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Abstract

The rapid progress of wireless communication and embedded mircro-sensing electro-

mechanical systems (MEMS) technologies has resulted in a growing confidence in the use

of wireless sensor networks (WSNs) comprised of low-cost, low-power devices performing

various monitoring tasks. Radio Tomographic Imaging (RTI) is a technology for localizing,

tracking, and imaging device-free objects in a WSN using the change in received signal

strength (RSS) of the radio links the object is obstructing. This thesis employs an

experimental indoor three-dimensional (3-D) RTI network constructed of 80 wireless

radios in a 100 square foot area. Experimental results are presented from a series of

stationary target localization and target tracking experiments using one and two targets.

Preliminary results demonstrate a 3-D RTI network can be effectively used to generate 3-D

RSS-based images to extract target features such as size and height, and identify high-traffic

patterns in the workplace by tracking asset movement.
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ỹ Extrinsic Signal Component

Z Total Static Fading Loss (dB)

∼ Distributed As

(x, y) 2-D Cartesian Coordinates

(x, y, z) 3-D Cartesian Coordinates

¯(•) Ensemble or Sample Mean of the Argument

ˆ(•) Estimate of the Argument

‖ • ‖l1 l1 Norm of the Argument

‖ • ‖l2 l2 Norm or Euclidean Distance of the Argument (ft)

‖ • ‖weight Weighted Least Squares of the Argument

(•)−1 Matrix or Vector Inverse of the Argument

(•)T Matrix or Vector Transpose of the Argument

f (•) Objective Cost Function of the Argument

Var(•) Variance of the Argument

Cov(•) Covariance of the Argument

N (•, •) Gaussian Distribution

xvi



Symbol Definition

S ubscripts

c Calibration

chan Channel

CHM Cylindrical Human Model

D Distance

E Extrinsic

f ade Fade-Level

H Human

i Receiving Node

I Intrinsic

j Transmitting Node

k Channel

l Link

l1 l1 Norm

l2 Euclidean Norm

mT Moving Truth

mC Clean Path

M Number of Unique Two-way Links

n Noise

N Number of Wireless Nodes or Normalized

O Obstructed

p Pixel or Voxel

r Real-time RSS Measurement

reg Regularized Term

R RSS or Real-Time

xvii



Symbol Definition

RLS Regularized Least Squares

sT Stationary Truth

S UB SubVRT Estimation

t time

T Transmit

T IK Tikhonov Regularization

WLS Weighted Least Squares

x Pixel or Voxel Signal Attenuation

X Transverse Horizontal Direction (width)

Y Horizontal Direction (depth)

Z Vertical Direction (height)

