16,313 research outputs found

    People-Sensing Spatial Characteristics of RF Sensor Networks

    Full text link
    An "RF sensor" network can monitor RSS values on links in the network and perform device-free localization, i.e., locating a person or object moving in the area in which the network is deployed. This paper provides a statistical model for the RSS variance as a function of the person's position w.r.t. the transmitter (TX) and receiver (RX). We show that the ensemble mean of the RSS variance has an approximately linear relationship with the expected total affected power (ETAP). We then use analysis to derive approximate expressions for the ETAP as a function of the person's position, for both scattering and reflection. Counterintuitively, we show that reflection, not scattering, causes the RSS variance contours to be shaped like Cassini ovals. Experimental tests reported here and in past literature are shown to validate the analysis

    Identifying High-Traffic Patterns in the Workplace With Radio Tomographic Imaging in 3D Wireless Sensor Networks

    Get PDF
    The rapid progress of wireless communication and embedded mircro-sensing electro-mechanical systems (MEMS) technologies has resulted in a growing confidence in the use of wireless sensor networks (WSNs) comprised of low-cost, low-power devices performing various monitoring tasks. Radio Tomographic Imaging (RTI) is a technology for localizing, tracking, and imaging device-free objects in a WSN using the change in received signal strength (RSS) of the radio links the object is obstructing. This thesis employs an experimental indoor three-dimensional (3-D) RTI network constructed of 80 wireless radios in a 100 square foot area. Experimental results are presented from a series of stationary target localization and target tracking experiments using one and two targets. Preliminary results demonstrate a 3-D RTI network can be effectively used to generate 3-D RSS-based images to extract target features such as size and height, and identify high-traffic patterns in the workplace by tracking asset movement

    Device Free Localisation Techniques in Indoor Environments

    Get PDF
    The location estimation of a target for a long period was performed only by device based localisation technique which is difficult in applications where target especially human is non-cooperative. A target was detected by equipping a device using global positioning systems, radio frequency systems, ultrasonic frequency systems, etc. Device free localisation (DFL) is an upcoming technology in automated localisation in which target need not equip any device for identifying its position by the user. For achieving this objective, the wireless sensor network is a better choice due to its growing popularity. This paper describes the possible categorisation of recently developed DFL techniques using wireless sensor network. The scope of each category of techniques is analysed by comparing their potential benefits and drawbacks. Finally, future scope and research directions in this field are also summarised

    Perception of the Body in Space: Mechanisms

    Get PDF
    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again
    corecore