matching using arc angle triplets and 
parent features proved most successful here (alone proving able to retrieve drawing 124 
at a reasonable rank), almost certainly because this emphasized angular similarity rather 
than similarity in feature size. 

8.4.4 Comparative results - all-boundary queries 

System rankings of three of the 16 all-boundary queries are presented below in a similar 
format (results for the remaining queries are presented in Appendix B). In this case, five 
different system rankings are shown for each query, each resulting from a different 
method of similarity estimation, as follows: 

195 



- global feature matching, again based on all global features; 

- local fea~r~ m~tching, based as before on arc angle, discontinuity angle and arent 
feature dIstnbutIOn; p 

- existence matching, again based on arc angle and parent feature distributio 
I . I d.(: . . n, arc ang e tnp et an parent leature cOmpOSItIon features; 

- .segment matching. a.s defmed. above, combining outer boundary 9-s matching with 
mner boundary posItIOn matching, as defmed in section 6.6.4.3. 

- segment matching combining outer boundary 9-s matching with full inner boundary 
shape matching, as defmed in section 6.6.4.3. 

Results for each query are presented in the same form as for the outer-boundary queries 
in section 8.4.3 above, comparing system rankings and R and P measures for each 
shape-matching method. The query shapes themselves arg shownnin Fig 8.6. 

Table 8.4.4.1 - query shape 49 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

61 4 2 1 8 5 
88 1 3 20 14 8 
56 3 1 2 12 6 

110 2 4 7 7 3 

~ 1.0000 1. 0000 . 0.9701 0.9536 0.9820 
Pn 1.0000 1.0000 0.8584 0.6559 0.8040 

Shape 49, a rectangular plate with one comer chamfered off, proved a useful 
demonstration of the system's power to distinguish between closely similar shapes. The 
feature matching methods (particularly global and local feature matching) had little 
difficulty in identifying the four desired shapes from over 60 similar straight-edged 
drawings. Existence matching performed less well, though the low ranking of drawing 88 
(and to a lesser extent drawing 110) was in fact a problem caused by the feature set used 
rather than by existence matching per se. As shown in Fig 8.13, drawings 56 and 61 (but 
not 88 or 110) are fundamentally rectangular. Hence the top-level shapes of drawings 56 
and 61, and the status of their low-level line segments, are quite different from those of 
drawings 88 and 110. The feature set used here for global and local matching emphasized 
line curvature and discontinuity angle, with successful results. Existence matching, by 
contrast, used more complex parameters such as arc angle triplet and parent feature 
composition, emphasizing the difference between those shapes which were b~ically 
rectangular (56 and 61) and those which were not (88 and 110). Segment matching was 
not conspicuously successful, though the addition of inner boundary shape matching 
markedly improved its performance, successfully rejecting shapes whose inner 
boundaries were not all circular. 

196 



Drawings retrieved, 

Drawing no S6 
D = 2S 

Drawing no 
D = 

110 
38 

in similarity order 

Drawing no 
D = 

Drawing no 
D = 

61 
26 

88 
39 

Fig 8.13 Results/or query shape 49; two o/the retrieved (and relevant!) drawings (61 
and 56) are clearly derived from underlying rectangles, while the other two (88 and 110) 
are not. 

197 



Table 8.4.4.2 - query shape 100 

Drawing Global Local 
Segmatch Segmatch 

Exist rank rank 
No rank rank rank (position) (shape) 

105 1 2 5 92 4 
181 6 1 19 33 25 
178 71 4 20 32 15 

~ 0.8571 0.9980 0.9246 0.7004 0.9246 
Pn 0.6869 0.9789 0.5771 0.2881 0.5945 

An unusual s~ven-sided shape which caused the system some difficulty. Only local 
featur~ .matching proved ~eally. equal to ~e task of ide~tifying all three shapes 
(contammg fi~e, te~ and. eIght sI~es resp~ct1vely) deemed s~ar by student judges. 
Global matching failed dismally WIth drawmg 178, almost certainly because this shape 
was much more regular than the other two, and hence had much lower values for length 
and discontinuity angle variances. Existence matching also performed poorly, ranking 
drawings 181 and 178 too low because they contained too few of the required types of 
arc angle triplet or parent feature composition. Segment matching proved the worst 
method of all, almost certainly due to differences in outer boundary starting point, at least 
where inner boundary matching was based solely on position. Where inner boundary 
shape was taken into account, performance improved markedly - to be expected given the 
close similarity of inner boundary shape between the query and all retrieved drawings .. 

Table 8.4.4.3 - query shape 154 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

149 1 1 1 2 9 
171 2 2 2 1 1 

79 3 3 5 5 8 
83 6 7 4 19 22 
74 4 4 8 6 3 

~ 0.9988 0.9976 0.9940 0.9783 0.9663 
P n 0.9913 0.9839 0.9530 0.8921 0.8237 

An exercise in inner boundary matching, as illustrated in Fig 8.14. The query, and hence 
most retrieved shapes, were circular discs with complex patterns of ~er boundaries. All 
three feature-matching methods performed well, and segment matchmg performed better 
than on many queries. Its only real "failure" was with drawing 83, whichdid,not hav~ a 
completely circular outer boundary, and was thus ranked below many drawmgs which 
did - possibly indicating that the relative weighting &iven ~o ?uter boundary shape 
similarity was too high here. The fact that segment matching usmg mner boundary s~apes 
gave poorer results than when using position matching suggests that .there may still be 
room for improvement in selection of the order in which inner boundarIes from query and 
drawing are matched with each other. 

198 



Drawings retrieved, in similarity order 
Drawing no 171 Drawing no 149 

D = 4 D =- 5 

Drawing no 
D == 

74 
16 

Drawing no 
D ::::II 

Fig 8.14 Illustration o/inner-boundary shape matching with query 154 

199 

79 
17 



8.4.5 Comparison of matching techniques 

Tables 8.4.5.1 and 8.4.5.2 below present comparative P n and Rn scores for each query, 
together with the median, mean and standard deviation of all scores for each group of 
queries. Statistical analysis of P n and Rn scores for each of the shape-matching methods 
was performed to establish whether any of the methods performed consistently better 
than the others. The non-parametric Wilcoxon matched-pairs, signed-rank test was used, 
since scores for each query for each pair of methods being compared formed comparable 
pairs, and no information was available about the underlying distribution of the data. 

Table 8.4.5.1 - Pn and RD scores for outer boundary queries 

Query no 

32 

44 

46 

47 

57 

62 

67 

72 

75 

103 

115 

120 

170 

175 

176 

183 

Median 
Mean 
S.D. 
Median 
Mean 
S.D. 

Global 
matching 

score 

0.9671 
0.7442 
0.9516 
0.7822 
0.9906 
0.9408 
0.9910 
0.9505 
0.9470 
0.7155 
0.9517 
0.8029 
1.0000 
1.0000 
0.9933 
0.9049 
0.9733 
0.9049 
1.0000 
1.0000 
0.9934 
0.9479 
0.9717 
0.9021 
0.9973 
0.9835 
0.9866 
0.9228 
0.9603 
0.8537 
0.9917 
0.9368 

0.9886** 
0.9792 
0.0187** 
0.9139 
0.8933 
0.0889 

Local 
matching 

score 

0.9474 
0.6372 
0.9876 
0.9154 
0.9879 
0.9228 
0.9820 
0.9181 
0.9316 
0.6674 
0.9181 
0.7625 
1.0000 
1.0000 
0.9867 
0.8400 
0.9817 
0.8942 
0.9978 
0.9784 
1.0000 
1.0000 
0.9633 
0.8441 
0.9879 
0.9420 
0.9208 
0.7424 
0.9823 
0.9023 
0.9983 
0.9868 

0.9845* 
0.9716 
0.0283 
0.9088* 
0.8636 
0.1135 

Existence 
matching 

score 

0.9375 
0.6177 
0.9459 
0.7693 
0.9799 
0.8877 
0.9764 
0.9026 
0.9581 
0.7278 
0.8872 
0.7116 
1.0000 
1.0000 
0.9933 
0.9049 
0.9717 
0.8183 
0.9890 
0.9058 
1. 0000 
1. 0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9705 
0.7991 
0.9558 
0.7265 
0.9983 
0.9868 

0.9781* 
0.9709 
0.0309 
0.8951 
0.8505 
0.1225 

Segment 
matching 

score 

0.8355 
0.6524 
0.9122 
0.7244 
0.9275 
0.7529 
0.9561 
0.8647 
0.8940 
0.5944 
0.9517 
0.8301 
1.0000 
1.0000 
0.7917 
0.3626 
0.9833 
0.8781 
0.9978 
0.9784 
0.9757 
0.8436 
0.4450 
0.3526 
0.3570 
0.2993 
0.9651 
0.8413 
0.9073 
0.7477 
0.9333 
0.7012 

0.9304 
0.8646 
0.1901 
0.7503 
0.7140 
0.2152 

. .. 1 f that for segment matching Asterisks indicate performance differing s2gn2f2cant y rom 

) • * p < 0 001 *: - P < 0.01 (Wilcoxon matched-pairs signed-rank test r : - • r 

200 



Query 
no 

9 Rn 
Pn 

47 Rn 
P n 

48 Rn 
P n 

49 Rn 
Pn 

57 Rn 
Pn 

72 Rn 
Pn 

80 Rn 
Pn 

89 ~ 
Pn 

100 Rn 
P n 

109 Rn 
P n 

L':O ~ 
P n 
~ 
P n 

154 ~ 
P n 

159 Rn 
P n 

175 Rn 
Pn 

176 Rn 
P n 

t-1edian 
Mean 
S.D. 

f'n Median 
Mean 
S.D. 

Global 
matching 

score 

1.0000 
1.0000 
0.9976 
0.9806 
1.0000 
1.0000 
1.0000 
1.0000 
0.9722 
0.8011 
0.9940 
0.9073 
0.9795 
0.9205 
0.9759 
0.9141 
0.8571 
0.6869 
0.9861 
0.9116 
1.0000 
1.0000 
0.9623 
0.8537 
0.9988 
0.9913 
0.9538 
0.8591 
0.95CiO 
0.9015 
0.9701 
0.7966 

0.98:.:'8 
0.9754 
0.0355 

* 

0. 0 1:.:'8""+ 
0.90;8 
0.0911 

Local Exi s': ec-.c,,: :::: e ?":c-. ': 
matching na,:ch~~g ~a,:c~~~~ 

score sss~e S~~=~ 

----~--

1.00')') l ,. r· -',!'. 

1.000') =-.0']:: 
0.9855 O. ?s~~ 
O.J33S 0 '-< -: ~ .. -

1.0000 · 0 0 J~ 
1.000') 1. OJ::: 
1.0000 O. ~~ 7 J :.. 
1.0000 O. 8~~~ 
0.9206 o . ~-< y =_ 5 
0.6743 0--;:"57 
0.9940 o 'J'~' '1 

• -- - '-:! .... 

0.9073 0.9073 
0.9904 o 'J ~ q ~ • _ J ',,-,--, 

0.9386 o . 8 ~~ 5 ~. 
0.9940 0.9807 
0.9668 o . 880' 
0.9980 o o~': t=: 

• _ L... 1 ~ 

0.978~ 0.5--;71 
0.99')0 o . ~,.!3 3 
0.9625 O.C< 0 (, e 
0.9940 0._<~70 

0.9601 O. "7 I- ~ 

0.Q980 1.0000 
0.9789 l.OUOO 
0.~197G 0.~'~LJ0 

0.9839 0.95:: 0 
0.955G O. ':1512 
0.8787 0.35.J~ 

0.9735 O. (17-;-: 
0.8809 O. 391'~ 
o . 96..J 1 0 ,) c; a ..:: 

O.SS-;-o 0 .~::--;9 

O.lHLJO""+ " )~Oc; 

O. ')S51 ""1 ) ~ t5 ~ 
>J. 

0.0::::18 O. J=:::~ 

O. '~l61"-~ ] q • ~ ~ 
"- :::-./ :: 

0 . ~).3 3 3 J ~ --=, 

0 .OS10 ") 
, , ~ 

\... ......... -

: ,~3:-

(r- Gs ,:",:, -=- :::.1 

:: ....... >.-: 

o : -: ~"C! 

o. (.-
o . ~ J J.; 
o ::::? 1 
a 
o L. J.; c; 

o .; a ~ J 
o 
o 
o . .:: 
o . .::' : ~ 
o . 2 ~'.~ :. 
0·:3 ::;: 
o 

iJ . , .. : -~ ..-

<:.0 ---.0' -

::.a:. =: . .:... -:-. -: 

'. 



T?e ~cores obtained with these test queries suggest that the SAF ARl system is capable of 
YIeldmg ru: acceptable level of per:f0rm<l?ce. Rn and P n scores compare favourably with 
those obtamed for document retneval m the SMART experiments where R values 
typically varied between. 0.9 and 1.0, and ~ n values between 0.6 and i.o (Salton~ 1971). 
All three featu~e-matching methods (pa:tIcularly global matching) gave perfonnance 
markedly SUpe!lOr to the segment-matching methods, for both outer-boundary and all
boundary quenes, though no one .method sto<?d out as significantly superior to either of 
the ~thers. Full segment matc~g of all Inner boundary shapes appeared to give 
margmally be~~r performance WIt~ all-boundary queries than matching limited to inner 
b.o~dary pos~uons, though the ~ference~ observed with the test queries were not 
SIgnificant. It IS p~rhaps worth notmg that d~erences in median scores between segment 
and feat~re matching methods were less str~g than those in mean scores - suggesting 
t~at an Important aspect of feature ~atchmg's superiority is its success in avoiding 
dIsastrous results such as those seen WIth segment matching on queries 120 and 170. 

The fact that all three feature-matching methods could be "tuned" to give comparable 
levels of performance (albeit with different combinations of parameters) suggests that a 
wide range of feature types could have been used successfully in these circumstances. It 
is perhaps noteworthy that the optimum levels of performance observed with local 
feature and existence matching were based on three and four basic feature types 
respectively. Adding extra feature types, or introducing more sophisticated techniques 
such as penumbral matching (section 6.6.3.5), caused a slight but measurable decline in 
performance for the query shapes tested. Some of the simplest methods thus gave the best 
results, a phenomenon not unknown in the text retrieval field (e.g. Sparck Jones, 1981). 

On the basis of these results, it is hard to justify the use of segment matching as a 
technique on its own. Although it appears to be a valuable technique for detennining 
whether shapes are identical, problems in determining the correct start point for 8-s 
matching in a heterogeneous set of shapes effectively rule it out as an effective general 
technique for similarity estimation. Its usefulness for similarity matching thus stands or 
falls on the degree to which it is effective in combination with one of the feature
matching techniques, where segment matching is used to discriminate between shapes 
retrieved by a preliminary feature matching step, as outlined in section 6.5. The fact that 
segment matching does appear to be a sensitive discriminator of closely related shapes is 
suggestive evidence that combined matching could prove effective. 

Tests were thus run to compare the retrieval performance of each of the three feature
matching methods alone and in combination with segment matching. The same parameter 
sets were chosen for each type of feature matching as in previous experiment.s; where 
combined matching was used, the set of drawings retrieved by feature matching was then 
subjected to segment matching at the most appropr~ate level (out~r b?und~ only for 
outer-boundary queries, inner boundary class and SIZe (the combmatIon glvmg the 
highest overall scores) for all-boundary queries). The results of these tests are presented 
in tables 8.4.5.3 and 8.4.5.4 below. 

The addition of segment matching appeared to produce a mod~st improveme~t over 
feature matching alone with the test queries used - at least when usmg global or eXIStence 
matching. The results with local feature matching were more equivocal. However, none 
of the differences observed were statistically significant, and one cann~t therefore 
conclude from these experiments that combined feature and segment matching has any 
consistent advantage over feature matching alone. While it would be .premar,ure to 
dismiss segment matching completely as a means of identifying ~hapes (It remams the 
only reliable means of detecting shapes identical to a query), ItS overall usefulness 
would appear to be limited. 