S uperscripts

T matrix transpose

−1 matrix inverse

δ + or - Sign of Change

xviii



List of Acronyms

Acronym Definition

2-D two-dimensional

3-D three-dimensional

AFIT Air Force Institute of Technology

AFRL Air Force Research Laboratory

AoA Angle of Arrival

BPM beats per minute

BSD Berkely Software Distribution

CAT Scan Computed Axial Tomography

CRLB Cramer-Rao Lower Bound

CT Computed Tomography

dB decibels

DFL Device-Free Localization

EM electro-magnetic

FIM Fisher Information Matrix

GHz gigahertz

GPS Global Positioning System

GUI Graphical User Interface

ICD Informed Consent Document

IEEE Institute of Electrical and Electronics Engineers

IFA Inverted-F Antenna

Inc. Incorporated

IRB Institutional Review Board

ISM Industrial, Scientific and Medical

xix



Acronym Definition

ITU International Telecommunication Union

kB kilobyte

kbps kilobits per second

LASSO Least Absolute Shrinkage and Selection Operator

LOS Line-of-Sight

mA milliamp

MAP Maximum A-posteriori Probability

MCL Monte Carlo Localization

MCU Microcontroller Unit

MEMS Micro Electro-Mechanical Systems

MHz megahertz

MIMO Multiple Input, Multiple Output

MISO Multiple Input, Single Output

MLE Maximum Likelihood Estimate

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

mW milliwatt

NeSh Network Shadowing

NLOS Non-Line-of-Sight

NMSE Normalized Mean Squared Error

OS Operating System

PCA Principal Component Analysis

PET Positron Emission Tomography

PVC Polyvinyl Chloride

PRR Packet Reception Rate

xx



Acronym Definition

RAM Random Access Memory

RF Radio Frequency

RFIC Radio Frequency Integrated Circuit

RFID Radio Frequency Identification

RTI Radio Tomographic Imaging

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

SIMO Single Input, Multiple Output

SISO Single Input, Single Output

SMC Sequential Monte Carlo

SNR Signal to Noise Ratio

SOCHE Southwestern Ohio Council for Higher Education

SPAN Sensing and Processing Across Networks

SVD Singular Value Decomposition

TDoA Time Difference of Arrival

ToA Time of Arrival

TSVD Truncated Singular Value Decomposition

TV Total Variation

UC University of California

USB Universal Serial Bus

UWB Ultra-Wideband

VRTI Variance-based Radio Tomographic Imaging

WSN Wireless Sensor Network

xxi



IDENTIFYING HIGH-TRAFFIC PATTERNS IN THE WORKPLACE WITH RADIO

TOMOGRAPHIC IMAGING IN 3D WIRELESS SENSOR NETWORKS

I. Introduction

T
his chapter provides background on the nature and application of Wireless Sensor

Networks (WSNs) and Radio Tomographic Imaging (RTI). It describes the problem

statement, assumptions, research objectives, a brief description of the approach used, and

closes by describing the structure of this thesis.

1.1 Background

The rapid progress of wireless communication and embedded mircro-sensing Micro

Electro-Mechanical Systems (MEMS) technologies has resulted in a growing confidence

in the use of low-cost, low-power wireless sensors in various monitoring tasks [1]. A

WSN is a collection of Radio Frequency Integrated Circuits (RFICs) acting as nodes

or connection points capable of sending, receiving, and forwarding information over a

wireless communication channel. A variety of applications exists using WSNs supporting

both civilian and military needs each of which can be categorized into one of the following

areas: quality and inventory monitoring, surveillance, classification, and localization. Such

networks are mobile, highly flexible, and easily implemented due to their low cost and

relatively low sustainment needs. WSNs are comprised of densely populated sensor nodes

deployable in large numbers, and are capable of instrumenting the surrounding environment

via wireless communication [2].

1



1.2 Radio Tomographic Imaging

There exist various methods for implementing WSNs. This paper focuses on the

use of Received Signal Strength (RSS) measurements from a network of RFICs. In an

established WSN, sensor nodes are deployed in an estimated or known topology. They

transmit non-specific Radio Frequency (RF) signals across the network to each of the other

nodes via a wireless communication “link.” An illustration can be seen in Figure 1.1. A

single radio connected to a computer acts as a basestation. It listens to network traffic and

records RSS measurements for processing. The area of interest is initially calibrated by

recording RSS measurements of the empty network—free of targets. This means the area

may include walls and furniture if they are a permanent fixture; this is the topography of

the area. As a result of permanent obstructions, links can be Line-of-Sight (LOS) or Non-

Line-of-Sight (NLOS). Following calibration, the network monitors the changes in RSS

over time [3]. When a physical change is introduced into the WSN (i.e., a person walks in),

each signal passing through the obstruction is essentially interrupted; each affected signal

is attenuated and the signal’s RSS is reduced [3, 4]. The difference in RSS between the

current and calibrated network is then used to image the area using a color-map where

each color represents an RSS intensity. This process is known as Radio Tomographic

Imaging (RTI). In a WSN, the encompassed area is divided into a grid consisting of pixels

(two-dimensional (2-D)) or voxels (three-dimensional (3-D)). The objective of an RTI

system is to estimate a discretized attenuation field using the difference in RSS from a

real-time measurement versus the calibration measurement [5].

RTI networks rely on changes in the established environment to locate and monitor

movement, and they can do so without requiring people to actively participate in the

network or to wear a device [6]. This is greatly beneficial in situations where it may

be invasive or uncomfortable for an individual to wear a device, such as in an elderly

person’s home, a retirement community, or a hospital [7–9]. Likewise, the nature of an RTI
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Figure 1.1: Illustration of the links created in a RTI network.

image illustrates the location and movement of an obstruction but cannot be used to identify

detailed features of an obstruction. This is important in situations where privacy concerns

exist. Additionally, in networks used for security, persons of interest seek to avoid being

detected and therefore try to minimize their presence [10]. While in emergency response

situations, it is necessary to locate humans and falling obstructions with ad-hoc networks

where it would be impossible to provide rescue assets with a device [11].

