1,368 research outputs found

    Spatial resolution in GNSS-R under coherent scattering

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite Systems Reflectometry can be understood as a multistatic radar using satellite navigation signals as signals of opportunity. The scattered signals over sea ice, flooded areas, even under dense vegetation, and in some cases, over land show a significant coherent component. Under coherent scattering conditions, it is usually stated that the coherent signal component comes from an area equal to the first Fresnel zone. This letter analyzes in more detail the spatial resolution in this forward scattering configuration, showing that, when coherent scattering is nonnegligible, the spatial resolution is mostly determined by the geometry and not by typical surface roughness values. As the scattering area around the specular reflection point increases and encompasses the first Fresnel zone, the received power increases and then it fluctuates as higher order Fresnel zones are included (rapid phase changes due to the spherical waves). These contributions may explain in part the large scattering encountered over inhomogeneous land regions, as these different contributions add or subtract, depending on the phase of the electric field, and are weighted by different scattering coefficients (i.e., changes in the dielectric constant and/or surface roughness, such in water ponds or some agricultural fields). Finally, over homogeneous targets, when all Fresnel zones are included, the received power tends asymptotically to the value obtained using the free-space propagation with a total path length equal to the sum of the path lengths, weighted by the reflection coefficient. This value can also be interpreted as coming from an effective region that is actually ~0.6 times the first Fresnel zone.Peer ReviewedPostprint (author's final draft

    First results of a GNSS-R experiment from a stratospheric balloon over boreal forests

    Get PDF
    The empirical results of a global navigation satellite systems reflectometry (GNSS-R) experiment onboard the Balloon EXperiments for University Students (BEXUS) 17 stratospheric balloon performed north of Sweden over boreal forests show that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time T-c = 20 ms. This experimental evidence shows a strong coherent component in the forward scattered signal, as compared with the incoherent component, that allows to be tracked. The bistatic coherent reflectivity is also evaluated as a function of the elevation angle, showing a decrease of similar to 6 dB when the elevation angle increases from 35. to 70 degrees. The received power presents a clearly multimodal behavior, which also suggests that the coherent scattering component may be taking place in different forest elements, i.e., soil, canopy, and through multiple reflections canopy-soil and soil-trunk. This experiment has provided the first GNSS-R data set over boreal forests. The evaluation of these results can be useful for the feasibility study of this technique to perform biomass monitoring that is a key factor to analyze the carbon cycle.Peer ReviewedPostprint (author's final draft

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation

    Get PDF
    Global navigation satellite systems-reflectometry (GNSS-R) is an emerging remote sensing technique that makes use of navigation signals as signals of opportunity in a multistatic radar configuration, with as many transmitters as navigation satellites are in view. GNSS-R sensitivity to soil moisture has already been proven from ground-based and airborne experiments, but studies using space-borne data are still preliminary due to the limited amount of data, collocation, footprint heterogeneity, etc. This study presents a sensitivity study of TechDemoSat-1 GNSS-R data to soil moisture over different types of surfaces (i.e., vegetation covers) and for a wide range of soil moisture and normalized difference vegetation index (NDVI) values. Despite the scattering in the data, which can be largely attributed to the delay-Doppler maps peak variance, the temporal and spatial (footprint size) collocation mismatch with the SMOS soil moisture, and MODIS NDVI vegetation data, and land use data, experimental results for low NDVI values show a large sensitivity to soil moisture and a relatively good Pearson correlation coefficient. As the vegetation cover increases (NDVI increases) the reflectivity, the sensitivity to soil moisture and the Pearson correlation coefficient decreases, but it is still significant.Postprint (author's final draft

    Can GNSS reflectometry detect precipitation over oceans?

    Get PDF
    For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS‐R) observations is demonstrated. Based on the argument that the forward quasi‐specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS‐R measurements are not sensitive to the surface small‐scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section σ0 derived from TechDemoSat‐1 data is reduced due to rain at weak winds, lower than ≈ 6 m/s. The decrease is as large as ≈ 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0–2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS‐R technique to detect precipitation over oceans at low winds

    On the correlation between GNSS-R reflectivity and L-band microwave radiometry

    Get PDF
    This work compares microwave radiometry and global navigation satellite systems-reflectometry (GNSS-R) observations using data gathered from airborne flights conducted for three different soil moisture conditions. Two different regions are analyzed, a crops region and a grassland region. For the crops region, the correlation with the I/2 (first Stokes parameter divided by two) was between 0.74 and 0.8 for large incidence angle reflectivity data (30°-50°), while it was between 0.51 and 0.61 for the grassland region and the same incidence angle conditions. For the crops region, the correlation with the I/2 was between 0.64 and 0.69 for lower incidence angle reflectivity data (<;30°), while it was between 0.41 and 0.6 for the grassland region. This indicates that for large incidence angles the coherent scattering mechanism is dominant, while the lower incidence angles are more affected by incoherent scattering. Also a relationship between the reflectivity and the polarization index (PI) is observed. The PI has been used to remove surface roughness effects, but due to its dependence on the incidence angle only the large incidence angle observations were useful. The difference in ground resolution between microwave radiometry and GNSS-R and their strong correlation suggests that they might be combined to improve the spatial resolution of microwave radiometry measurements in terms of brightness temperature and consequently soil moisture retrievals.This work was supported in part by the Spanish Ministry of Science and Innovation, “AROSA-Advanced Radio Ocultations and Scatterometry Applications using GNSS and other opportunity signals,” under Grant AYA2011-29183-C02-01/ESP and “AGORA: Tecnicas Avanzadas en Teledetección Aplicada Usando Señales GNSS y Otras Señales de Oportunidad,” under Grant ESP2015-70014-C2-1-R (MINECO/FEDER), in part by the Monash University Faculty of Engineering 2013 Seed Grant, and in part by the Advanced Remote Sensing Ground-Truth Demo and Test Facilities and Terrestrial Environmental Observatories funded by the German Helmholtz-Association. The work of A. A.-Arroyo was supported by the Fulbright Commission in Spain through a Fulbright grant.Peer ReviewedPostprint (author's final draft

    SNR degradation in GNSS-R measurements under the effects of radio-frequency interference

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio-frequency interference (RFI) is a serious threat for systems working with low power signals such as those coming from the global navigation satellite systems (GNSS). The spectral separation coefficient (SSC) is the standard figure of merit to evaluate the signal-to-noise ratio (SNR) degradation due to the RFI. However, an in-depth assessment in the field of GNSS-Reflectometry (GNSS-R) has not been performed yet, and particularly, about which is the influence of the RFI on the so-called delay-Doppler map (DDM). This paper develops a model that evaluates the contribution of intra-/inter-GNSS and external RFI effects to the degradation of the SNR in the DDM for both conventional and interferometric GNSS-R techniques. Moreover, a generalized SSC is defined to account for the effects of nonstationary RFI signals. The results show that highly directive antennas are necessary to avoid interference from other GNSS satellites, whereas mitigation techniques are essential to keep GNSS-R instruments working under external RFI degradation.Peer ReviewedPostprint (author's final draft
    corecore