202 



Table 8.4.5.3 - Pn and RD scores for outer boundary queries 

Global matching Local matching Exist. matching 

Query no Alone With Alone With Alone With 
segmatch segmatch segmatch 

32 ~ 0.9671 0.9967 0.9474 0.9605 0.9375 0.9441 
Pn 0.7442 0.9567 0.6372 0.7924 0.6177 0.7598 

44 ~ 0.9516 0.9718 0.9876 0.9842 0.9459 0.9538 
Pn 0.7822 0.8333 0.9154 0.9022 0.7693 0.8406 

46 Rn 0.9906 0.9960 0.9879 0.9960 0.9799 0.9919 
Pn 0.9408 0.9659 0.9228 0.9659 0.8877 0.9384 

47 Rn 0.9910 0.9910 0.9820 0.9854 0.9764 0.9820 
Pn 0.9505 0.9489 0.9181 0.9296 0.9026 0.9173 

57 ~ 0.9470 0.9735 0.9316 0.9735 0.9581 0.9868 
Pn 0.7155 0.7915 0.6674 0.7676 0.7278 0.8537 

62 ~ 0.9517 0.9785 0.9181 0.9557 0.8872 0.8953 
Pn 0.8029 0.8996 0.7625 0.8480 0.7116 0.7534 

67 ~ 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 
Pn 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 

72 Rn 0.9933 0.9867 0.9867 0.9867 0.9933 0.9433 
Pn 0.9049 0.8400 0.8400 0.8400 0.9049 0.6602 

75 Rn 0.9733 0.9950 0.9817 0.9917 0.9717 0.9900 
Pn 0.9049 0.9669 0.8942 0.9368 0.8183 0.9128 

103 Rn 1.0000 1. 0000 0.9978 1.0000 0.9890 0.9934 
Pn 1.0000 1.0000 0.9784 1.0000 0.9058 0.9479 

115 ~ 0.9934 1. 0000 1.0000 1.0000 1.0000 1. 0000 
Pn 0.9479 1.0000 1.0000 1. 0000 1.0000 1.0000 

120 ~ 0.9717 0.9400 0.9633 0.9367 1.0000 0.9983 
Pn 0.9021 0.8640 0.8441 0.8246 1.0000 0.9868 

170 Rn 0.9973 1. 0000 0.9879 0.9866 1.0000 0.9973 
Pn 0.9835 1.0000 0.9420 0.9384 1.0000 0.9801 

175 Rn 0.9866 0.9906 0.9208 0.9624 0.9705 0.9919 
Pn 0.9228 0.9408 0.7424 0.8427 0.7991 0.9428 

176 Rn 0.9603 0.9558 0.9823 0.9779 0.9558 0.9558 
Pn 0.8537 0.8468 0.9023 0.8897 0.7265 0.8468 

183 Rn 0.9917 0.9933 0.9983 1. 0000 0.9983 0.9983 
Pn 0.9368 0.9500 0.9868 1. 0000 0.9868 0.9868 

Rn Median 0.9886 0.9922 0.9845 0.9860 0.9781 0.9910 
Mean 0.9792 0.9856 0.9716 0.9811 0.9709 0.9764 
S.D. 0.0187 0.0175 0.0283 0.0188 0.0309 0.0297 

Pn Median 0.9139 0.9494 0.9088 0.9159 0.8951 0.9279 

Mean 0.8933 0.9253 0.8636 0.9049 0.8505 0.8955 

S.D. 0.0889 0.0694 0.1135 0.0784 0.1225 0.1014 

203 



Tabl.e 8.4.5.4 - Pn and RO scores for al.l.-boundary queries 

Gl.obal. matching Local. matching Exist. matching 

Query no Al.one With Al.one With Al.one With 
segmatch segmatch segmatch 

9 Rn 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 
Pn 1.0000 1.0000 1. 0000 1.0000 1. 0000 1.0000 

47 Rn 0.9976 0.9952 0.9855 0.9880 0.9867 0.9892 
Pn 0.9806 0.9668 0.9335 0.9399 0.9366 0.9435 

48 ~ 1. 0000 1. 0000 1. 0000 1. 0000 1.0000 1. 0000 
Pn 1.0000 1.0000 1. 0000 1.0000 1.0000 1. 0000 

49 Rn 1.0000 1.0000 1.0000 0.9970 0.9701 0.9790 
Pn 1. 0000 1.0000 1. 0000 0.9706 0.8584 0.8790 

57 Rn 0.9722 1.0000 0.9206 0.9921 0.9425 0.9960 
Pn 0.8011 1.0000 0.6743 0.9116 0.7157 0.9491 

72 Rn 0.9940 0.9925 0.9940 0.9880 0.9940 0.9416 
Pn 0.9073 0.8967 0.9073 0.8439 0.9073 0.6286 

80 Rn 0.9795 0.9976 0.9904 0.9952 0.9783 0.9928 
Pn 0.9205 0.9839 0.9386 0.9718 0.8958 0.9506 

89 Rn 0.9759 0.9867 0.9940 0.9952 0.9807 0.9867 
Pn 0.9141 0.9366 0.9668 0.9718 0.8809 0.9141 

100 Rn 0.8571 0.8651 0.9980 0.9940 0.9246 0.9266 
Pn 0.6869 0.6810 0.9789 0.8982 0.5771 0.5811 

109 Rn 0.9861 0.9504 0.9960 0.9663 0.9683 0.9345 
Pn 0.9116 0.7607 0.9625 0.7877 0.8098 0.7410 

120 Rn 1.0000 0.9940 0.9940 0.9880 0.9970 1. 0000 
Pn 1.0000 0.9601 0.9601 0.9367 0.9766 1. 0000 

122 Rn 0.9623 0.9921 0.9980 0.9980 1. 0000 1. 0000 
Pn 0.8537 0.9378 0.9789 0.9789 1.0000 1. 0000 

154 ?n 0.9988 0.9892 0.9976 0.9867 0.9940 0.9988 
Pn 0.9913 0.9506 0.9839 0.9442 0.9530 0.9913 

159 Rn 0.9538 0.9869 0.9556 0.9869 0.9512 0.9782 
Pn 0.8591 0.9493 0.8787 0.9581 0.8547 0.9444 

175 Rn 0.9590 0.9554 0.9735 0.9530 0.9771 0.9530 
Pn 0.9015 0.8980 0.8809 0.8723 0.8916 0.8723 

176 Rn 0.9701 0.9835 0.9641 0.9910 0.9596 0.9701 
Pn 0.7966 0.9112 0.8879 0.9472 0.7379 0.8379 

Rn Median 0.9828 0.9923 0.9940 0.9915 0.9795 0.9880 
Mean 0.9754 0.9805 0.9851 0.9887 0.9765 0.9779 

S.D. 0.0355 0.0342 0.0218 0.0125 0.0227 0.0254 

Pn Median 0.9128 0.9500 0.9613 0.9457 0.8937 0.9440 

Mean 0.9078 0.9270 0.9333 0.9333 0.8747 0.8896 

S.D. 0.0911 0.0889 0.0810 0.0583 0.1174 0.1320 

204 



8.4.6 Efficiency of matching process 

As ~iscus~ed. in sec;tio~ 6.8, computational ef!iciency was not felt to be a major 
conslderatIon ill the deslgn of the prototype verSlOn of SAFARI. No systematic attempt 
was therefore made either to measure perfonnance in detail or to tune the system for 
greater efficiency. Nevertheless, such considerations cannot be totally ignored. Records 
were therefore kept of cpu usage for each run. As indicated in section 3.4 above these 
figures must be treated with some caution, as they represent total cpu usage for the 
current process, including any required by the operating system paging the process in or 
out of main memory. They do however give some indication of the relative 
computational expense of the different matching techniques used. The figures shown in 
table 8.4.6.1 below (presented as ranges, in order to show the spread of values involved) 
represent total cpu usage (in seconds) for a complete search of the database for a single 
query, when run in batch mode on the VAX 8700 processor at Newcastle Polytechnic. 
This process involves reading in the query fIle from disc, and matching it successively 
with up to 154 stored shapes (outer boundary queries) or 171 stored shapes (all-boundary 
queries). 

Table 8.4.6.1 - comparative cpu usage 
of different matching techniques 

Method 
used 

Query set 
used 

cpu usage (s) for 
complete database search 

Feature matching alone: 
Global All-boundary 

Outer-boundary 
Local All-boundary 

Outer-boundary 
Existence All-boundary 

Segment 
Outer 
Inner 
Inner 
Inner 

Outer-boundary 

matching 
boundary 
boundary 
boundary 
boundary 

* alone : 
only 
position 
class & size 
shape 

Minimum 

0.8 
0.6 
0.8 
0.6 
1.2 
1.3 

13.2 
15.7 
16.1 
15.2 

Combined 
Global 

h · + feature and segment matc ~ng : 
All-boundary 2.6 
Outer-boundary 1.9 

Local All-boundary 2.9 
Outer-boundary 2.0 

Existence All-boundary 3.0 
Outer-boundary 2.5 

Maximum 

1.6 
1.2 
2.1 
1.5 

17.5 
15.7 

14.1 
17.4 
25.5 
55.1 

20.0 
12.3 
19.8 
12.5 
35.7 
26.3 

* Outer-boundary query set used for outer boundary only matching, all-boundary 

set for the other three methods. 
+ Inner boundary class and size segment matching used with all-boundary queries, 

outer boundary only matching with outer-boundary queries. 

Feature matching clearly seems to be more economical in its use of res0u.rces. than 
segment matching, making it even harder to justify the use of segment matching ill the 

205 



retrieval process, at least with a small collection such as this. Note that existence 
matching is not more resource-intensive per se; the cpu usage figures in the table above 
are based op runs using the parameter set giving the highest overall P and R scores. 
The most effective parameter combination for existence matching us~d featu¥es from 
both boundary level and boundary feature records, thus requiring considerably more 
processing than with local feature matching, where the most effective features were all 
located in boundary level records. Note also the small variation in cpu times different 
queries for segment-only matching - a refl~ction of the fact that no pre-screening was 
performed here, and hence that every shape ill the database had to be searched in detail. 

8.5 Conclusions 

The results of this (admittedly artificial) evaluation experiment suggest strongly that the 
approach to shape matching adopted for SAP ARI has the potential to deliver acceptable 
retrieval results in an operational environment, at least within its own specific domain of 
shapes. Further testing of the existing prototype with "real" queries would obviously be 
worthwhile, though this in turn requires a "real" database of shapes, rather than the 
present somewhat artificial test collection, if the results are to yield valid additional 
information. It could however be more profitable in the long run to extend SAFARI's 
capabilities before any further evaluation is attempted, to allow it to handle a sufficiently 
wide range of shapes for tests with operational drawing collections to become possible - a 
point discussed further in chapter 9. 

It is tempting to try to draw conclusions about the relative merits of different feature sets 
or shape-matching techniques. However, the size and nature of the test collection is such 
that no generalization of this kind can be considered valid. The specific feature sets used 
here have proved useful with one collection of shapes. Their value in retrieval with other 
shape collections remains to be established. It is perhaps encouraging that all three 
approaches to feature-matching seem capable of yielding acceptable retrieval 
performance, and that performance did not seem p~icularly sensitive to ~he preci~e 
feature set chosen. This would seem to suggest a certaill degree of robustness ill the basIC 
approach. 

206 



CHAPTER 9. CONCLUSIONS 

9.1 Summary of findings 

The. bas~c objective of .this project -. to investi~a~~ the problems of developing an 
engme~rmg database WIth shape retrIeval capabilIties through the construction and 
evaluatIOn of a prototype system - has been achieved. A prototype system, SAP ARl, has 
b~en. deve.lo1?ed, and has demo~s!Tated an. acceptable level of retrieval perfonnance 
WIthin a. l~ted ?ut far from tnvlal doman: of shapes, suggesting that the principles 
adopted m Its desIgn could well prov~ use!u~ m an operational shape retrieval system. To 
gauge the overall success of the proJect, It IS perhaps worthwhile to review each of the 
design decisions taken on the issues listed in section 1.8 in turn. 

In ~ sense, the fIT~t .import~t de~ision concerned the project itself rather than the system. 
This was the deCISIOn to mvestigate the development process as a whole via prototype 
development: rather ~an to .concentrate on a single issue such as devising improved 
s~ape matching algonthms - m other words, to adopt a breadth-first rather than a depth
frrst approach to the problem. The abundance of published literature concentrating on 
detailed a,spects of th~ problem contrasts vividly with the paucity of reports adopting a 
broader VIew, suggestmg strongly that the approach adopted for the present project is not 
only justified, but probably overdue! 

The fITst group of decisions concerning the system itself involved the deftnition of its 
scope and nature. As discussed in chapter 2, it was decided to limit the domain of shapes 
acceptable to the prototype system to genuine 2-D objects capable of being stamped out 
of sheet metal. This domain was further limited by restricting boundary segments to 
straight lines or circular arcs - though it was noted that this still included the vast majority 
of machined parts. While the restriction to 2-D parts may seem unrealistic, it was almost 
certainly essential to the success of the project, in that the additional complexity involved 
in handling 2-D orthographic projections or 3-D geometric models would have prevented 
investigation of the full range of design issues in the time available. It is in any case a 
less important restriction than might be supposed - as indicated in section 9.3.3 below, 
the problem of generalizing the approach to 3-D geometric models of machined (as 
opposed to sculptured or moulded) parts should not be too onerous. 

The decision to base input on a standard exchange format remains as valid now as when 
the project was started. The ability to accept drawings in standard format is essential for 
any operational system; even with a prototype, it provides a useful discipline and a clear 
starting-point. IGES was the only widely-used CAD exchange format at the time the 
project was started, and thus the automatic choice. One would expect future systems to 
make use of STEP (and any successor standards) in the same way. 

The second group of decisions concerned shape representation (discu~sed in some detail 
in chapters 2 and 3). The majority of these decisions still seem sound m retrospect. Some 
of these were implicit, such as the decision to retain a complete (though condensed) 
representation of an object's shape, rather than just its characteris!ic shape features -
essential for identity matching, or if retrieved shapes are ever to be displayed to t~e user. 
Others were discussed in more detail, such as the decision to represent drawmgs by 
defIDing their inner and outer boundaries rather than using. area-filling representa~ions 
such as quadtrees (section 2.4), and to represent such boundanes as seque.nces of strrught
line or circular arc segments. Such representations have proved econorrucal to store and 
efficient to process. 

Perhaps the most important (and novel) aspect of shape representation ~ithin SAFARI 
has been the decision to view each boundary as a series of levels, and to link all extracted 
shape features to a specific level. This appears t? be a. cruci~ ~actor in ensuring 
successful retrieval performance (section 8.4.1). It IS a deSIgn prmclple that has been 

207 



clearly vindicat~d within SAF ARl, and would seem to be well worth considering for 
future shape retneval systems. 

The. decision. to derive a unique representation for. each shap: is more questionable. 
Whil.e there IS c~early a need to represent s~apes m . a form mvariant to translation, 
rotation and scalm~, the adv~tages ?f selectmg a umque starting-point for boundary 
trav~rsal ~d a. ':ll11que o~dermg for mner. boundaries are less obvious. The rationale 
behind this dec~sIOn (sectIOn 3.1) ~as that ~t.could greatly improve the efficiency of the 
segment matcl1ll:g process, at t~e nsk of failmg to match a certain proportion of similar 
shapes. In practice, the proportIOn of shapes where the matching process fails has been 
hig~er th~ ~xp~cted, an~ thus the usefulness of this form of unique representation as a 
basIS for similanty matching must be regarded as not proven. However it could still have 
a valuable role to play in a system where identity matching ("have ~e made this part 
before?") was of prime importance. 

The outcome of the third group of decisions, concerning selection of retrieval features 
(chapter 4), is harder to evaluate. In one sense, they have proved highly successful - a 
relatively ~sophisticate~ set of featu.res, representing. a very limited degree of shape 
understanding, has prOVIded the basIS for good retrIeval performance with the test 
collection. The efficiency with which such features (with the possible exception of some 
inner boundary pattern features) could. be extracted and matched was encouraging. It is 
noteworthy that some of the best retrIeval scores were achieved by matching on three 
simple local features alone (arc angle class, discontinuity angle class, and parent feature 
type). Attempts at increasing the level of sophistication by introducing more complex 
features seemed to be counter-productive. Until evaluation can be performed with a 
wider set of drawings, however, it is impossible to determine the extent to which these 
features are generally useful. 

The fourth group of decisions related to retrieval capability, and how it should be 
provided (chapters 5 and 6). The decision to concentrate on providing similarity 
matching in the prototype version of SAFARI was taken on purely pragmatic grounds -
one had to start somewhere, and the limited evidence available suggested that this would 
be potentially the most useful type to provide. As discussed in section 6.4, this capability 
could readily be extended to cover other types of retrieval. The decision to provide a 
number of alternative matching paradigms in the prototype system made it possible to 
compare a number of different strategies. Given the minimal differences in performance 
between global, local and existence feature matching, this proved less worthwhile than 
expected. The principle of endowing the system with facilities for varying the depth and 
matching strategy for a given search seems generally sound, in view of the limited state 
of knowledge of users' retrieval needs in this area. The ability to vary run-time search 
parameters is unfortunately of dubious value at present, given the limited state of 
knowledge about their effects on system performance! 