As opposed to optical or infrared imaging systems, RTI is advantageous because

RF signals can travel through obstructions such as walls, trees, and smoke, and do not

require a well lit environment [12]. Technologies like GPS and active RF are limited by

the need for persons to carry an electronic device [13, 14]. Other technologies that have

been used in this area are related to classical multi-static radar tracking and Multiple Input,
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Multiple Output (MIMO) radar; these systems generally require substantial infrastructures

and would not be feasible [10].

RTI is an effective and efficient means of providing a situational awareness picture to

aid personnel in making safe, informed decisions on how to act in an unsafe or dangerous

situation such as a fire, natural disaster, hostage situation, or terrorist attack.

1.3 Problem Statement

Can an indoor 3-D RTI network be used to monitor resource usage within a room and

extract target features?

In today’s fiscal environment, it is critical to find ways to become a leaner workforce

while not compromising mission effectiveness. It is a time where less has to be more,

and efficient use of space and resources is a must. The purpose of this research is to

understand and present the effectiveness and limitations of an indoor RTI network as a

means to monitor resource usage, by tracking movement within an area. Data are presented

using a series of images and histograms illustrating observed movement patterns such

that an informed decision can be made to rearrange, remove, or relocate equipment and

furniture within a work-space. Additional results include the analysis of 2-D lateral and

3-D attenuation images of targets with various heights to identify target height, size, and

density.

1.4 Thesis Structure

The remainder of this document is organized into four chapters. Chapter Two (II)

provides a comprehensive literature review of related work in the area of WSNs and RTI.

Chapter Three (III) describes the methodology that will be used in this research, and the

details of simulation and experiment setup. Chapter Four (IV) contains simulated and

experimental results, and the analytic discussion of those results relative to the problem

statement. Chapter Five (V), the final chapter, summarizes this research through a
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discussion of the significance of what was accomplished and provides recommendations

for additional areas to be explored in the future.
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II. Related Work

T
his chapter provides an introduction to the theory and history of various RF-based

localization methods and the background of RTI. Research efforts have expanded

the world of RF-based localization; and as a result have opened the realm of RTI. The

use of RF as a medium in these applications is appealing due to the low maintenance and

cost requirements. Possible applications for RTI in security, surveillance, and emergency

response have triggered growing interests to improve the cost, accuracy, efficiency, and

simplicity of employing WSNs. More recently, research has illustrated the effectiveness

of using RF-based localization to not only locate an emitting target, but also to locate and

track the position and motion of a passive, device-free target also known as Device-Free

Localization (DFL). Research areas needed to bolster employing RTI consist of exploring

signal propagation in various environments, measurement modalities, weighting models,

and estimation techniques along with regularization methods needed to counteract the

sparsity and ill-posed nature of RTI. In the latter half of this chapter, a focus is placed on

exploring the umbrella of linearly modeled RTI following the discussion of topics including

traditional source localization, self-localization, and comparable DFL systems. Each of the

various models that form the RTI problem are discussed to provide a breadth of knowledge;

however, models used in this research include the Linear Signal Propagation Model as a

system and measurement model, the Line Model for the purpose of attenuation weighting,

and Regularized Least Squares with Tikhonov Regularization for image estimation and

reconstruction.

Localization, also known as geolocation, is the process of determining the real-

world geographic location of an object or person. It is a relatively mature field, and

is continuing to adapt with changing technologies and new, dynamic approaches. RF

geolocation can be discussed in three ways: locating and tracking an active RF emitting
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source; network self-localization; and locating and tracking a passive, device-free target.

Traditional localization techniques such as video, pressure, infrared, and ultrasound, are

generally not feasible for the applications discussed earlier due to large support, energy,

and cost requirements [14, 15]. More specifically, in particular applications envisioned

to benefit from RF localization, it may not be practicable to include a Global Positioning

System (GPS) receiver on each sensor or emitting source, and it would defeat the benefits

and purpose of passive, device-free localization [7–9].

