8,937 research outputs found

    Decision Procedure for Entailment of Symbolic Heaps with Arrays

    Full text link
    This paper gives a decision procedure for the validity of en- tailment of symbolic heaps in separation logic with Presburger arithmetic and arrays. The correctness of the decision procedure is proved under the condition that sizes of arrays in the succedent are not existentially bound. This condition is independent of the condition proposed by the CADE-2017 paper by Brotherston et al, namely, one of them does not imply the other. For improving efficiency of the decision procedure, some techniques are also presented. The main idea of the decision procedure is a novel translation of an entailment of symbolic heaps into a formula in Presburger arithmetic, and to combine it with an external SMT solver. This paper also gives experimental results by an implementation, which shows that the decision procedure works efficiently enough to use

    Simulation of an array-based neural net model

    Get PDF
    Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Learning, Arts, and the Brain: The Dana Consortium Report on Arts and Cognition

    Get PDF
    Reports findings from multiple neuroscientific studies on the impact of arts training on the enhancement of other cognitive capacities, such as reading acquisition, sequence learning, geometrical reasoning, and memory

    Constraint-Based Qualitative Simulation

    Full text link
    We consider qualitative simulation involving a finite set of qualitative relations in presence of complete knowledge about their interrelationship. We show how it can be naturally captured by means of constraints expressed in temporal logic and constraint satisfaction problems. The constraints relate at each stage the 'past' of a simulation with its 'future'. The benefit of this approach is that it readily leads to an implementation based on constraint technology that can be used to generate simulations and to answer queries about them.Comment: 10 pages, to appear at the conference TIME 200

    Knowledge-based machine vision systems for space station automation

    Get PDF
    Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed

    Biabduction (and related problems) in array separation logic

    Get PDF
    We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space
    corecore