The facility to specify segment matching as a way of refining the results of a prelimin~ 
feature search is still considered potentially useful, even though none of the evaluatIOn 
experiments reported above provided any conclusive evidence of their value. The shape 
database used for these experiments was small, and contained a very heterogeneous 
collection of drawings. Given a collection that was larger, more homogeneous, or both, 
feature matching on its own might well have produced less impres.sive re~ul!s. In such 
cases, the ability of segment matching to discriminate between hi~hly similar s~ap~s 
might well come into its own. Such a facility should certainly be prOVIded as an opt~on m 
future systems. Whether segment matching under these circumstances should still. be 
based on a unique boundary start point is an open question. Repe.ated se.gment matching, 
using each vertex on the drawing boundary in turn as startmg pom~, cou~d prove 
acceptably efficient if limited to a small subset of the database, and mIght gIve more 
reliable results. 

208 



The decision to use a database management system based on the somewhat unfashionabl 
COD.ASYL model for the prototype system, justified in chapter 5, again proved sound ~ 
practIce. N.0 advantage, could be taken ?f the power of relational query languages when 
nnplementmg SAFARI s feature extra~tIOn and shape matching algorithms. The function 
of the DBMS was thus purely to prOVIde access to individual stored data elements wh 
required - a. task ~or ~hich CODASYL database management systems are well suite~~ 
The present mvestIgatlon has not attempted to assess the suitability of alternative types of 
DBMS, such as the NF2 model discussed in section 5.3. 

The ~l1l:al group of decisions concerned inte~ace design (chapter 7). As argued in section 
8.~, It IS premature to attempt any syst~matlc evaluation of the existing interface, since 
this should be regarded purely as a vehicle for formulating test queries. Further work is 
clearly required in this area. 

9.2 Further work required 

Overall, therefore, the design decisions taken in the development of the prototype 
SAFARI system appear to have been vindicated. There is, however, scope for further 
development in several areas. Further evaluation studies should ideally be conducted on 
the current prototype with different test collections, preferably using both similarity and 
partial shape queries provided by would-be users of such a system. The system's 
similarity retrieval capabilities have been investigated in some detail with one test 
collection. The general applicability of these results must be in some doubt until they can 
be replicated with further collections of shapes. It can however be argued that more 
widespread evaluation (possibly including a comparison with manual part coding) should 
await the development of future versions capable of handling a wider domain of shapes. 
This issue is discussed in more detail in section 9.3 below. 

Various aspects of fme-tuning could obviously be investigated in more detail, such as 
comparisons of alternative feature sets, matching techniques, and alternative ways of 
generating different boundary levels. It could be particularly useful to test the effect of 
allowing the shape hierarchy building module SKELETON to create and store alternative 
level hierarchies for shapes that have more than one acceptable parsing (chapter 3). 

Possibly the most interesting areas for further development concern query interface 
design and data structuring. As discussed in section 7.4, only one of four potentially 
suitable types of query interface has yet been implemented. The task of implementing the 
remainder, integrating them with the rest of the system, and extending them to handle 
queries involving both shape elements and textual or numeric data, is far from trivial, 
even if the system remains restricted to 2-D shapes. 

An operational shape database housing large collections of drawings would require m?re 
powerful data access methods than those provided in the prototype system .. The questIOn 
of whether these can be best provided via an underlying CODAS'yL, relatl~n~ or ev~n 
object-oriented DBMS, or through purpose-built fIle structures (like most bIblIographic 
retrieval systems) should provide a fruitful area for further study. 

9.3 Relevance to 3-D object retrieval 

9.3.1 Introduction 

As the foregoing discussion should have made clear, a system such as SAFARI will be of 
real use to engineers only when its scope can be enlarged to encompass 3-D shapes. ~ 
important measure of the usefulness of the Mark I prototype is thus the degree to which 

209 



the principles used in .its ?esign can be generalized to three dimensions. Two possible 
r~utes to such gen~ral~atIOn coul.d be !aken - the system could be extended to handle 
euher the 2-D proJectIOns. of solId objects produced by draughting packages such as 
DOGS, or the 3-D geometrIc models produced by systems such as ROMULUS. 

9.3.2 Orthographic projections of 3-D objects 

On.the face of it, extension to h.andle 2-D ~rthogr.aphic projections might seem the easier 
optIon.. The ~ystem would still be dealmg wIth. two-dimensional patterns of lines 
follo:vmg stnct (~ough more com~lex) syntactIcal rules. Examination of typical 
drawmgs such ~ FIg 1.1 suggests that It would not be difficult to extend the scope of the 
boundary creatIon program LINEJOIN and the shape hierarchy builder SKELETON to 
cope wi~h the situa~on where a line segment belonged to two or more partially
?verlappmg boundanes, though some degree ?f redundancy would inevitably be 
mtroduced, ~d the c~ncept of a boul1:dary level ffilght need to be modified. There might 
also be an mcrease m the compleXIty of the algorithms involved. Reducing such a 
drawing to canonical form might prove a significant problem, but the evidence above 
suggests that .the.re is little advantage to be gained by such a process. Feature generation 
would be a SIgnificantly more complex process, because many more types of relational 
feature as defined in section 4.2.3 would be necessary. Where each inner boundary 
simply represents a hole in a piece of sheet metal, a relatively rudimentary set of features 
representing their relative position and orientation can provide sufficient information for 
effective retrieval. Inner boundary patterns such as that illustrated in Fig 1.1, representing 
a variety of related features machined out to different depths, would clearly require a 
much wider feature set to reflect the relationships involved. The whole concept of an 
inner boundary family as defmed in sections 4.4.4 and 4.5.5 would also need to be 
reviewed. 

The major difficulty with this approach, though, lies with its overall philosophy. While 
engineers quite legitimately talk of retrieving a drawing from the archives, what they 
really require is the design specification of a particular object. The underlying object 
being modelled by the CAD system is the real target for retrieval, at least in the vast 
majority of situations. To regard a drawing representing a single projection of that object 
as a retrieval target in itself is a perfectly legitimate stance (see the discussion on general 
pictorial information retrieval systems in the next section). It is however unlikely fully to 
meet the needs of potential users, whose prime interest is in whether the object itself is 
the right shape to meet their requirements. To achieve this through the medium of 2-D 
orthographic projections, the system is likely to need to reconstruct t~e 3-J? shape ~f the 
object in question before identifying and extracting features for use m retneval. This, ~ 
indicated by Nagendra and Gujar (1988), is a major task, since three o~~ographic 
projections alone do not necessarily defme an object uniquely, and some additIOnal cues 
such as textual comments are often necessary to resolve possible ambiguities in 3-D 
shape (Yoshiura at al, 1984). While SAFARI could in principle ~e exte?de.d in this 
direction if the capability to handle libraries of 2-D orthographIC pro~ectIOns was 
required, providing it with a 3-D shape reconstruction facility would be a major task. 

9.3.3. 3-D geometric models 

The other alternative, to extend SAFARI to handle 3-D geometric models direc~ly, d~es 
have certain advantages, though this would again be a highly complex. task: Startmg ~lth 
the premise (shared by all boundary representation schemes) that a sohd obJ~ct c~mpnses 
the union of its faces, one can readily envisage a 3-D analogu~ of SAFARI 1!1 'Yhich each 
object would be represented as a set of faces, each defmed m a manner similar to ~hat 
described in chapter 3 above. The definition of each ~ace. would need ~o be extended m a 
similar marmer to that described for orthographic prOjectIOns above, smce shape features 

210 



could themselves. cont~ more detailed features, as indicated by Kyprianou (1980) 
though the extensIOns rmght well need to go further. ' 

Pockets and bosses, .shape features completely enclosed within a single face would 
few problems even if nested. Sh~p~ rewriting rules similar to those used by Kypri:~~ 
could be used to generate descnptIOns of each face at different levels of detail in 
analogous manner to th~ boundary level in the present version of SAFARI. Slots, holes: 
any other f~ature sp~g two o~ mo!e .faces would be more difficult to handle, as they 
would not fIt ~e~tly mto SAFARI s eXIstmg type of shape hierarchy. It would probably be 
necessary to mdicate that such features were jointly "owned" by all faces they touched 
and therefore part of each face description, at least at the lowest level. ' 

Further extensions to this representation would be needed where faces were not planar 
an implicit assumption made by the present version of SAFARI. An indication would 
!hen be needed of the surf~ce:s curvature aJong different axes (relatively straightforward 
if the system w~ t~ b.e hrmte? to sphencal and cylindrical surfaces, in the way the 
present prototype IS lmuted to clfcular arcs), and this information would need to be taken 
into account in calculating the relative position, orientation and labelling (as protrusion or 
depression) of shape features associated with that face. 

Feature generation should not in itself be a difficult process, though considerable thought 
may need to be given to the task of feature selection, which would be no easier for 3-D 
objects than for 2-D shapes (section 4.2). Experience with SAFARI to date suggests that 
feature types much simpler than those identified by automatic feature recognizers for 
process planning (Henderson and Anderson, 1984; Lee and Fu, 1987) can be effective 
retrieval keys for 2-D shapes; whether this situation holds for 3-D objects remains to be 
established. Intuitively, one again feels (as with orthographic projections) that relational 
features will be more important for 3-D objects than for the simple 2-D shapes examined 
so far. Characterizing useful relational features may be difficult; extracting them from 
object descriptions is likely to prove a complex process. 

Canonicalization of the kind attempted by the present version of SAFARI is unlikely to 
prove feasible in the 3-D context. Even assuming the degree of complexity involved in 
processing each face to be no more than that for a complete 2-D shape, finding a 
canonical ordering of n faces could require comparison of up to n! alternative face 
orderings. As observed above, complete canonicalization is probably unnecessary. 
However, some partial ordering of faces could be justified on efficiency grounds if shape 
matching were to involve sequential matching of faces at any stage. Perhaps more 
importantly, the position and orientation of each local shape element (slot, boss or hole) 
need to be related to some invariant point and direction (possibly object centroid and 
principal axis - if any) before relational shape features can be generated. If partial 
matching of faces is to be attempted, some means of specifying an invariant point and 
direction on each face may be required. 

Interface design for a 3-D version of SAFARI would probably present some d~ficulties. 
As discussed in section 7.3.3, few types of user interface are really SUItable for 
formulating 3-D queries. Text-based command languages are. equally unsuitable for 
formulating 2-D and 3-D queries. Example-based interfaces m the 3-D context. are 
inevitably tedious to use, as the only effective way of building ~p an example query IS to 
use some kind of 3-D geometric modeller. There is no 3-D eqUIyale~t of the rough hand
drawn sketch! One is thus left with menu-based interfaces (which, if based on the same 
principles as the feature-based design system described by Patel (1985), could prove 
effective if slow) and browsing along the lines suggested by Herot (19~0). The l~tter 
could prove the best compromise for small to medium.-slZed ~oll~ctlons, provI?ed 
agreement could be reached with users on the most appropnate prOjectIOn ~f each object 
to display. One might envisage this as the default interface mode, WIth ~e. more 
cumbersome example- or menu-based interfaces available as options where specifIc type 
C or D queries were involved. 

211 



Interface prob~ems of another kind are likely to be encountered by a true 3-D version of 
SAFARI. While .~any CAD systems can exchange 2-D drawings in standard IOES 
f~m,?at, opporturutI~S to exchange 3-D geometric model descriptions are much more 
IIm~ted, as the equ~valent 3-D. stan?ar?, STE~, is still in the process of development 
~Wilson, 1990). This has two unplIcatIOns .. FIrstly, it will be some time before STEP 
mterfaces are a s~andard feature of geometnc modelling systems. Obtaining significant 
vol';lmes of data m standard. format ~~y thus ~rov.e difficult. Secondly, it is difficult to 
deCIde wh~t level of translatIOn capability to build mto the next version of SAP ARI until 
more details of the standard are known. At one level, there is the need to decide how 
many of the alternative ways of def~g a given line or plane to support. At a deeper 
level, knowledge of the extent to which topology and shape feature definitions are 
enforced by the standard ~s necessary before deciding how much inferential capability is 
needed by the next verSIOn of SAFARI. (The situation with IOES which made no 
a~e~pt to enf,?rce. any such definitions, was fairly clear-cut). Ho~ever, the general 
prmciple of ?':'5mg mpu~ to SAF ~ on ~ stand~d data exchange format rather than tying 
It to a specifIC modellmg system IS still conSIdered valid. Note that this provides an 
additional reason for using boundary representation rather than CSO (see section 1.2) as 
the basis for any 3-D version of SAFARI. Systems based on boundary representation can 
accept input in either boundary representation or CSO form; CSO-based systems can in 
general accept input only in CSG form. 

9.3.4 Conclusions 

In the author's opinion, therefore, the majority of the principles adopted in the design of 
the Mark I version of SAFARI are applicable - with appropriate extensions - to the wider 
domain of engineering parts currently represented as orthographic projections or 3-D 
geometric models. To this must be added the caveat that, just as the initial prototype of 
SAFARI was limited to shapes made up of straight-line and circular-arc segments, the 
above discussion assumes that the 3-D version of SAFARI would be limited to objects 
with planar, cylindrical or spherical surfaces (which includes the vast majority of 
machined parts). The extent to which this approach remains valid for objects with 
sculptured surfaces has yet to be established. 

9.4 Applicability to pictorial information systems in general 

9.4.1 A taxonomy of related systems 

As discussed in chapter 1, interest in what can be loosely be termed pictori~ information 
systems has been developing for some years, particularly in the geographic field. What 
relevance, if any, does the present work have for th~ gener~io/ o~ .such sys~ems? To 
answer this question fully, it is first necessary to establIsh the similantIes and differences 
between SAFARI and other types of system. 

Firstly, SAFARI is a shape retrieval system, attempting to fmd th~ mos~ similar objec~ to 
a given query purely on the basis of shape features. The sy~tem IS beh~ved to be unIque 
in a number of respects; (a) subject area - with the po~sIble exce.ptIon ?f .the ARES 
system (Ichikawa, 1980), for which few operational details. are available, It IS the only 
known system capable of retrieving engineering drawmgs by feature.s extr~cted 
automatically from the drawings themselves (as opposed to mru:ually-assI~e~ mdex 
terms or classification codes), (b) boundary and feature representation - the prmcipies. of 
deriving a unique representation for each shape, viewing each shape boundary as a s.enes 
of levels of increasing complexity, and associati?¥ extracte? shape features WIth a 
specific level, do not seem to have been expliCItly descnbed elsewhere, and (c) 

212 



evaluation - it is the only pictorial infonnation system for which any systematic 
evaluation of retrieval perfonnance has been attempted. 

~e SAFARI can be co~side!ed to be a pictorial infonnation system, an information 
retneval. system o~ an. engmeermg database system, none of these titles are particularly 
helpful m. conveymg It~ true nature. Its c~osest analogues are clearly the few genuine 
shape retrIeval sys~ems m other areas - partIcularly the fmgerprint matching systems now 
used br m~y P?lIce f~rces. (IEEE, 1985). Some of the medical imaging systems which 
scan plctonal dIagnOStiC .aIds such as X-!ays ('!'oriwaki, 1980; Yokoya and Tamura, 
1982; .~r~son and Er-R~di, 19~5) also fall mto .this category, though their image analysis 
c.apabill~les as rep.orted m the lIterature are ru~entary by comparison with SAP ARI or 
fm~erpnnt matching s~stems. Alt~o~gh not stnctly shape retrieval systems, the image 
retneval ~ystems descnb~d by R~blttl and Stanchev (1987b, 1989) have in some ways a 
better clrum to membership of this group, as they have implemented principles of feature 
extraction and classification closely related to those employed by SAFARI. 

Further remo.ved from SAFARI th~ t~s group are three very different types of system, 
~ach of w~ch, ~ough clearly distmct from SAFARI in overall philosophy, has 
influenced ItS deSIgn to some extent. These are geographical information systems and 
their analogues, feature recognition systems developed in connection with automated 
process planning, and image analysis systems developed for robot vision. 