2.1 Notational Conventions

Throughout the paper, (·)−1 and (·)T denotes a matrix, or vector, inverse and transpose

respectively. A hat (e.g. x̂) indicates an estimate of its argument and a bar (e.g. x̄) represents

the ensemble or sample mean of the argument. All column vectors are indicated with bold

lower case letters, row vectors are denoted with a transpose operator, and matrices are

denoted by capital BOLD letters.

2.2 Radio Frequency Device-Based Localization

There are many ways to localize an RF emitting source which is known as source

localization or device-based localization. This process is often thought of in the more

specific context of radio-location. As opposed to radio-navigation, where radio waves are

used to actively seek one’s own position, radio-location refers to determining the location of

an object or person who is emitting radio waves. Radio-location is most commonly seen in

cellular telephone networks and through the use of GPS. Device-based source localization

generally uses one or a combination of common measurement methods consisting of Time

of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), and RSS

information. These measurements are then utilized in one of four common techniques:

trilateration, multilateration, triangulation, and Received Signal Strength Indicator (RSSI)

[16]. Furthermore, RF device-based localization can be separated into two cases: the
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active case where the source is actively participating or willing to be located and is

cooperating with the system, or the passive case, when the source is not cooperating with

the system such that it does not know it is being tracked or has no desire to be tracked

[17]. As far as models and techniques are concerned, they can be applied similarly for

each case, and therefore the following discussion is presented in a generic manner. Lastly,

a brief description of the respective limiting factors attributed to these measurements and

techniques is provided.

2.2.1 Measurement Modality.

Many measurements can be made during the transmission of a signal from a

transmitter to a receiver. These measurement modalities are not limited to RF signals, and

can provide useful information on other sensor media including electromagnetic, acoustic,

and optical.

Time of Arrival. The first is the ToA, which is the absolute arrival time of a

transmitted signal to a receiver. ToA is the time of transmission plus a propagation-

induced time delay dependent upon the medium through which the signal is traveling

[15]. To determine ToA, the transmitter and receiver require synchronized clocks, and

the propagation speed in the medium has to be known. The distance to the source is then

calculated by

d = (T2 − T1)vp, (2.1)

where T2 is the ToA, T1 is the transmission time, and vp is the propagation speed.

Time Difference of Arrival. The second measurement type is TDoA. Unlike ToA,

TDoA is a relative time measurement which requires at least two receivers. The benefit of

TDoA is that only the receivers need to be synchronized, not the transmitter, because the

time of transmission is not needed nor is the propagation speed. TDoA is calculated using

sensor pairs to determine the constant difference, k, in ToA between each sensor in the pair
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as

T DoAB−A = (TB − TA) = k. (2.2)

The difference in ToA can be expressed in units of distance by multiplying k by the speed

of light, c = 3.0x108 m
s
.

Angle of Arrival. The third type of measurement is AoA, or the angle between a

signal’s direction of propagation and some reference direction [16]. AoA information can

be used in addition to ToA and RSS data. Two methods exist to collect AoA data, each

of which has specific hardware requirements. This approach can induce additional costs

and require larger sensor setups. The most common of the two uses an array of two or

more media specific sensors with a built in signal processing capability. Each sensor has

a known position in relationship to the sensor array. The AoA is then estimated from the

difference in arrival times to each sensor using signal processing techniques similar to those

used with ToA information. The sensors, or antennas for RF signals, in each array must be

synchronized to the other sensors within that array. The second method involves rotating

two or more directional antennas pointed in different directions and determining the ratio

of the RSS data collected from the two antennas [15].

