53 research outputs found

    Spatial and Temporal Correlation of the Interference in ALOHA Ad Hoc Networks

    Full text link
    Interference is a main limiting factor of the performance of a wireless ad hoc network. The temporal and the spatial correlation of the interference makes the outages correlated temporally (important for retransmissions) and spatially correlated (important for routing). In this letter we quantify the temporal and spatial correlation of the interference in a wireless ad hoc network whose nodes are distributed as a Poisson point process on the plane when ALOHA is used as the multiple-access scheme

    Packet Travel Times in Wireless Relay Chains under Spatially and Temporally Dependent Interference

    Full text link
    We investigate the statistics of the number of time slots TT that it takes a packet to travel through a chain of wireless relays. Derivations are performed assuming an interference model for which interference possesses spatiotemporal dependency properties. When using this model, results are harder to arrive at analytically, but they are more realistic than the ones obtained in many related works that are based on independent interference models. First, we present a method for calculating the distribution of TT. As the required computations are extensive, we also obtain simple expressions for the expected value E[T]\mathrm{E} [T] and variance var[T]\mathrm{var} [T]. Finally, we calculate the asymptotic limit of the average speed of the packet. Our numerical results show that spatiotemporal dependence has a significant impact on the statistics of the travel time TT. In particular, we show that, with respect to the independent interference case, E[T]\mathrm{E} [T] and var[T]\mathrm{var} [T] increase, whereas the packet speed decreases

    On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

    Full text link
    Future wireless networks are required to support 1000 times higher data rate, than the current LTE standard. In order to meet the ever increasing demand, it is inevitable that, future wireless networks will have to develop seamless interconnection between multiple technologies. A manifestation of this idea is the collaboration among different types of network tiers such as macro and small cells, leading to the so-called heterogeneous networks (HetNets). Researchers have used stochastic geometry to analyze such networks and understand their real potential. Unsurprisingly, it has been revealed that interference has a detrimental effect on performance, especially if not modeled properly. Interference can be correlated in space and/or time, which has been overlooked in the past. For instance, it is normally assumed that the nodes are located completely independent of each other and follow a homogeneous Poisson point process (PPP), which is not necessarily true in real networks since the node locations are spatially dependent. In addition, the interference correlation created by correlated stochastic processes has mostly been ignored. To this end, we take a different approach in modeling the interference where we use non-PPP, as well as we study the impact of spatial and temporal correlation on the performance of HetNets. To illustrate the impact of correlation on performance, we consider three case studies from real-life scenarios. Specifically, we use massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; we use the random medium access protocol to examine the temporal correlation; and we use cooperative relay networks to illustrate the spatial-temporal correlation. We present several numerical examples through which we demonstrate the impact of various correlation types on the performance of HetNets.Comment: Submitted to IEEE Communications Magazin
    corecore