Geographical information systems appear at first sight to be the closest of these to 
SAFARI in overall objectives. The similarities between SAFARI and systems such as 
GRAIN (Chang et al, 1977), REDI (Chang and Fu, 1980), PICDMS (Chock et al, 1984) 
and PROBE (Orenstein and Manola, 1988) are obvious. Both types of system store 
pictorial data which can be retrieved and displayed in a number of different ways on 
request, and both types are based on an underlying DBMS (though using different data 
models). But there is one crucial difference. The geographical systems are essentially 
spatial retrieval systems, identifying objects or areas lying within identified map 
coordinates, or bearing specified spatial relationships to each other (adjacent to, within, 
northwest of, etc). The "intelligent image database system" of Chang et al (1988), though 
not strictly geographic, also falls into this category, as it is designed to answer questions 
about the relative positions of specific objects within an image. Thus, while such systems 
might share aspects of interface design with SAF ARl, their query formulation 
capabilities and matching processes in the main are quite different. The only potential 
area of overlap is similarity retrieval, which would clearly require matching techniques 
analogous to those used by SAF ARl. Several of the authors above describe query 
languages which include similarity retrieval commands - though none of them gives any 
indication of how to implement such commands. In the GRAIN system, for example, it is 
simply assumed that searchers will provide their own similarity matching procedures. 
Most later authors recognize that their systems need some kind of feature extraction 
capability to support this kind of retrieval, though the vague terms in which.they discuss 
the problem make it quite clear that none of them have made any systematic attempt to 
solve it. 

Feature recognition systems, aiming to recognize and extract shape features from CAD 
drawings or geometric models, have been the subject of increasing in~erest in ~ecent 
years. The motivation for such studies has most often been to recogrnze machmable 
features in the design, as a prelude to automated process planning (deciding what 
sequence of drilling, turning or milling operations is necessary to conve~ an unformed 
piece of metal into a fInished part). Examples of such work are ChOl et al (1984), 
Henderson and Anderson (1984), Lee and Fu (1987), and Varady et al. (1990). One can 
also perhaps class the work of Kyprianou (1980) ~d Kakazu and 0k!n0 (1984) Ul;tder 
this heading. Although the motivation here was different (the generatIOn of workpIece 
classifIcation codes with group technology in ~d), t~e techniques. used were 
remarkably similar. In every case, syntactic analYSIS of object representations from a 
CAD system was used to uncover the presence of specific types of shape feature as a 

213 



prelude to ~er application-specific processing. While these systems differ clearl 
from S~ ARI m that n~me of the.m off~r anr guery or retrieval facilities, nor an~ 
systematIc means of sto~g and umquely Identifymg shape feature representations, the 
approach to shape analysIs cho~en for the prototype system was strongly influenced b 
some of the earher systems of this type. y 

C?lT!put.e~ yisio~ systems which attempt !o recognize the presence of specified objects 
wIthm dig~tIZed Im~ges (such as those revIewed in Chin and Dyer, 1986) also resemble 
S~ARI m some. ~p?rtant r~spects. The basic process of extracting features from 
objects det~cted WIthin Images, I? order to ma~ch them with existing templates, has many 
parallels WI~ ~e shal?e analysIs and matching procedures underpinning the SAFARI 
system. As mdicated m chapter 4, the pattern recognition literature has provided the 
source both of fea~ure types (such as P2fA ratios) and similarity estimation techniques 
(such as 9-s matching) adopted for the prototype system. However, such systems differ 
fundament~y from shape ~etrievaJ systems in the restricted number and type of objects 
ther are deSIgned to recognIZe. This can be most clearly shown by contrasting the way in 
which the two types of system handle their normal input - a digitized image containing 
objects to be recognized .~ the case of a robot .vision system, a query shape for a system 
such as SAFARI. The VISIOn system, though It needs to perform some highly complex 
analysis on the input picture, is faced with a relatively simple task when it comes to 
shape matching, since few systems reported in the literature hold more than about ten 
stored template shapes. The shape retrieval system, on the other hand, while needing to 
perform relatively little analysis of the query shape, has to match the query against 
hundreds, possibly thousands, of stored shapes. Hence the emphasis in a shape retrieval 
system needs to be on efficient, general-purpose shape-matching methods, coupled with 
appropriate data storage techniques - as opposed to a vision system where the main 
design effort has to be directed towards image segmentation and feature extraction from 
noisy images. 

9.4.2 Relevance of the SAFARI project 

The field of pictorial information system design is steadily growing in importance, 
judging by the volume and diversity of the literature (Lunin, 1987; Petrie, 1988; Chang, 
1989). As well as empirical studies of the kind described in chapter 1, attempts are now 
being made to develop a body of underlying theory, such as the concept of the 
generalized icon (Chang, 1987) which specifies a formal mapping between logical and 
physical picture objects, and which might therefore be of value in picture indexing. How 
useful such concepts will prove in stimulating further research remains to be seen. One 
would perhaps have more faith in the general applicability of Chang's work had he not 
limited his supporting examples to Chinese ideograms. 

There is another reason for questioning the validity of the generalized icon concept 
referred to above. The sheer diversity of picture types used to communicate ideas 
between human specialists in different fields raises fundamen~al problems .about treating 
all types of picture in the same way. To expect humans to VIew maps, diagrams, press 
photographs, engineering drawings, X-rays, chemical structures, tr~de marks,. and 
cartoons as a single homogeneous set of visual objects, which c.an ~ be mterpret~d m the 
same way, does not on the face of it seem reasonable. E~gu:eermg ~d architectural 
drawings are clearly recognizable as design documents specifymg the SIZe and shape of 
certain artefacts. Maps are occasionally used as specification documents, but most 0!ten 
simply record the presence and location of certain types of natural or man-~ade object. 
Diagnostic images such as X-ray photographs are used in a. completely differe~t way; 
only those parts of the image showing some kind of abnormalIty are normally of mte!e.st. 
Photographs in general are virtually impossible to interpret at more than the most .trIVIal 
level without the aid of cues outside the picture, such as explanatory te~t. Studies on 
picture comprehension performed nearly 20 years ago by Firschein and FIschler (1971, 

214 



1972), ~ontrasting .the ~ay in .which different subjects attempted to interpret identical 
scenes, illustrate this pomt admirably. 

Sin~e the user is s~ldom, if ev.er, ~eally co~cerned with the physical image except as a 
vehIcle for co~v~ymg underlymg Ide~s which ~e more easily represented graphically 
than textually, It IS necess~ to base lffi~ge retrIeval systems on logical picture objects 
and the specific f~a~es whic.h can be denved from them. Such characteristic features are 
remark~bly apphc~tlon-specific. ~u.s SAF ~ spe~ifically exploits the underlying 
regularIty o~ ~ach!ne~ components! fm~erpnnt .matching systems rely on identification 
of c~aractens~lc mmutzae; ~eog!aphlcal informatIon systems link related types of data via 
spatIal coordinates .. The lik~lihood of a general I?ic~e retrieval system achieving 
successful results wIthout ~emg. able to rely on apphcatlOn-specific cues of this kind is 
not great. An analogous sltuanon can be observed in the artificial intelligence field 
(Winston, 1984), where real progress in expert systems development came about only 
when the search for a general-purpose problem solver was abandoned in favour of 
application-specific systems such as MYCIN and PROSPECTOR. 

If this view is valid, its implications are clear. It is impossible to apply many of the 
application-specific techniques adopted for SAFARI - or for any other such system - to 
pictorial inf0r:mation systems in general. Some design principles are likely to be 
generally apphcable, though many of these are already well-established, such as the need 
to extract characteristic features from each stored object and use these as retrieval keys. 
One might further expect the domain of drawings where the complete SAFARI approach 
remained applicable to be those which were created and interpreted in the same way as 
engineering drawings. This effectively includes only two further classes - architectural 
plans and drawings, and technical illustrations such as the drawings of new inventions 
included in patent specifications (normally single isometric or perspective views, which 
require considerable interpretation to reconstruct the original 3-D object). 

Some aspects of the SAFARI approach might well be useful outside this area. While its 
relevance for geographic information systems is limited because spatial rather than shape 
retrieval is involved, aspects of its approach to feature extraction and storage would 
certainly seem to be valid for queries involving similarity matching, if only to the extent 
of recognizing that a relatively simple feature set might well provide adequate retrieval 
performance. Its relevance for process planning feature recognition systems is probably 
minimal, because the level of feature description required by these systems is much more 
detailed than the level that appears to be needed for simple shape retrieval. The most 
promising related area might well be image analysis - the principle of viewing each 2-D 
boundary identified as a series of levels, each with its own characteristic feature set, 
could well improve recognition performance in systems with relatively large numbers of 
reference shapes; and the principle of 9-s matching of canonical shape description.s, 
though of limited usefulness for similarity retrieval, could be extremely valuable m 
searching for exact matches between image and reference objects, and significantly more 
efficient than published methods such as Perkins (1978). 

In a way this limited applicability is disappointing, as it im:plies that pr~gres~ in the 
pictorial information retrieval area will continue only on a pIecemeal basIS, WIth new 
systems inevitably tied to specific applications areas, with little to offer t? related ar~as. 
On a more positive note, one can perhaps observe that this merely emphasIZes the vanety 
and richness of the field, and the possibilities it offers for further work, b?th to ~he 
practical systems designer and the theorist. There may well be further underlymg des~gn 
principles to discover, as in the expert systems field, where knowledge represe~tatlOn 
techniques such as the rule and the frame have gained widespread acceptance, despIte the 
bewildering variety of knowledge they handJe. "!t~ther such ~dv~ces .ste~ from 
Chang's mathematical approach, Fischler and Frrschem s psychologI~al mvestIga~lOns, or 
simply the steady progression of empirical studies such as SAFARI, tlffie alone will tell. 

215 



9.5 Epilogue 

Twenty years of research into automated image processing have left most observers with 
the inescapable conclusion that it is not an inherently suitable application area for the 
digital computer. The human eye and brain still outperform even the best computer 
systems with contemptuous ease. In many ways, automated image processing systems are 
an apt target for Dr Johnson's famous comparison with a dog walking on its hind legs: "it 
is not done well; the wonder is that it is done at all". It is perhaps in this light that the 
SAFARI project should be judged. A successful attack has been made on a problem (that 
of extracting, storing and matching drawing features efficiently and reliably enough to 
incorporate into an operational database) which many writers have described, but few 
have attempted to solve. The demonstration that acceptable retrieval performance can be 
achieved with relatively unsophisticated feature extraction and matching techniques will, 
one hopes, encourage similar developments in other areas of pictorial information 
retrieval. 

216 



REFERENCES 

Adamson, G W et al (1973) "Stra~egic considerations in the design of a screening system 
for substructure searches of chenucal structure fIles" Journal of Chemical Documentatio 
13(3), 153-157 n 

Akin, 0 (1978) "How do architects design?", pp 65-98 in Artificial intelligence and 
pattern recognition in computer-aided design, (ed Latombe, J), North-Holland, 
Amsterdam 

Asada, H and Brady, M (1986) "The curvature primal sketch" IEEE Transactions on 
Pattern Analysis and Machine Intelligence 8(1), 2-14 

Assn:tann, K et a}- (19~4) "The ISQL language - a uniform tool for managing images and 
non-l1llage data man l1llage data base management system" pp 42-45 in Proceedings of 
IEEE Conference on Medical Images and Icons, Arlington, Virginia, July 1984 

Ballard, D H (1981) "Strip trees: a hierarchical representation for curves" 
Communications of the ACM 24(5),310-321 

Ben-Bassat, M and Zaidenberg, L (1984) "Contextual template matching: a distance 
measure for patterns with hierarchically dependent features" IEEE Transactions on 
Pattern Analysis and Machine Intelligence PAMI-6(2), 201-211 

Bhanu, Band Faugeras, 0 D (1984) "Shape matching of two-dimensional objects" IEEE 
Transactions on Pattern Analysis and Machine Intelligence P AMI-6(2), 137-155 

Braid, I C (1973) "Designing with volumes" Ph.D. Thesis, University of Cambridge 

Burgess, C G (1986) "A graphical database interface" Computers and Industrial 
Engineering 11, 355-359 

Burton, W (1977) "Representation of many-sided polygons and polygonal lines for rapid 
processing" Communications of the ACM 20(3),166-171 

Castelli, E (1989) "Symmetry-based approach to mechanical drawings retr~eval, an AI 
application" pp 405-413 in Visual Database Systems (ed Kunii, T L) ElseVIer, 
Amsterdam 

Chang, NS and Fu, K S (1980) "A relational database system for.images" pp 288-3~1 in 
Pictorial Information Systems, (ed Chang, S K and Fu, K S), Sprmger-Verlag, Berlm 

Chang, N S and Fu, K S (1981) "Picture query languages for pictorial database systems" 
IEEE Computer 14(11), 23-33 

Chang, S K et al (1977) "A relational database system for pictures" pp 142-149 in 
Proceedings of the IEEE Workshop on Picture Data Description and Management, 
Chicago, Apri11977 

Chang, S K et al (1980) "A generalized zooming technique for pictorial database 
systems" pp 257-287 in Pictorial Information Systems, (ed Chang, S K and Fu, K S), 
Springer-Verlag, Berlin 

Chang, S K and Liu, S H (1984) "Picture indexing and abs.traction tec~ques f<?r 
pictorial databases" IEEE Transactions on Pattern Analysls and Machme Intelilgence 
PAMI-6(4),475-484 

217 



Chang, S K (1987) "Iconic semantics - towards a fonnal theory of icons" Inter t' I 
Journal of Pattern Recognition and Artificial Intelligence 1(1), 103-120 na zona 

Chang, SKat al (1988) "An intelligent image database system" IEEE Transacti 
Software Engineering 14(5),681-688 ons on 

Chang, S K (1?89) "Principles of Pictorial Infonnation Systems Design" Prentice-Hall 
Englewood Cliffs, NJ ' 

Chen, C H (1973) "Statistical Pattern Recognition" Hayden, Washington 

Chen, P ~ (1976) "The entity-relationship model- towards a unified view of data" ACM 
TransactIOns on Database Systems 1(1),9-36 

Chin, R T and Dyer C R (1986) "Model-based recognition in robot vision" ACM 
Computing Surveys 18(1), 67-108 

Chock, M et al (1984) "Database structure and manipulation capabilities of a picture 
database management system (PICDMS)" IEEE Transactions on Pattern Analysis and 
Machine Intelligence P AMI-6( 4),484-492 

Choi, B K et al (1984) "Automatic recognition of machined surfaces from a 3-D solid 
model" Computer Aided Design 16(2),81-86 

Cleverdon, C W et al (1966) "Factors detennining the perfonnance of indexing systems" 
College of Aeronautics, Cranfield 

CODASYL (1971) "Report of Data Base Task Group of CODASYL Programming 
Language Committee" ACM, New York 

Codd, E F (1970) "A relational model of data for large shared data banks" 
Communications of the ACM 13(6), 377-387 

Codd, E F (1972) "Further nonnalization of the data base relational model" in Data Base 
Systems, (ed Rustin, R) Prentice-Hall, Englewood Cliffs, New Jersey 

Codd, E F (1979) "Extending the database relational model to capture more meaning" 
ACM Transactions on Database Systems 4(4),397-434 

Dadam, P at al (1986) "A DBMS prototype to support extended NF2 relations: an 
integrated view on flat tables and hierarchies" SIGMOD Record 15(2), 356-367 

Dietrich, F (1985) "Visual intelligence: the first decade of computer art" IEEE Computer 
Graphics and Applications 5(7),32-41 

Dittrich, K and Dayal, U, eds. (1986) "Proceedings of International Workshop on Object
oriented Database Systems" IEEE Computer Society, Pacific Grove, CA 

Dong, X and Womy, M (1988) "FRAFES, a frame-based feature extraction syste~" pp 
296-305 in Proceedings of International Conference on CIM IEEE Computer SOCIety, 
Pacific Grove, CA 

Dubois, S R and Glanz, F H (1986) "An autoregressive model approach .to two- . 
dimensional shape classification" IEEE Transactions on Pattern AnalYSIS and Machzne 
Intelligence PAMI-8(1), 55-66 

Duda, R 0 and Hart, P E (1973) "Pattern Classification and Scene Analysis" Wiley, New 
York 

218 



Dunh~, J G (1986) "c?ptimum unifonn piece~ise linear approximation of planar 
curves IEEE Transactzons on Pattern Analyszs and Machine Intelligence PAMI-8(1) 
67-75 ' 

Eberlein, W and Wedekind, H (1982) "Design databases in integrated engineering 
systems", pp 3-37 in File structures and data bases for CAD (ed Encamacao J and 
Krause, F L), North-Holland, Amsterdam ' 

Everitt, B (1980) "Cluster Analysis", 2nd edition. Heinemann, London 

Firschein, 0 and Fischler, M A (1971) "Describing and abstracting pictorial structures" 
Pattern Recognition 3,421-443 

Firschein,O and Fischler, M A (1972) "A study in descriptive representation of pictorial 
data" Pattern Recognition 4, 361- 377 

Fischler, M A and Bolles, R C (1986) "Perceptual organization and curve partitioning" 
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(1), 100-105 

Frasson, C and Er-Radi, M (1986) "Principles of an icons-based command language" 
SIGMOD Record 15(2), 144-152 

Freeman, H (1974) "Computer processing ofline-drawing images" ACM Computing 
Surveys 6(1),57-97 

Frei, H P and J aus1in, J F (1983) "Graphical presentation of infonnation and services: a 
user-oriented interface" Information Technology: Research and Development 2,23-42 

Fu, K S (1982) "Syntactic Pattern Recognition and Applications" Prentice-Hall, 
Englewood Cliffs, New Jersey 

Gardan, Y and Lucas, M (1983) "Interactive graphics in CAD" Kogan Page, London 

Gaschnig, J (1983) "Evaluation of expert systems: issues and case studies" pp 241-280 in 
Building Expert Systems (ed Hayes-Roth, F et al). Addison-Wesley, Reading, Mass. 