Received Signal Strength. The final measurement type is RSS. Commonly reported

as the measured signal power, it is the receiver’s received signal strength reported by the

RSSI circuit [15]. No additional hardware is required for RSS based localization systems,

because most sensors already have RSSI circuitry built-in as opposed to the hardware

and software requirements needed for many of the previously discussed measurement

modalities. Additionally, RSS systems are simple to implement because they do not

require specific messages or data packets be transmitted. The received power Pl over a

wireless channel is typically modeled as log-normal, with a Gaussian distribution in the

decibels (dB) scale having an ensemble mean of P̄(dl) (dB) which is found using the Path
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Loss Model [15, 18–20]:

Pl ∼ N
(

P̄(dl), σ
2
)

. (2.3)

In Equation (2.3), P̄(dl) is calculated using the Path Loss Model which attempts to describe

the environment without any site-specific information:

P̄(dl) = PT − Π0 − ηp10 log10

(

dl

d0

)

, (2.4)

The Path Loss Model incorporates free space path loss and extends to practical multipath

environments which typically include many obstructions such as walls and furniture [20].

In Equation (2.4), PT is the transmitted power in dBm, ηp is the estimated path loss

parameter in free space, Π0 is the loss measured at a short reference distance d0, and dl

is the Euclidean distance (i.e., l2-norm) between the receiver i and transmitter j for link l:

dl =

√

(xi − x j)2 + (yi − y j)2,

= ‖(x, y)i − (x, y) j‖.
(2.5)

The number of sensors required in a WSN for RSS localization is dependent upon

the size of the area to be monitored. The sensor network used in this research employs

a token ring protocol, where each receiver reports respective RSS values to a base station

in a sequential manner. The base station then reports the data to a processing unit which

employs estimation techniques such as a Maximum Likelihood Estimate (MLE) to estimate

emitter position.

2.2.2 Localization Methods.

As previously mentioned, the four main localization methods are trilateration,

multilateration, triangulation, and RSSI. These techniques are applicable for both radio-

location, where one or more receivers are attempting to locate a transmitter, and radio-

navigation, where a single receiver is utilizing one or more transmitters to determine its

own position. For simplicity, these techniques will be explained in terms of radio-location.
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Figure 2.1: ToA Trilateration.

Trilateration. Trialateration is the process of using ToA data to determine the

absolute distance to the source, and then applying the geometry of circles, triangles, or

spheres to estimate emitter position. For example, when only one receiver is available one

can determine the relative distance of an emitter. This distance is used to draw the radius of

a circle whose perimeter represents the number of possible emitter positions. If the number

of receivers is increased to two, then two circles are generated; narrowing the possibilities

down to two, located at the intersections of the two circles. Furthermore, if three receivers

are available, an emitter’s position can be narrowed to one choice. Each of these scenarios

can determine only a 2-D position estimate. A 3-D position estimate can be achieved if

four or more receivers are available. An illustration trilateration using ToA measurements

can be seen in Figure 2.1.
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Figure 2.2: TDoA Multilateration.

Multilateration. In multilateration, TDoA data are used to determine the relative

distances from the transmitter to a respective receiver pair. This relationship can be

graphically represented as a hyperbola. In multilateration, at least one sensor pair, or

two receivers, is required; however, with four receivers, the possible emitter positions can

be narrowed to one position. And similarly compared to trilateration, with five receivers

a 3-D position estimate can be achieved. An illustration of multilateration using TDoA

measurements can be seen in Figure 2.2.

Triangulation. The last method, triangulation, uses AoA information to estimate

emitter position. This method requires at least two sensor arrays. Each array estimates

the direction the signal is coming from and determines the angle to that direction relative

to a predetermined reference line. The distance between each sensor array is also already
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Figure 2.3: AoA Triangulation.

known. This information is graphically represented as a triangle with the values of two

known angles and one side, making it possible to use geometry to determine the distance

to the emitter. Increasing the number of sensor arrays used provides further precision. An

illustration of triangulation using AoA measurements can be seen in Figure 2.3.

Received Signal Strength Indicator. In many cases RSSI data can be incorporated

and used to bolster the three previously discussed methods [21]. However, RSSI based

localization can stand on its own and be approached in three different ways. The first

requires the target object to carry a transmitter, periodically transmitting while deployed

nodes listen and record RSS [14, 21]. In the second method, the roles of the target

object and sensor nodes are reversed, similar to radio-navigation methods [14]. The last

method consists of deployed sensor nodes, as well as the target object, having a transceiver
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[14]. With this method, the target object essentially becomes a part of the sensor network,

participating within the network traffic by passing RSS measurements with the rest of the

nodes.

