8 research outputs found

    Unlocking Solar Power For Surveillance A Review Of Solar Powered CCTV And Surveillance Technologies

    Get PDF
    Solar-powered surveillance technologies have gained prominence for their sustainable, autonomous, and versatile solutions. This comprehensive review explores three key solar-powered surveillance technologies: solar-powered CCTV cameras, solar drones, and solar-powered sensor networks. Each technology offers distinct strengths and weaknesses, making them suitable for various applications. Solar-powered CCTV cameras provide adaptability, energy independence, and rapid deployment, while solar drones offer an aerial perspective, extended endurance, and versatility. Solar-powered sensor networks excel in localized environmental monitoring. The choice of technology depends on factors such as the surveillance environment, budget constraints, required surveillance range, and specific monitoring needs. Organizations can benefit from hybrid solutions that integrate multiple technologies for comprehensive coverage. Future trends include advanced energy storage solutions, AI integration, enhanced power efficiency, and cloud-based data analytics, promising to improve performance and sustainability. Public-private collaborations and sustainable urban planning initiatives will drive further adoption and integration. Solar-powered surveillance technologies empower effective and environmentally sustainable surveillance solutions, contributing to a safer and more sustainable future

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Spatial and Temporal Management of Cellular HetNets with Multiple Solar Powered Drones

    No full text
    This paper proposes an energy management framework for cellular heterogeneous networks (HetNets) supported by dynamic solar powered drones. A HetNet composed of a macrocell base station (BS), micro cell BSs, and drone small cell BSs are deployed to serve the networks\u27 subscribers. The drones can land at pre-planned locations defined by the mobile operator and at the macrocell BS site where they can charge their batteries. The objective of the framework is to jointly determine the optimal trips of the drones and the MBSs that can be safely turned off in order to minimize the total energy consumption of the network. This is done while considering the cells\u27 capacities and the minimum receiving power guaranteeing successful communications. To do so, an integer linear programming problem is formulated and optimally solved for three cases based on the knowledge level about future renewable energy statistics of the drones. A low complex relaxed solution is also developed. Its performances are shown to be close to those of the optimal solutions. However, the gap increases as the network becomes more congested. Numerical results investigate the performance of the proposed drone-based approach and show notable improvements in terms of energy saving and network capacity
    corecore