Gips, J (1974) "Shape grammars and their uses" Stanford University Computer Science 
Department report STAN-CS-74-413 

Goldberg, A and Robson, D (1983) "Smalltalk-80: the language and its implementation" 
Addison-Wesley, Reading, Mass 

Greanias, E C et al (1963) "The recognition of handwritten numerals by contour analysis" 
IBM Journal 7, 14-21 

Hayes-Roth, F et al (1983) "Building Expert Systems" Addison-Wesley, Reading, Mass. 

Henderson, M R and Anderson, D C (1984) "Computer recognition and extraction of 
fonn features: a CAD/CAM link" Computers in Industry 5, 329-339 

Herot, C F (1980) "Spatial management of data" ACM Transactions on Database Systems 
5(4),493-514 

Hough, PVC (1962) "Methods and means for recognizing complex patterns" U.S. Patent 
3069654 

219 



~oward, H.C and Rehak, D R (1986) "Exp~rt systems and CAD databases" pp 236-248 
m P~oceedzngs ofCAD-86, the 7th Internatzonal COnference on the Computer as a 
Design Tool Butterworths, London 

Ichika~a, T et al ~1980) "A ~uery manipulation system for image data retrieval by 
ARES pp 61-67 m Proceedzngs of IEEE Workshop on Picture Data Description and 
Management, August 1980 

IEEE (1985) "Computer graphics in the detective business" IEEE Comp~ter Graphics 
and Applications 5(4), 14-17 

Ives, B (1982) "Graphical user interfaces for business information systems" MIS 
Quarterly, special issue, Dec 1982, 15-47 

Johnson, R H and Dewhirst, D L (1982) "The product structured data base: a schema for 
design of mechanical systems", pp 155-163 in File structures and data bases for CAD 
(ed Encarnacao, J and Krause, F L), North-Holland, Amsterdam 

Kakazu, Y and Okino, N (1984) "Pattern recognition approaches to GT code generation 
on CSG" pp 10-18 in Proceedings of 16th CIRP International Seminar on Manufacturing 
Systems, Tokyo 

Kalay, Y E (1983) "A relational database for non-manipulative representation of solid 
objects" Computer-Aided Design 15(5),271-276 

Kato, 0 et al (1982) "Interactive hand-drawn input system" pp 544-549 in Proceedings of 
IEEE Computer Society Conference on Pattern Recognition and Image Processing (PRIP 
82), Las Vegas, June 1982 

Kemper, A and Wallrath M (1987a) "An analysis of geometric modelling in database 
systems" ACM Computing Surveys 19(1),47-91 

Kemper, A and Wallrath M (1987b) "An object-oriented database system for engineering 
applications" SIGMOD Record 16(3), 299- 310 

Ketabchi, M A and Berzins, V (1987) "Modeling and Managing CAD Databases" IEEE 
Computer 18(2), 93-102 

Kim, H Jet al (1988) "PICASSO: a graphical query language" Software Practice and 
Experience 18(3), 169-203 

Kimura, F et al (1982) "Construction and uses of an engineering data base in design and 
manufacturing environments", pp 95-111 in File structures and data basesfor CAD (ed 
Encarnacao, J and Krause, F L), North-Holland, Amsterdam 

Klinger, A and Dyer, C R (1976) "Experiments in picture representation using regular 
decomposition" Computer Graphics and Image Processing 5, 68-105 

Koriba, M (1983) "Database systems: their applications to CAD software design" 
Computer-Aided Design 15(5),277-287 

Kruger, R Pet al (1972) "Automated radiographic diagnosis via fe~ture extr~ction ~d 
classification of cardiac size and shape descriptors" IEEE Transactzons on Bzomedlcai 
Engineering BME-19(3), 174-186 

Kunii, T L et al (1975) "An interactive fashion design system INFADS" Computers and 
Graphics 1,297-302 

220 



Kypria~lOu, L K (1980) "Shape classification in CAD" Ph.D. Thesis University f 
Cambndge ' 0 

Lafue, G (1978) "A theorem prover for recognizing 2-0 representations of 3-D ob' t" 
pp 391-401 in Artificial intelligence and pattern recognition in computer-aided de~~c: ' 
ed Latombe, J. North-Holland, Amsterdam g , 

Lee, E T (1980) "Similarity retrieval tec~ques", pp 128-176 inPictorialInformation 
Systems, (ed Chang, S K and Fu, K S), Spnnger-Verlag, Berlin 

Lee, H C and F.u, K ~ (~,972) "A stochas~ic syntax analysis procedure and its application 
to pattern classificatIOn IEEE Transactzons on Computing 21, 660-666 

Lee, Y C and Fu, K S (1987) "Machine understanding of CSG: extraction and unification 
of manufacturing features" IEEE Computer Graphics and Applications 7(1), 20~32 

Lee, Y C and Jea, K F J (1987) "PAR: a CSG-based unique representation scheme for 
rotational parts" IEEE Transactions on Systems, Man and Cybernetics SMC-17(6) 1039-
1049 ' 

Leong, M K et al (1989) "Towards a visual language for an object-oriented multi-media 
database system" pp 465-495 in Visual Database Systems (ed Kunii, T L) Elsevier, 
Amsterdam 

Leou, J J and Tsai, W H (1987) "Automatic rotational symmetry determination for shape 
analysis" Pattern Recognition 20(6), 571-582 

Liardet, M et al (1978) "Input to CAD systems: two practical examples", pp 403-414 in 
Artificial intelligence and pattern recognition in computer-aided design, ed Latombe, 1. 
North-Holland, Amsterdam 

Liewald, M H and Kennicott, P R (1982) "Intersystem data transfer via IGES" IEEE 
Computer Graphics and Applications 2(5),55-63 

Lin, W C and Fu, K S (1984) "A syntactic approach to 3-D object representation" IEEE 
Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 350-364 

Lunin, L F (1987) "Electronic Image Information" Annual Review of Information Science 
and Technology 22, 179-224 

Lynch, M F (1977) "Variety generation - a reinterpretation of Shannon's mathematical 
theory of communication and its implications for information science" Journal of the 
American Society for Information Science 28(1),19-25 

Max, N L (1983) "Computer representation of molecular surfaces" IEEE Computer 
Graphics and Applications 3(5),21-29 

Mason, H (1985) "Searching for standards", Engineering, March 1985, 154-156 

Moayer, Band Fu, K S (1976) "A tree system approach for fmgerprint pattern 
recognition" IEEE Transactions on Computing 25, 262-274 

Mokhtarian, F and Mackworth, A (1986) "Scale-based des~ription and recognitio~ of 
planar curves and two-dimensional shapes" IEEE TransactlOns on Pattern AnalYSIS and 
Machine Intelligence PAMI-8(1), 34-43 

Mui J K et al (1977) "Automated classification of blood cell neutrophils" Journal of 
Histochemistry and Cytochemistry 25(7), 633-640 

221 



Myers, G J (1979) "The art of software testing" Wiley, New York 

Nagen~a, I V and Gujar, U G ~1988) "3-D objects from 2-D orthographic views _ a 
survey Computers and Graphzcs 12(1),111-114 

Nagy, G (1985) "Image database" Image and Vision Computing 3(3),111-117 

Nagy, G and Wagle, S (1979) "Geographic data processing" ACM Comp~ting Surveys 
11(2),139-181 

Na~~onal Bureau of Standards (1983) :'Initial G~aphi?s Exchange Specification, Version 
2.0 Report NBS~-82-2631-AF, NatIOnal Engmeenng Laboratory, National Bureau of 
Standards, Washington, DC 

Opitz, H et al (1969) "Workpiece classification and its industrial application" 
International Journal of Machine Tool Design Research 9,39-50 

Patel, R (1985) "A mechanical engineering design interface for geometric modelling" 
Ph.D. Thesis, Council for National Academic Awards 

Orenste.in, ~ A ~d Manola, F A (l98~) "~R~BE spatial data modelling and query 
processmg m an Image database applIcatIon IEEE Transactions on Software 
Engineering 14(5),611-629 

Pavlidis, T (1980) "Algorithms for shape analysis of contours and waveforms" IEEE 
Transactions on Pattern Analysis and Machine Intelligence PAMI-2(4); 301-312 

Perkins, W A (1978) "A model-based vision system for industrial parts" IEEE 
Transactions on Computers 27(2),126 .. 143 

Petrie, J H (1988) "An overview of image processing and image management systems 
and their application" British Library Research Paper 40, British Library, London 

Pratt, M J (1984) "Solid modelling and the interface between design and manufacture" 
IEEE Computer Graphics and Applications 4(7), 52-59 

Rabitti, F and Stanchev, P (1987a) "An Approach to Image Retrieval from Large Image 
Databases" pp 284-295 in Proceedings of 10th Annual ACM-SIGIR Conference, New 
Orleans, June 1987 

Rabitti, F and Stanchev, P (1987b) "Graphical Image Retrieval from Large Image 
Databases" vol 2, pp 69-89 of Proceedings of AlCA conference, Trento 

Rabitti, F and Stanchev, P (1989) "GRIM_DBMS: a GRaphical IMage .I?ataBase . 
Management System" pp 415-430 in Visual Database Systems (ed Kurm, T L) ElseVIer, 
Amsterdam 

Requicha, A A G (1980) "Representation for rigid solids: theory, methods, and systems" 
ACM Computing Surveys 12(4),437-464 

Requicha, A A G (1988) "Solid Modelling - a 1988 upd~te" pp 3-22 in CAD Based 
Programming for Sensory Robots Springer-Verlag, Berlm 

Requicha, A A G and Chan, S C (1986) "Representation of ge~metric featu~~s, 
tolerances, and attributes in solid modellers based on constructIve geometry IEEE 
Journal of Robotics and Automation RA-2(3), 156-166 

222 



van Rijsbergen, C J (1979) "Infonnation Retrieval", 2nd edition. Butterworths, London 

Rogers, G (1980) "Computer Graphics and Architecture" in Eurographics 80 ed C E 
Vandoni. North-Holland, Amsterdam ' 

Rosenthal, A et al (~984) "An eX';ll11ple of ~owledge-based query processing in a 
CAD/CAM DBMS pp 3?3-370 m Proceedmgs of 10th International Conference on 
Very Large Databases, Smgapore, 1984 

Salton, G (1971) "The SMART retrieval system - experiments in automatic document 
processing" Prentice-Hall, Englewood Cliffs, New Jersey 

Shaw, A C (1970) "Parsing of graph-representable pictures" Journal of the Association 
for Computing Machinery 17(3),453- 481 

Sokal, R R and Sneath, P H A (1963) "Principles of numerical taxonomy" Freeman San 
Fransisco ' 

Sparck Jones, K, ed. (1981) "Infonnation retrieval experiment" Butterworths, London 

Spooner, D L et al (1985) "Abstract data types for CAD systems" pp 359-364 in 
Proceedings of International Conference on Robotics and Automation IEEE Computer 
Society, Pacific Grove, CA 

Staley, S M et al (1983) "Using syntactic pattern recognition to extract feature 
infonnation from a solid geometric database" Computers in Mechanical Engineering 
2(2),61-66 

Staley, S M and Anderson, D C(1986) "Functional specification for CAD databases" 
Computer-Aided Design 18(3), 132-138 

Stamper, R (1973) "Infonnation in business and administrative systems" Batsford, 
London 

Stockman, G et al (1982) "Matching images to models for registration and object 
detection via clustering" IEEE Transactions on Pattern Recognition and Machine 
Intelligence PAMI-4(3), 229- 241 

Sutherland, I E (1965) "SKETCHPAD: a man-machine graphical communication 
system" MIT Lincoln Lab Technical Report 296 

Swets, J A (1963) "Infonnation retrieval systems" Science 141,245-250 

Tamura, H (1980) "Image database management for pattern infonnation processing 
studies", pp 198-227 in Pictorial Information Systems, (ed Chang, S K and Fu, K S), 
Springer-Verlag, Berlin 

Tamura, H and Yokoya, N (1984) "Image database systems: a survey" Pattern 
Recognition 17(1),29-43 

Tiller, W (1983) "Rational B-splines for curve and surface representation" IEEE 
Computer Graphics and Applications 3(9), 61-69 

Toriwaki, J et al (1980) "Pictorial infonnation retrieval of chest -?C-ray image ~atabase 
using pattern recognition techniques", pp 1116-1119 in Proceedz!lgs of the Thlrd World 
Conference on Medical Informatics, Tokyo, October 1980 (ed Lmdberg, DAB and 
Kaihara, S), North-Holland, Amsterdam 

223 



Turner, J U and Wozny, M J (1987) "Tolerances in computer-aided geometric design" 
Visual Computer 3,214-226 

Tumey, J L et al (1985) "Recognizing partially occluded parts" IEEE Transactions on 
Pattern Analysis and Machine Intelligence PAMI.7(4), 410-421 

Ulfsby, S et al (1982) "TORNADO: a DBMS for CAD/CAM systems", pp 335-346 in 
File structures and data bases for CAD (ed Encamacao, J and Krause, F L), North
Holland, Amsterdam 

Umetani Y and Taguchi K (1982) "Discrimination of general shapes by psychological 
feature properties" Digital Systems for Industrial Automation 1(2-3), 179-198 

Varady, T et al (1990) "Identifying features in solid modelling" Computers in Industry 
14,43-50 

Voelker, H Band Requicha, A A G (1977) "Geometric modelling of mechanical parts 
and processes" IEEE Computer 10(12), 48-57 . 

Voelker, H Bet al (1978) "The PADL-1.0/2 system for defIning and displaying solid 
objects" Computer Graphics 12(3), 257-263 

Voelker, H Bet al (1990) "Computer applications in manufacturing" Annual Review of 
Computer Science 3, 349-387 

Weiler, K (1985) "Edge-based data structures for solid modelling in cUrved-surface 
environments" IEEE Computer Graphics and Applications 5(1),21-40 

Wilson, P R (1987) "A short history of CAD data transfer standards" IEEE Computer
Graphics and Applications 7(6), 64-67 

Wilson, P R (1989) "PDES STEPs forward'-' IEEE Computer Graphics and Applications 
9(2), 79-80 

Wilson, P R (1990) "STEP ballot results" IEEE Computer Graphics and Applications 
10(5), 79-82 

Winston, P H (1984) "Artificial Intelligence", 2nd edition. Addison-Wesley, Reading, 
Mass. 

