research

SNR degradation in GNSS-R measurements under the effects of radio-frequency interference

Abstract

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio-frequency interference (RFI) is a serious threat for systems working with low power signals such as those coming from the global navigation satellite systems (GNSS). The spectral separation coefficient (SSC) is the standard figure of merit to evaluate the signal-to-noise ratio (SNR) degradation due to the RFI. However, an in-depth assessment in the field of GNSS-Reflectometry (GNSS-R) has not been performed yet, and particularly, about which is the influence of the RFI on the so-called delay-Doppler map (DDM). This paper develops a model that evaluates the contribution of intra-/inter-GNSS and external RFI effects to the degradation of the SNR in the DDM for both conventional and interferometric GNSS-R techniques. Moreover, a generalized SSC is defined to account for the effects of nonstationary RFI signals. The results show that highly directive antennas are necessary to avoid interference from other GNSS satellites, whereas mitigation techniques are essential to keep GNSS-R instruments working under external RFI degradation.Peer ReviewedPostprint (author's final draft

    Similar works