115,241 research outputs found

    Linearization of dynamic equations of flexible mechanisms - a finite element approach

    Get PDF
    A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinates of the mechanism with rigid links and deformation mode co-ordinates that characterize deformation of flexible link elements. This task is accomplished by employing the general framework of the geometric transfer function formalism. The proposed method is general in nature and can be applied to spatial mechanisms and manipulators having revolute and prismatic joints. The method also permits investigation of the dynamics of flexible rotors and spinning shafts. Application of the theory is illustrated through a detailed model development of a four-bar mechanism and the analysis of bending vibrations of two single link mechanisms in which the link is considered as a rotating flexible arm or as an unsymmetrical rotating shaft, respectively. The algorithm for the calculation of the matrix coefficients is directly emenable to numerical computation and has been incorporated into the linearization module of the computer program SPACAR

    Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions

    Full text link
    A hybrid 2D theoretical model is presented to describe thermoplastic deformation effects on silicon surfaces induced by single and multiple ultrashort pulsed laser irradiation in submelting conditions. An approximation of the Boltzmann transport equation is adopted to describe the laser irradiation process. The evolution of the induced deformation field is described initially by adopting the differential equations of dynamic thermoelasticity while the onset of plastic yielding is described by the von Mise's stress. Details of the resulting picometre sized crater, produced by irradiation with a single pulse, are then discussed as a function of the imposed conditions and thresholds for the onset of plasticity are computed. Irradiation with multiple pulses leads to ripple formation of nanometre size that originates from the interference of the incident and a surface scattered wave. It is suggested that ultrafast laser induced surface modification in semiconductors is feasible in submelting conditions, and it may act as a precursor of the incubation effects observed at multiple pulse irradiation of materials surfaces.Comment: To appear in the Journal of Applied Physic

    Neutron pair transfer in sub-barrier capture process

    Full text link
    The sub-barrier capture reactions following the neutron pair transfer are proposed to be used for the indirect study of neutron-neutron correlation in the surface region of nucleus. The strong effect of the dineutron-like clusters transfer stemming from the surface of magic and non-magic nuclei 18^{18}O, 48^{48}Ca, 64^{64}Ni, 94,96^{94,96}Mo, 100,102,104^{100,102,104}Ru, 104,106,108^{104,106,108}Pd, and 112,114,116,118,120,124,132^{112,114,116,118,120,124,132}Sn is demonstrated. The dominance of two-neutron transfer channel at the vicinity of the Coulomb barrier is further supported by time-dependent mean-field approaches.Comment: 17 pages, 7 figures, accepted in PR
    • …
    corecore