Woo, T C (1982) "Feature extraction by volume decomposition", pp 76-94 in 
Proceedings of Conference on CAD/CAM Technology in Mechanical Engineering, 
Cambridge, Mass 

Wu, C T (1987) "GLAD: graphics language for database" pp 1~- ~70 in Proceedings of 
11 th International Conference on Computer Software and Appizcatzons, Tokyo. IEEE 
Computer Society, New York 

Yachida, M and Tsuji, S (1977) "A versatile machine vision system for complex 
industrial parts" IEEE Transactions on ComputerS C·26(9), 882-894 

Yamaguchi, K et al (1980) "ELF: extended relational model for la:ge, flexible pic~e . 
structures" pp 95-100 in Proceedings of the IEEE Workshop on Pzcture Data Descrzptzon 
and Management, August 1980 

Yokoya, N and Tamura, H (1982) "A database system ofmicroscop~c cell image~", pp 
471-476 in Proceedings of ISM III '82, the first IEEE Computer Soczety InternatIOnal 
Symposium on Medical Imaging, Berlin 

224 



Yoshiura, H et al .( 19~,4) "Top-down construction of 3-D mechanical obJect shape,> from 
engineering drawmgs IEEE Computer 18(12),32-40 

You, K C and Fu, K S (1979) "A syntactic approach to shape recognition USE;; anribuled 
grammars" IEEE Transactions on Systems, Man and Cybernetics 5\1(-<;' 6 '. :3"':'-.~"':'5 

Zahn, C T and Raskies, R Z (1972) "Fourier descriptors for plane closed curves" IEEE 
Transactions on Computers C-21(3), 269-281 

Zakia, R 0 (1975) "Perception and photography" Prentice-Hall, Englewood Cliffs. :\J 

Zloof, M M (1975) "Query-by-Example" pp 431-438 in Proceedings a/the 191'5 Sprim; 
National Computer Conference. AFIPS Press, Arlington, Virginia 

Zobrist, A L and Bryant, N A (1980) "Designing an image based information system". pp 
177-198 in Pictorial Information Systems, (ed Chang, S K and Fu. K S). Springer- \·erlag. 
Berlin 



APPENDIX A - RESULTS OF STUDENT SIMILARITY RANKING 
EXPERIMENTS 

Tabl.e Al.. Simil.arity ratings for OUTER-BOUNDARY queries 

Drawing Exact Frequency at ranking position Overal.l. 
No matches l. 2 3 4 ·5 rating 

Query no 32 (16 subjects) -

33 0 13 0 0 l' 0 0.581 
82 0 0 9 1 0 0 0.300 
87 0 0 1 2 2 0 0.094 
23 0 0 2 0 0 0 0.063 

145 0 0 0 1 2 1 0.050 
138 0 1 0 0 0 0 0.044 
161 0 0 1 0 0 0 0.031 
102 0 0 0 1 0 1 0.025 

66 0 0 0 1 0 0 0.019 

29 0 0 0 1 0 0 0.019 

24 0 0 0 0 1 0 0.013 

128 0 0 0 0 1 0 0.013 

118 0 0 0 0 0 1 0.006 

39 0 0 0 0 0 1 0.006 

65 0 0 0 0 0 1 0.006 

Query no 44 (16 subJects) -

42 5 10 0 1 0 0 0.769 

41 1 3 7 2 2 0 0.475 

43 1 1 4 5 3 2 0.375 

180 0 0 2 7 4 1 0.250 

104 0 0 2 1 3 2 0.131 

40 0 2 0 0 0 3 0.106 

38 0 0 1 0 0 0 0.031 

78 0 0 0 1 0 0 0.019 

31 0 0 0 0 0 1 0.006 

Query no 46 (16 subjects) -

6 8 0 1 0 0 0.744 
52 0 0.663 

146 5 4 5 1 0 
1 5 2 1 1 0.319 

51 1 0.181 
0 0 2 4 3 1 

18 0 0.131 
13 0 0 2 1 4 

0 1 0 0 2 0 0.069 
28 0 1 0.050 
10 0 1 0 0 

0.044 
1 0 0 0 0 

16 0 0.044 
0 0 2 0 1 

14 0 0.006 
0 0 0 0 1 

148 0 

226 



Drawing Exact Frequency at ranking position Overall No matches 1 2 3 4 5 rating 

Query no 47 (16 subjects) -

59 14 1 0 0 0 1 0.925 
53 2 11 1 1 1 0 0.669 

142 3 1 9 1 0 0 0.531 
68 0 1 3 4 2 1 0.244 
12 0 0 2 3 5 0 0.181 

174 0 1 0 3 2 1 0.131 
134 0 0 1 1 0 0 0.050 

15 0 1 0 0 0 0 0.044 
18 0 0 0 1 0 0 0.019 

Query no 57 (16 subjects) -

94 1 13 2 0 0 0 0.694 
3 1 1 7 3 0 1 0.388 

99 0 0 2 4 1 1 0.156 
4 0 0 1 1 1 1 0.069 

55 0 0 0 2 0 1 0.044 
50 0 0 1 0 1 0 0.044 

5 0 0 0 1 2 0 0.044 
1 0 1 0 0 0 0 0.044 
9 0 1 0 0 0 0 0.044 

155 0 0 0 0 1 3 0.031 
6 0 0 0 0 1 0 0.013 
8 0 0 0 0 1 0 0.013 
7 0 0 0 0 0 1 0.006 

Query no 62 (16 subjects) -

143 9 6 1 0 0 0 0.856 
158 4 8 3 1 0 0 0.713 
160 0 1 5 1 1 1 0.238 

81 0 0 2 5 3 0 0.194 
152 0 0 2 2 6 0 0.175 
156 0 0 1 3 1 0 0.100 

97 0 1 0 1 0 1 0.069 
56 0 1 0 0 0 0 0.044 
77 0 0 0 1 1 1 0.038 
63 0 0 0 0 1 0 0.013 

0 0.013 58 0 0 0 0 1 
0 0 0 0 0 1 0.006 162 
0 0 0 0 0 1 0.006 16 

Query no 67 (16 subjects) -

4 0 0 0 0 0.925 71 12 
0.813 5 1 0 0 0 144 9 
0.088 2 0 0 0 0 106 0 

0 1 0 0 0 0.031 113 0 
0.031 0 1 0 0 0 107 0 
0.019 0 0 1 0 0 83 0 

0 0 1 0 0 0.019 111 0 
0.013 0 0 0 1 0 153 0 

227 



Drawing Exact Frequency at ranking position Overall No matches 1 2 3 4 5 rating 

Query no 72 (16 subjects) -

65 1 6 5 0 2 0 0.506 
69 0 4 6 2 1 0 0.413 
70 0 4 2 5 4 0 0.381 

139 0 2 1 5 5 0 0.275 
66 0 1 0 0 0 1 0.050 
54 0 0 0 0 0 1 0.006 

Query no 75 ( 16 subjects) -
83 6 10 0 0 0 0 0.813 

140 0 4 7 3 0 0 0.450 
74 0 1 3 2 3 1 0.219 
76 0 1 1 5 3 0 0.206 

106 0 0 2 0 0 1 0.069 
87 0 0 1 1 0 0 0.050 

164 0 0 0 0 3 1 0.044 
127 0 0 0 1 0 2 0.031 
145 0 0 0 0 2 0 0.025 
111 0 0 0 0 1 0 0.013 

35 0 0 0 0 0 1 0.006 
54 0 0 0 0 0 1 0.006 

Query no 103 (16 subjects) -

105 0 7 3 0 0 1 0.406 
100 0 3 6 0 0 0 0.319 

86 0 0 1 3 2 0 0.113 
123 0 0 1 1 3 1 0.094 
132 0 0 1 2 1 0 0.081 

40 0 0 1 1 1 1 0.069 
11 0 1 0 0 1 2 0.069 
88 0 1 0 1 0 0 0.063 

177 0 1 0 0 0 1 0.050 
85 0 1 0 0 0 0 0.044 

135 0 1 0 0 0 0 0.044 
109 0 0 0 2 0 1 0.044 

1 0 0 1 0 0 0 0.031 
136 0 0 0 1 0 1 0.025 

78 0 0 0 1 0 0 0.019 

119 0 0 0 1 0 0 0.019 

Query no 115 (16 subjects) -

90 1 11 2 0 0 0 0.606 

119 0 5 7 1 1 0 0.469 

114 0 0 2 3 1 3 0.150 

165 0 0 1 2 1 0 0.081 
0.075 89 0 0 2 0 1 0 

108 0 0 0 2 1 0 0.050 

0 0 0 1 1 0 0.031 84 
0 0 0 1 0 0 0.019 91 0.006 121 0 0 0 0 0 1 

228 



Drawing Exact Frequency at ranking position Overall No matches 1 2 3 4 5 rating 

Query no 120 (16 Subjects) -

129 0 10 3 1 0 1 0.556 
118 0 4 8 1 0 0 0.444 
124 0 2 3 1 1 0 0.213 
128 0 0 1 4 2 0 0.131 
126 0 0 0 4 1 1 0.094 

66 0 0 0 0 2 0 0.025 
6 0 0 0 0 1 1 0.019 
5 0 0 0 0 0 1 0.006 

Query no 170 (16 subjects) -

167 1 13 1 1 0 0 0.681 
169 0 0 13 2 1 0 0.456 
166 0 3 1 12 0 0 0.388 
168 0 0 1 1 5 7 0.156 
172 0 0 0 0 9 6 0.150 

Query no 175 (16 subjects) -

27 15 0 0 1 0 0 0.956 
24 0 11 5 0 0 0 0.638 
37 0 4 8 2 1 0 0.475 

102 0 0 2 7 0 1 0.200 
82 0 1 1 1 2 1 0.125 
87 0 0 0 1 1 2 0.044 
31 0 0 0 0 1 1 0.019 
25 0 0 0 1 0 0 0.019 

161 0 0 0 0 1 0 0.013 
145 0 0 0 0 1 0 0.013 

Query no 176 (16 subjects) -

179 0 10 6 0 0 0 0.625 
21 0 6 10 0 0 0 0.575 

177 0 0 0 5 2 0 0.119 
88 0 0 0 1 2 0 0.044 
56 0 0 0 2 0 0 0.038 

2 0.025 0 0 0 0 1 181 
0.019 95 0 0 0 0 1 1 

0 0 0 1 0 0 0.019 26 

Query no 183 (16 subjects) -

10 2 2 1 0 0.550 182 0 
2 10 2 0 0 0.438 184 0 

0.344 0 4 3 2 3 0 107 
4 0 0.238 185 0 0 0 10 

0.075 0 0 0 0 4 4 III 
0 1 0.025 106 0 0 0 1 

0.013 0 0 0 2 164 0 0 

229 



Tabl.e A2. Simil.arity ratings for ALL-BOUNDARY queries 

Drawing Exact Frequency at ranking position Overal.l. 
No matches 1 2 3 4 5 rating 

Query no 9 (12 subjects) -

8 0 6 6 0 0 0 0.600 
6 0 6 5 1 0 0 0.583 
7 0 0 1 10 0 0 0.292 

18 0 0 0 0 3 0 0.050 
92 0 0 0 0 2 0 0.033 
94 0 0 0 0 0 1 0.008 

131 0 0 0 0 0 1 0.008 
13 0 0 0 0 0 1 0.008 

155 0 0 0 0 0 1 0.008 

Query no 47 (12 subjects) -

59 8 3 1 0 0 0 0.883 
53 0 5 6 1 0 0 0.567 

142 0 5 3 3 0 0 0.492 
68 0 0 1 2 4 3 0.183 
12 0 0 0 4 3 0 0.150 

174 0 0 0 1 1 5 0.083 
15 0 0 0 0 1 0 0.017 

Query no 48 (12 subjects) -

54 0 7 4 1 0 0 0.600 
147 0 6 5 0 1 0 0.575 
164 0 0 0 2 0 2 0.067 
140 0 0 0 0 2 0 0.033 

38 0 0 0 1 0 0 0.025 
35 0 0 0 1 0 0 0.025 

185 0 0 0 1 0 0 0.025 
79 0 0 0 1 0 0 0.025 
76 0 0 0 1 0 0 0.025 

161 0 0 0 0 1 0 0.017 
78 0 0 0 0 1 0 0.017 

106 0 0 0 0 1 0 0.017 
0 0.017 0 0 0 0 1 34 
1 0.008 30 0 0 0 0 0 

Query no 49 (12 subjects) -

6 2 2 0 0 0.483 61 0 
0 0 0.392 56 0 2 6 1 

0.367 3 2 3 2 0 88 0 
0.133 1 0 1 3 0 110 0 

1 2 0.083 85 0 0 0 2 
0.042 0 0 58 0 0 1 0 
0.025 0 0 1 0 0 50 0 0.017 0 0 1 0 141 0 0 
0.017 0 0 0 0 2 91 0 0.017 0 0 1 0 180 0 0 

230 



Drawing Exact Frequency at ranking position Overall No matches 1 2 3 4 5 rating 

Query no 57 (13 subjects) -

45 0 7 2 1 0 0 0.477 94 0 3 7 1 0 0 0.454 
99 0 4 0 2 0 0 0.262 

155 0 0 1 1 2 0 0.092 
3 0 0 1 2 0 0 0.085 

63 0 0 0 1 1 0 0.038 
2 0 0 0 0 1 1 0.023 

180 0 0 0 1 0 0 0.023 
131 0 0 0 0 0 1 0.008 

56 0 0 0 0 0 1 0.008 

Query no 72 (13 subjects) -

65 0 9 1 1 1 0 0.562 
69 0 3 4 5 1 0 0.446 

139 0 1 3 6 2 0 0.338 
70 0 1 3 1 7 1 0.308 

137 0 0 1 0 0 0 0.038 
66 0 0 0 0 0 4 0.031 

Query no 80 (13 subjects) -

140 10 1 0 0 0 0 0.823 
76 0 5 5 1 0 1 0.492 

101 0 5 5 0 1 0 0.477 
75 0 1 1 5 0 0 0.208 
83 0 0 1 4 4 0 0.192 
79 0 0 0 1 3 0 0.069 

145 0 1 0 0 0 0 0.054 
74 0 0 0 0 1 1 0.023 
96 0 0 0 0 1 0 0.015 

149 0 0 0 0 0 1 0.008 

Query no 89 (13 subjects) -

108 11 1 0 0 0 0 0.900 
114 0 12 1 0 0 0 0.685 
115 0 0 4 5 1 0 0.285 
119 0 0 3 1 4 0 0.200 

90 0 0 2 3 3 1 0.200 
150 0 0 0 0 0 1 0.008 

Query no 100 (13 subjects) -

10 1 1 1 0 0.615 105 0 
0 0.377 4 2 3 1 181 0 

0.354 0 8 2 0 0 178 0 
1 0 0.038 103 0 0 0 1 

0.038 0 1 0 0 0 136 0 
0.023 0 0 1 0 0 102 0 
0.008 0 0 0 0 1 123 0 

231 



Drawing Exact Frequency at ranking position Overall 
No matches 1 2 3 4 5 rating 

Query no 109 (13 subjects) -

22 0 8 1 1 0 0 0.492 
23 0 4 3 0 0 -0 0.331 
64 0 1 1 1 2 0 0.146 
97 0 0 1 2 0 0 0.085 
98 0 0 1 1 0 0 0.062 

186 0 0 1 0 0 0 0.038 
140 0 0 1 0 0 0 0.038 
181 0 0 0 1 0 1 0.031 

26 0 0 0 1 0 1 0.031 
25 0 0 0 0 2 0 0.031 

178 0 0 0 1 0 1 0.031 
103 0 0 0 1 0 0 0.023 
101 0 0 0 1 0 0 0.023 
105 0 0 0 0 1 0 0.015 

Query no 120 (13 subjects) -

118 0 9 2 0 0 0 0.562 
129 0 4 6 3 0 0 0.515 
124 0 2 0 4 4 0 0.262 
128 0 1 2 3 4 0 0.262 
125 0 1 0 0 0 0 0.0.54 
155 0 0 1 0 0 2 0.054 
152 0 0 0 1 0 0 0.023 

2 0 0 0 0 0 1 0.008 

Query no 122 (13 subjects) -

117 0 12 1 0 0 0 0.685 
116 0 1 10 1 0 0 0.462 
121 0 0 2 9 0 0 0.285 

81 0 0 0 0 1 1 0.023 
14 0 0 0 0 1 1 0.023 

165 0 0 0 0 1 0 0.015 
188 0 0 0 0 1 0 0.015 

77 0 0 0 0 0 1 0.008 
153 0 0 0 0 0 1 0.008 

Query no 154 (12 subjects) -

149 3 7 1 0 0 0 0.700 

2 4 6 0 0 0 0.650 171 
0 0.233 79 0 1 2 3 1 

83 0 0 1 4 0 0 0.142 
0.117 74 0 1 0 0 2 3 

101 0 1 0 0 0 0 0.058 
0 0.033 76 0 0 0 0 2 

0 0 0 0 1 1 0.025 140 
0 0 0 0 0 1 0.008 96 

232 



Drawing Exact Frequency at ranking position Overall No matches 1 2 3 4 5 rating 
Query no 159 (12 subjects) -

163 3 9 0 0 0 0 0.775 158 0 2 2 1 3 2 0.292 77 0 2 4 0 0 0 0.283 162 0 0 4 0 1 1 0.192 160 0 1 0 4 0 0 0.158 143 0 0 2 0 2 1 0.125 62 0 0 0 4 0 0 0.100 81 0 1 0 0 0 0 0.058 157 0 0 0 0 0 3 0.025 152 0 0 0 0 1 0 0.017 

Query no 175 (12 subjects) -
82 0 4 5 2 0 0 0.492 27 0 5 1 1 1 1 0.383 
87 0 1 3 3 3 0 0.308 37 0 2 1 1 0 5 0.225 

145 0 0 0 3 4 2 0.158 
31 0 0 1 0 0 0 0.042 
83 0 0 0 1 0 0 0.025 
24 0 0 0 0 1 0 0.017 

Query no 176 (12 subjects) -
179 0 12 0 0 0 0 0.700 

21 0 0 6 1 0 0 0.275 
177 0 0 3 2 1 0 0.192 

88 0 0 0 3 1 3 0.117 
61 0 0 0 1 1 0 0.042 
85 0 0 0 0 2 1 0.042 

110 0 0 0 0 2 0 0.033 
56 0 0 0 1 0 0 0.025 

180 0 0 0 0 0 1 0.008 

233 



APPENDIX B - DETAILED SHAPE RETRIEV AL RESULTS 

Results are presented here for all shape qu~ries in the same fonnat as in sections 8.4.3 
and. 8.4.4. For each query, the. rank at which each drawing judged relevant by human 
subjects was actu~y re1!leved IS tabulated for each method, together with the P and R 
measures defmed m sectIOn 8.2.1. n n 

B1. Outer boundary queries 

Table Bl.l - Query shape 32 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

33 11 4 4 1 
82 2 15 18 52 

Rn 0.9671 0.9474 0.9375 0.8355 
Pn 0.7442 0.6372 0.6177 0.6524 

The performance of all four types of matching is mediocre here, with global feature 
matching the best even though it retrieves the two relevant drawings in the wrong order. 
All three types of feature matching have the same problem - the 'horseshoe' shape of 
query 32 is made up from six straight-line segments and two circular arcs, while both 
drawings 33 and 82 consist of two straight-line and two circular arc segments. Matching 
based on local feature counts is thus at a considerable disadvantage. One might expect 
8- s matching to be less susceptible to this problem - which it is with the more similar of 
the two drawings. 

Table Bl.2 - Query shape 44 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

42 9 1 7 1 
41 3 5 3 3 
43 15 11 35 13 

180 5 8 14 51 
104 2 4 2 14 

40 30 3 8 17 

Rn 0.9516 0.9876 0.9459 0.9122 
Pn 0.7822 0.9154 0.7693 0.7244 

This was a query where local feature matchin~ perfonned well .. and other ~es .of 
matching gave adequate results. All feature matc~g methods.re~dily detected s~anty 
between the query (a scalene triangle) and other tnangles of similar shape. (drav:'mgs ~l, 
42 and 104), even where the ends were rounded off, though global matching failed WIth 
drawing 40, where comers were rounded off to a .very marked extent. The system was 
less successful in fmding the two right-angled trIangles 43 and 180; the query shape 
contained no right angles, so the system made no attempt to look for them. 

234 



Tab~e Bl.3 - Query shape 46 

Drawing G~oba~ Loca~ Exist Segmatch 
No rank rank rank rank 

52 2 2 1 
146 1 

1 
1 2 2 

51 5 9 6 26 
18 4 8 7 27 
13 10 4 14 13 

~ 0.9906 0.9879 0.9799 0.9275 
Pn 0.9408 0.9228 0.8877 0.7529 

All three feature-base? methods perfo~ successfully here. The rectangular shape 
(probabl~ ~ cross-sectlOn of a guder) IS obviously a good source of sufficiently 
charactenst1~ features. Note th~t segment matching detects the two very similar drawings 
(compare. W!th .query 32), but IS much less successful at picking out shapes with a lower 
level of similarIty. 

Tab~e Bl.4 - Query shape 47 

Drawing G~obal Local Exist Segmatch 
No rank rank· rank rank 

59 1 1 1 1 
53 3 3 3 3 

142 2 2 2 2 
68 5 5 5 5 
12 7 15 17 29 

174 11 11 14 20 

~ 0.9910 0.9820 0.9764 0.9561 
Pn 0.9505 0.9181 0.9026 0.8647 

This 'dumb-bell' shape (as it appears in silhouette) was handled reasonably effectively by 
all four methods - particularly by global feature matching, where performance is quite 
impressive. All methods were able to detect similarity as long as at least one end of the 
object contained a circular arc of approximately the same relative dimensions as the 
query (drawings 53, 59, 68 and 142). Drawings 12 and 174, with differently-shaped end
pieces, have fewer specific features in common with the query, and hence present the 
system with more of a problem. 

Tab~e Bl.5 - query shape 57 

Drawing G~oba~ Loca~ Exist Segmatch 

No rank rank rank rank 

94 6 10 7 2 

3 22 25 16 22 

99 2 2 2 30 

~ 0.9470 0.9316 0.9581 0.8940 

Pn 0.7155 0.6674 0.7278 0.5944 

235 



An apparently simple query, for an L-shaped bracket, that nearly defeated the system _ 
none of the four methods g~ve really adequate performance! The shape's simplicity lay at 
the root <?f the proble~; s~ce the query shape generated only a few, very common 
features, It matched WIth VIrtually every rectangular part in the database Th ' 

..c f h' . e poor 
pelJ.o.rmance 0 segment ~atc .mg ,,:as equally disappointing, though this was almost 
certainly because the relatIve dimenSIOns of drawings 3, 94 and 99 were very different 
from those of the query shape. 

Table Bl.6 - query shape 62 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

143 1 1 2 1 
158 2 2 1 2 
160 11 7 12 4 

81 12 29 40 25 
152 25 37 44 19 

Rn 0.9517 0.9181 0.8872 0.9517 
Pn 0.8029 0.7625 0.7116 0.8301 

One of the few cases where segment matching yielded better results than feature 
matching. The system matched the query shape (a simple rectangle with rounded comers) 
reasonably well with drawings of siinilar lengthlwidth ratio (143, 158 and 160), but was 
markedly less successful with much narrower (152) or wider (81) shapes. 

Table Bl.7 - query shape 67 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

71 2 1 1 1 
144 1 2 2 2 

Rn 1. 0000 1.0000 1.0000 1. 0000 
Pn 1.0000 1.0000 1. 0000 1.0000 

A relatively easy test of the system - the only two drawings remotely ~imi1ar to the query 
shape were readily retrieved by all methods: Note that drawmgs 71 and 144, 
respresenting the same part, were mad~ on .two .different C~<\D sy.stems. The fact that I? 
values for both drawings were almost Identical ~s encouragmg eVIdence that SAFARI IS 
indeed capable of retrieving drawings from a vanety of sources. 

236 



Tabl.e Bl.B - query shape 72 

Drawing Gl.obal. Local. Exist Segmatch 
No rank rank rank rank 

65 4 5 5 32 
69 3 4 4 31 
70 2 3 3 47 

139 5 6 2 25 

Rn 0.9933 0.9867 0.9933 0.7917 
Pn 0.9049 0.8400 0.9049 0.3626 

This query shape, made up entirely of smooth curves, provided some unexpected results. 
Since there were no sharp comers, boundary segments merging imperceptibly into each 
other, one might expect feature matching based on the number and type of individual 
segments to produce poor results, while 9-s matching would be less sensitive to 
variations in the size and curvature of individual segments. In fact the reverse effect was 
seen - feature matching proved surprisingly robust in this situation, while segment 
matching failed hopelessly. In retrospect, the problem with segment matching was 
obvious; when a boundary is made up of a large number of smooth curved segments, the 
position of the longest segment is somewhat arbitrary. Even if query and stored shapes 
are virtually identical, their similarity will. not be recognized if they have their longest 
segments (always chosen as the start point for similarity matching) in different positions. 

Tabl.e Bl.9 - Query shape 75 

Drawing Gl.obal. Local. Exist Segmatch 
No rank rank rank rank 

83 1 1 1 9 
140 3 2 13 3 

74 20 12 8 1 
76 2 6 5 7 

Rn 0.9733 0.9817 0.9717 0.9833 

Pn 0.9049 0.8942 0.8183 0.8781 

Generally good perfonnance, though each me~hod had.at le~t one flaw. Students judged 
four stored shapes similar to the query, a CIrcular ~c WIt? four rectangu!ar notches 
equally spaced around its circumference. All were basICally CIrcular, but 83 (like 75) had 
four notches, 140 had two, 74 was a perfect circle, and 76 had ~o rectangular 
protrusions on its circumference. Both global and local f~ature m~tchmg performed 
adequately, though giving too Iowa rank to the perfect CIrcle (whic~ generated few 
feature types). Existence matching (based on a search for ar~ angle ~plets and. pare~t 
features) ranked drawing 140 too low, and segment matching retrIeved drawmgs m 
reverse order of similarity! 

237 



Table B1.10 - query shape 103 

Drawing Global Local Exist Segmatch No rank rank rank rank 

105 3 1 7 
100 2 4 

4 1 2 86 1 2 3 1 

~ 1.0000 0.9978 0.9890 0.9978 Pn 1.0000 0.9784 0.9058 0.9784 

~ PI entagonal shape gave the system little trouble - though existence matcrung was a 
1 ~ ess successful than the other methods in finding drawing 105 probabi b . 

(unlike the query shape) it contained no right angles. ,y ecause 

Table B1.11 - query shape 115 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

90 1 3 3 4 
119 6 1 1 1 
114 2 2 2 12 

~ 0.9934 l. 0000 l. 0000 0.9757 
Pn 0.9479 1.0000 l. 0000 0.8436 

A co~plex - though basically re~tailgular - shape, well handled by the three feature 
matc~g methods. Segment matchmg ~uccessfully retrieved the two most similar shapes, 
though It ranked the less complex drawmg 114 rather too low. 

Table B1.12 - Query shape 120 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

129 2 1 4 83 
118 1 2 2 118 
124 21 21 1 141 
128 3 8 3 1 

~ 0.9717 0.9633 1.0000 0.4450 
Pn 0.9021 0.8441 l. 0000 0.3526 

An excellent result for existence matching, fair for global and local feature matching, but 
hopeless for segment matching. Students' judgements here seemed to have been based 
purely on angular similarity. fu response to a query in the form of an E-shaped bracket 
with the central arm significantly shorter than the others, they retrieved shapes with 
equal-length arms (129), with an almost non-existent central arm (128), and with a 
central arm longer than the others (124). Existence matching using arc angle triplets and 
parent features proved most successful here (alone proving able to retrieve drawing 124 
at a reasonable rank), almost certainly because this emphasized angular similarity rather 
than similarity in feature size. 

238 



Table B1.13 - query shape 170 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

167 1 1 2 1 
169 2 2 1 158 
166 3 3 3 .157 
168 7 13 5 111 
172 4 5 4 67 

Rn 0.9973 0.9879 1.0000 0.3570 
Pn 0.9835 0.9420 1. 0000 0.2993 

This query rett:ieve.d a grou~ of sh~pes ~rigin~y drawn as a family, sharing similar 
fe~tures and ~fermg. o~y m rela~Ive dimensIo~s. Ju~t as with the previous query, 
eXIstence matching .(WIth Its .e~phasis on angular similarIty) proved the most successful, 
and segment matching (senSItIve to changes in boundary start point as relative segment 
lengths alter, as for query 72) the least. Segment matching in fact gave worse results than 
one would expect by pure chance. 

Table B1.14 - query shape 175 

Drawing Global Local Exist Segmatch 
No rank rank rank rank 

27 1 1 3 1 
24 6 26 12 14 
37 4 14 11 6 

102 12 31 9 18 
82 2 2 2 2 

Rn 0.9866 0.9208 0.9705 0.9651 
Pn 0.9228 0.7424 0.7991 0.8413 

Like other simple shapes, query 175 (a semicircle) proved quite tricky .f~r the system. 
There were few problems in retrieving drawings closely based on a semICIrcle (27, 82), 
but shapes based on more (24, 102) or less (37) than.a com~le~e semicu:cle proved quite 
hard for local feature matching in particular to recogruze as similar. In this case, the more 
general approach of global feature matching (less dependent on the presence or absence 
of specific features) provided the best results. 

Table B1.15 - query shape 176 

Drawing Global Local Exist Segmatch 

No rank rank rank rank 

179 1 1 4 1 

21 2 2 3 4 

177 21 11 19 43 

Rn 0.9603 0.9823 0.9558 0.9073 

Pn 0.8537 0.9023 0.7265 0.7477 

239 



The system readily retrieved two of the three most similar shapes to this 
irregUlar hexagonal shape, whichever method was used. The third shape :e~ an 
regular. hexagon, proved much mor~ difficult to find, almost certainly be~ause of ~:: 
r~guiarity. Almost the only feature It shared with the query shape was the number f 
sIdes! 0 

Table B1.16 - query shape 183 

Drawing Global Local Exist Segmatch No rank rank rank rank 

182 1 2 2 18 184 2 1 1 10 107 7 3 5 21 185 5 5 3 1 

~ 0.9917 0.9983 0.9983 0.9333 
Pn 0.9368 0.9868 0.9868 0.7012 

This 'daisywheel' query proved very easy to distinguish from the majority of circular 
shapes, though none of the methods was quite able to reproduce human judgements. As 
usual, segment matching performed less well than feature matching. 

B2. All-boundary queries 

Table B2.1 - query shape 9 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

8 1 1 1 1 1 
6 2 2 2 7 7 
7 3 3 3 17 17 

~ 1.0000 1.0000 1.0000 0.9623 0.9623 
Pn 1.0000 1.0000 1. 0000 0.7806 0.7806 

All three feature-matching methods performed well with this queer (~eady illustrated in 
Fig 8.11), though segment matching failed to identify th~ less similar members of the 
family with any reliability - a situation very similar to quenes 120 and 170, above. 

240 



Table B2.2 - query shape 47 

Drawing Global Local 
Segmatch Segmatch 

Exist rank rank 
No rank rank rank (position) (shape) 

59 1 1 1 1 1 
53 3 3 3 3 3 

142 2 2 2 2 2 
68 5 5 5 5 6 
12 6 16 15 30 19 

~ 0.9976 0.9855 0.9867 0.9687 0.9807 
Pn 0.9806 0.9335 0.9366 0.9034 0.9166 

This query occurred in both outer-boundary and all-boundary lists, and it is perhaps 
instructive to compare the way in which its two versions were handled. Student similarity 
rankings were almost, but not quite, identical in the two cases (stUdents shown only the 
outer boundary silhouettes also included drawing 174 in their lists of similar drawings). 
SAFARI performed marginally better when matching on the entire shape than when 
matching outer boundaries only, whichever method was used, suggesting that 
information on inner boundary position and shape was being constructively used. The 
relative performance of different matching methods was again similar; so too was the 
relative difficulty experienced by all methods except global feature matching in 
retrieving drawing 12. 

Table B2.3 - query shape 48 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

54 1 1 1 1 1 
147 2 2 2 2 2 

~ 1. 0000 1.0000 1. 0000 1. 0000 1.0000 

Pn 1. 0000 1.0000 1.0000 1. 0000 1. 0000 

This query, a shape in the form of a circular gasket, was readily matched to the only two 
really close shapes in the database by all five methods - not a very severe test of the 
system, but a successful one nevertheless. 

Table B2.4 - query shape 49 

Segmatch Segmatch 

Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

4 2 1 8 5 
61 14 8 

1 3 20 88 12 6 
56 3 1 2 

7 3 
110 2 4 7 

1. 0000 1.0000 0.9701 0.9536 0.9820 
~ 

1. 0000 1.0000 0.8584 0.6559 0.8040 
Pn 

241 



Shape 49,. a rectangular J?late with o?e. co~er chamfered off, proved a useful 
demonstratIon of the system s power to distmgUlsh between closely similar shapes. The 
f~ature m~tc~g ~e.thods (Particular~y global and local feature matching) had little 
diffic.ulty ill .Identifymg ~e four desrred shapes from over 60 similar straight-edged 
drawmgs. EXIstence matching performed less well, though the low ranking of drawing 88 
(and to a lesser extent drawing 110) was in fact a problem caused by the feature set used 
rather than by existence matching per se. As shown in Fig 8.13, drawings 56 and 61 (but 
not 88 or 110) are fundamentally rectangular. Hence the top-level shapes of drawings 56 
and 61, and the status of their low-level line segments, are quite different from those of 
drawings 88 and 110. The feature set used here for global and local matching emphasized 
line curvature and discontinuity angle, with successful results. Existence matching, by 
contrast, used more complex parameters such as arc angle triplet and parent feature 
composltlon, emphasizing the difference between those shapes which were basically 
rectangular (56 and 61) and those which were not (88 and 110). Segment matching was 
not conspicuously successful, though the addition of inner boundary shape matching 
markedly improved its performance, successfully rejecting shapes whose inner 
boundaries were not all circular. 

Table B2.5 - query shape 57 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

45 9 22 18 2 5 
94 10 23 16 3 6 
99 1 1 1 38 29 

Rn 0.9722 0.9206 0.9425 0.9266 0.9325 
Pn 0.8011 0.6743 0.7157 0.7328 0.6345 

This shape again figured in both "outer-boundary" and :'~-bounda~y" query lists, t~ough 
student similarity rankings in the two cases showed sl~can~ differences ~drawI?g 3, 
for example, was well below the threshold score of 0.1 ill th~ . all-boundary ranking~). 
The presence of inner boundaries clearly influenced. stud~nts Judgeme~t, though not ill 
any obvious way - neither drawings 94 nor 3 contamed moer bo~darles, yet one was 
chosen the other rejected. SAFARI performed almost as poorly WIth !he all-boundary 
versio~ of this query as with the outer-boundary vers~on discussed earher, for the same 
reasons. It is interesting to note that the feature matching meth~ds performelnbest on the 
shapes on which segment matching performed worst, s':!ggestmg that for t s query at 
least, a combination of both methods might prove benefiCIal. 

Table B2.6 - query shape 72 

Segmatch Segmatch . 
Global Local Exist rank rank Drawing 

rank rank rank (position) (shape) No 

65 4 5 5 40 42 
48 3 4 41 69 3 

2 37 39 5 4 139 
3 55 63 70 2 2 

0.9940 0.9940 0.7560 0.7275 Rn 0.9940 
0.9073 0.3176 0.2948 Pn 0.9073 0.9073 

242 



The !esults of matching this query ~ its all-boundary form were almost identical to those 
obtame~ by outer boundary matching: . good with the three feature matching methods 
poor wIth both forms of segment matching. The fact that inner boundary sh hin' . ld d 1 th . '. ape matc g 
y~e. e worse resu ts. an pO~ltlOn matching alone suggests that the system rna be 
g~vmg too ~u.ch weIght to mner boundary shape similarity, over-emphasizini the 
dIfferences m mner boundary shape between the query shape and the C • d 
drawings. lOur retrIeve 

Tabl.e B2.7 - query shape 80 

Drawing Gl.obal. Local. 
Segmatch Segmatch 

Exist rank rank 
No rank rank rank (position) (shape) 

140 2 1 2 1 1 
76 1 3 3 18 16 

101 21 9 16 2 2 
75 3 2 11 10 6 
83 5 8 1 11 10 

~ 0.9795 0.9904 0.9783 0.9675 0.9759 
Pn 0.9205 0.9386 0.8958 0.8324 0.8671 

All shape matching methods handled this query (a notched circular disc) adequately, with 
local feature matching performing particularly welL Global and existence matching failed 
to rank drawing 101 (with a completely circular outer boundary, which generated few 
feature types) as high as human judges, a problem similar to that seen with query shape 
75. Segment matching readily retrieved drawing 101, though (perhaps reasonably) it gave 
a low ranking to drawing 76, which contained local shape features standing proud of the 
circumference. 

Tabl.e B2.8 - query shape 89 

Segmatch Segmatch 
Drawing Gl.obal. Local. Exist rank rank 

No rank rank rank (position) (shape) 

108 1 1 1 1 1 

114 2 2 3 2 2 

115 5 3 6 22 17 

119 3 4 5 12 8 

90 24 10 16 29 26 

~ 0.9759 0.9940 0.9807 0.9386 0.9530 

Pn 0.9141 0.9668 0.8809 0.7676 0.8046 

All methods successfully identified the two drawings most. similar to the 9.uery, a 
rectangular part with a fairly simple pattern of features machined out of one SIde. The 
remaining drawings, similar but with a much more complex pattern of fea~res, p~oved 
more of a test of the system though the three feature-matching methods readily retneved 
all but drawing 90, the most' complex. Segment matching failed to rank any of these three 
shapes sufficiently highly. 

243 



Table B2.9 - query shape 100 

Drawing Global Local 
Segmatch Segmatch 

Exist rank rank 
No rank rank rank (position) (shape) 

105 1 2 5 92 4 
181 6 1 19 33 25 
178 71 4 20 32 15 

Rn 0.8571 0.9980 0.9246 0.7004 0.9246 
Pn 0.6869 0.9789 0.5771 0.2881 0.5945 

An unusual s~ven-sided shape which caused the system some difficulty. Only local 
feature matching proved really equal to the task of identifying all three shapes 
(containing five, ten and eight sides respectively) deemed similar by student judges. 
Global matching failed dismally with drawing 178, almost certainly because this shape 
was much more regular than the other two, and hence had much lower values for length 
and discontinuity angle variances. Existence matching also performed poorly, ranking 
drawings 181 and 178 too low because they contained too few of the required types of 
arc angle triplet or parent feature composition. Segment matching proved the worst 
method of all, almost certainly due to differences in outer boundary starting point, at least 
where inner boundary matching was based solely on position. Where inner boundary 
shape was taken into account, performance improved markedly - to be expected given the 
close similarity of inner boundary shape between the query and all retrieved drawings. 

Table B2.10 - query shape 109 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

22 1 1 1 49 50 

23 2 2 5 38 35 

64 10 5 16 163 159 

Rn 0.9861 0.9960 0.9683 0.5159 0.5278 

Pn 0.9116 0.9625 0.8098 0.2045 0.2109 

A partly rectangular, partly circular shape, which again ~howed local feature matching to 
advantage. Global and existence matching ranked <l,rawmg 64 much lower than student 
judges, and segment matching gave ra.nki?gs little different from those expected by pure 
chance. Investigation of these discrepanCIes suggested that the causes were the same as 
for query 100 above. 

244 



Tabl.e B2.11 - query shape 120 

Drawing Gl.obal. Local. Exist 
Segmatch Segmatch 

rank rank No rank rank rank (position) (shape) 
118 1 1 2 116 129 3 2 86 

6 107 9 124 4 8 1 124 42 128 2 3 3 1 1 

~ 1.0000 0.9940 0.9970 0.4940 0.8084 Pn 1.0000 0.9601 0.9766 0.3622 0.5844 

Comparison of these results with those for query 120 in outer-boundary m d' . . . D . 124 . . . 0 e IS qrute 
mstructlve. rawmg ,prevIously diffIcult to retrieve by all except e . t 

hin · dil' XIS ence 
matc . g, IS now r~a y retneve? at a reasonable rank by all three methods of feature 
matching bec~use Its patteI? of mner b~undaries is very similar to that of the query 
shape .. There IS even some unprovement n: .segment matching performance, particularly 
when mner boundary shapes as well as pOSItIons are taken into consideration. 

Tabl.e B2.12 - query shape 122 

Drawing Gl.obal. 
Segmatch Segmatch 

Local. Exist rank rank 
No rank rank rank (position) (shape) 

117 1 1 1 1 1 
116 2 2 2 2 2 
121 22 4 3 5 3 

~. 0.9623 0.9980 1.0000 0.9960 1.0000 
Pn 0.8537 0.9789 1.0000 0.9625 1.0000 

Another case where all three retrieved drawings were very similar to the query shape, and 
all matching methods performed well. The only exception was the failure of global 
matching to rank drawing 121 (the most complex shape of the three retrieved) 
sufficiently highly. The greater complexity of this shape meant that values of global 
parameters such as segment length and arc angle variances differed markedly from those 
for the query or the other two retrieved shapes. Local and existence matching proved 
more robust here, as positive matches could be made on the features which query and 
stored shapes did have in common. 

Tabl.e B2.13 - query shape 154 

Segmatch Segmatch 
Drawing Gl.obal. Local. Exist rank rank 

No rank rank rank (position) (shape) 

149 1 1 1 2 9 

171 2 2 2 1 1 

79 3 3 5 5 8 

83 6 7 4 19 22 

74 4 4 8 6 3 

~ 0.9988 0.9976 0.9940 0.9783 0.9663 

Pn 0.9913 0.9839 0.9530 0.8921 0.8237 

245 



An exercise in inner boundary matching, as illustrated in Pi 8 14 Th 
most retrieved shapes, were circular discs with complex patfe~s 'f' e q~ery, :~ hence 
three feature-matching methods performed well and se ent ma~ ~er oun anes. All 
than on many queries. Its only real "failure" w~ with rawin 83c~ he~~rmed better 
completely circular outer boundary and was thus ranked b r ,w cdr .not hav~ a 
d.id . - !:,ossibly indi.cating that the 'relative weighting give~~: ~:ei bo::rgs which 
similarIty was too hIgh here. The fact that segment matching . . b d ary shape 

ul th .. . usmg mner oun ary shapes 
gave poo~er res ts ~ when .usmg pOSItIon matching su ests that there . 
room for Improvement m selectIOn of the order in which inn~~ bo d . fr may still be 
drawing are matched with each other. un anes om query and 

Table B2.14 - query shape 159 

Drawing Global Local 
Segmatch Segmatch 

Exist rank rank No rank rank rank (position) (shape) 

163 1 1 4 1 1 
158 2 4 1 2 2 

77 38 46 41 18 15 
162 13 9 16 4 3 
160 20 14 17 5 4 
143 3 2 2 7 8 

62 4 3 3 8 7 

~ 0.9538 0.9556 0.9512 0.9852 0.9895 
Pn 0.8591 0.8787 0.8547 0.9239 0.9493 

This query, again largely an exercise in inner boundary matching (though this time within 
rectangular outer boundaries) was another of the few cases where segment matching 
seemed superior to feature matching. While successfully retrieving rectangles of similar 
length/width ratio (163, 158, 143), the feature-matching methods were relatively less· 
successful with rectangles having markedly different length/width ratios (77), or where 
additional inner boundaries were present (160, 162). The segment-matching strategy of 
matching inner boundaries individually, rather than simply looking for the presence or 
absence of the inner boundary pattern features defined in section 4.4.4, seems to be more 
appropriate here. 

Table B2.15 - query shape 175 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

82 1 1 1 2 2 
27 3 3 3 1 1 

87 2 2 2 3 3 

37 4 15 12 12 12 

145 39 16 16 149 121 

~ 0.9590 0.9735 0.9771 0.8169 0.8506 

Pn 0.9015 0.8809 0.8916 0.7846 0.7946 

246 



It is interesting to note that students' sin?ilarity rankings for this query differed markedly 
from those for its outer-boundary verSIOn above. The presence of a distinctive inner
boundary pattern (four circular holes with centres lying on the same circular arc) in the 
query shape clearly influenc~d students' choice, moving drawing 82 up from fifth to first 
position, and including drawmgs 87 and 145 (all of wich shared the same pattern of inner 
boundaries) in the list .of those r~trieved in place of 24 and 102. On the whole, the system 
reflected this change m emphasIS well. Drawings 82 and 87 were retrieved high on all 
lists; so too was drawing 27, lacking the required inner boundary pattern but virtually 
identical in external shape. Drawing 37 was less well recognized, for the reasons 
discussed in the previous section. 

The system's failure to retrieve drawing 145 was more unexpected. It was eventually 
traced to a problem with the original drawing. The outer boundary had been badly drawn, 
preventing program SKELETON from building the expected shape feature hierarchy, and 
hence preventing later programs from generating the required range of shape features. 
While the drawing could simply have been corrected and the shape-matching 
experiments re-run, it was decided to leave it in place, as a demonstration of the severe 
problems that could occur if stored shapes were incorrectly drawn. Some form of 
integrity checking would clearly be needed for any operational shape database. 

Table B2.16 - query shape 176 

Segmatch Segmatch 
Drawing Global Local Exist rank rank 

No rank rank rank (position) (shape) 

179 1 1 3 1 1 

21 7 2 4 3 4 

177 13 28 21 58 27 

88 9 3 9 7 2 

Rn 0.9701 0.9641 0.9596 0.9117 0.9641 

Pn 0.7966 0.8879 0.7379 0.7737 0.8734 

Unlike the revious query, students' similarity rankings were v~ry similar for. both outer
bound !d all-boundary versions, the only difference bemg th~t ~awmg 88 was 
. ary . h all bound list presumably on the strength of ItS mner boundary 
mcluded m t e ~ erfo~anc~ was little different from that described for the outer
pattern. The s¥s~e~ ~ query above; drawings 179, 21 and 88 were. retri~ved reason~bly 
boundary verslO . . d difficult for the reasons outlmed m the prevIOUS 
easily, but 177 agam prove more , . 
section. 

247 


	315582_0001
	315582_0002
	315582_0003
	315582_0004
	315582_0005
	315582_0006
	315582_0007
	315582_0008
	315582_0009
	315582_0010
	315582_0011
	315582_0012
	315582_0013
	315582_0014
	315582_0015
	315582_0016
	315582_0017
	315582_0018
	315582_0019
	315582_0020
	315582_0021
	315582_0022
	315582_0023
	315582_0024
	315582_0025
	315582_0026
	315582_0027
	315582_0028
	315582_0029
	315582_0030
	315582_0031
	315582_0032
	315582_0033
	315582_0034
	315582_0035
	315582_0036
	315582_0037
	315582_0038
	315582_0039
	315582_0040
	315582_0041
	315582_0042
	315582_0043
	315582_0044
	315582_0045
	315582_0046
	315582_0047
	315582_0048
	315582_0049
	315582_0050
	315582_0051
	315582_0052
	315582_0053
	315582_0054
	315582_0055
	315582_0056
	315582_0057
	315582_0058
	315582_0059
	315582_0060
	315582_0061
	315582_0062
	315582_0063
	315582_0064
	315582_0065
	315582_0066
	315582_0067
	315582_0068
	315582_0069
	315582_0070
	315582_0071
	315582_0072
	315582_0073
	315582_0074
	315582_0075
	315582_0076
	315582_0077
	315582_0078
	315582_0079
	315582_0080
	315582_0081
	315582_0082
	315582_0083
	315582_0084
	315582_0085
	315582_0086
	315582_0087
	315582_0088
	315582_0089
	315582_0090
	315582_0091
	315582_0092
	315582_0093
	315582_0094
	315582_0095
	315582_0096
	315582_0097
	315582_0098
	315582_0099
	315582_0100
	315582_0101
	315582_0102
	315582_0103
	315582_0104
	315582_0105
	315582_0106
	315582_0107
	315582_0108
	315582_0109
	315582_0110
	315582_0111
	315582_0112
	315582_0113
	315582_0114
	315582_0115
	315582_0116
	315582_0117
	315582_0118
	315582_0119
	315582_0120
	315582_0121
	315582_0122
	315582_0123
	315582_0124
	315582_0125
	315582_0126
	315582_0127
	315582_0128
	315582_0129
	315582_0130
	315582_0131
	315582_0132
	315582_0133
	315582_0134
	315582_0135
	315582_0136
	315582_0137
	315582_0138
	315582_0139
	315582_0140
	315582_0141
	315582_0142
	315582_0143
	315582_0144
	315582_0145
	315582_0146
	315582_0147
	315582_0148
	315582_0149
	315582_0150
	315582_0151
	315582_0152
	315582_0153
	315582_0154
	315582_0155
	315582_0156
	315582_0157
	315582_0158
	315582_0159
	315582_0160
	315582_0161
	315582_0162
	315582_0163
	315582_0164
	315582_0165
	315582_0166
	315582_0167
	315582_0168
	315582_0169
	315582_0170
	315582_0171
	315582_0172
	315582_0173
	315582_0174
	315582_0175
	315582_0176
	315582_0177
	315582_0178
	315582_0179
	315582_0180
	315582_0181
	315582_0182
	315582_0183
	315582_0184
	315582_0185
	315582_0186
	315582_0187
	315582_0188
	315582_0189
	315582_0190
	315582_0191
	315582_0192
	315582_0193
	315582_0194
	315582_0195
	315582_0196
	315582_0197
	315582_0198
	315582_0199
	315582_0200
	315582_0201
	315582_0202
	315582_0203
	315582_0204
	315582_0205
	315582_0206
	315582_0207
	315582_0208
	315582_0209
	315582_0210
	315582_0211
	315582_0212
	315582_0213
	315582_0214
	315582_0215
	315582_0216
	315582_0217
	315582_0218
	315582_0219
	315582_0220
	315582_0221
	315582_0222
	315582_0223
	315582_0224
	315582_0225
	315582_0226
	315582_0227
	315582_0228
	315582_0229
	315582_0230
	315582_0231
	315582_0232
	315582_0233
	315582_0234
	315582_0235
	315582_0236
	315582_0237
	315582_0238
	315582_0239
	315582_0240
	315582_0241
	315582_0242
	315582_0243
	315582_0244
	315582_0245
	315582_0246
	315582_0247
	315582_0248
	315582_0249
	315582_0250
	315582_0251
	315582_0252
	315582_0253
	315582_0254