2.2.3 Limiting Factors.

Both ToA and TDoA measurements suffer from additive noise and multipath effects.

In order to combat additive noise, correlation techniques can be used; however, knowledge

of the signal and noise power spectra is required [15]. Additional range errors can also be

introduced by multipath when the absolute arrival time of the signal must be discernible.

When using a correlation-based process, multipath can cause the true LOS signal to be

lost because it has either been greatly attenuated resulting in decreased Signal to Noise

Ratio (SNR) or unintended multipath signals have arrived shortly after, blurring the true

signal peak. Even minor arrival time errors can result in very large distance errors.

Another limiting factor of ToA is the need for each receiver and transmitter to have

synchronized clocks. TDoA also is slightly limited by the need for at least the receivers to

be synchronized.

AoA also suffers from additive noise and multipath to some extent but is also limited

by the requirement for additional antennas, sensors, and processing power; inducing

additional cost and maintenance requirements.

Signal power decays as the distance between the emitter and receiver increases. This

alone does not limit RSS localization networks, but can compound the two common sources

of error in WSNs [15]. The first is multipath, which can be difficult to mitigate, especially as

the number of sensors employed grows to cover a vast area. Multipath results in frequency-

selective fading, a phenomenon that exists when multiple signals with different amplitudes

and phases arrive at a receiver at the same time. In scenarios where these networks are

envisioned to be employed, it would not be feasible or cost effective to surround the area

with absorbent materials. Frequency-selective fading can be diminished by averaging the
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received power over a wide range of frequencies [15]. The second is signal attenuation

due to shadowing caused by physical obstructions naturally present in the environment.

These effects are random and dependent on the topography where the network is employed.

However, they can be modeled in an attempt to minimize the impact. Research in [22] has

shown that by modeling the radio propagation specifically for the intended in environment,

a 15% improvement in localization precision is possible.

2.3 Self-Localization

Another important area to consider is the ability for a WSN to accurately self-localize.

In other words, a network’s inherent ability to determine the location of participating nodes,

based on only a few nodes’ a priori known location information (called anchor nodes).

Without precise node positioning, the accuracy of the data later collected from the network

can be significantly affected [23]. This is often also referred to as either node localization

or cooperative localization. In cooperative localization, sensors work together to make

measurements and form a map of the network using estimation techniques [15, 24]. In

sensor networks where an algorithmic localization approach isn’t used, it can either be

done manually—opening the door for human error, or with specialized hardware (GPS,

ultra-sound, acoustic, laser) which can be costly [23]. Self-localization is also appealing to

communities who are more likely to employ ad-hoc networks, such as in emergency and

military situations when timeliness and multitasking is of the essence.

The measurement-based methods described in Section 2.2.2 are also applied in self-

localization among other iterative estimation schemes. The same limiting factors similarly

affect the process of self-localization as well. There are two main classes of localization

schemes: centralized—measurements and processing is done by a single computer, and

decentralized—splitting the work with the deployed nodes. The benefits of RFIC sensor

networks include low maintenance requirements, small footprints, and low costs; however,

nodes have limited processing and memory capabilities. Therefore, localization schemes
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must take sensor limitations into account. Another benefit of employing self-localization

schemes is the ability to develop location-based routing protocols, saving significant energy

and improving caching behavior [25].

To combat the unreliable nature of RSS based methods, [23] presents a probabilistic,

decentralized localization scheme which assumes the targeted network topology, in most

employments, will form a grid. By exploiting knowledge of the intended topology, they are

able to implement a probability grid matrix in which each node searches to find the position

that has the highest probability. Stoleru and Stankovic were inspired by a similar solution

called DV-Hop [26], which relies on hop-counts between sensors and does not employ a

priori information about network topology.

Hu and Evans present a Sequential Monte Carlo (SMC) localization method and

argue that it has the ability to take advantage of mobile networks to improve accuracy

and precision without relying on evenly distributed seed nodes or prior knowledge of the

network topology [25]. Their method was adapted from the Monte Carlo Localization

(MCL) method originally developed for the use of robotics, and has been previously found

successful in the areas of target tracking using RTI [27].

Lastly, a distinct category of localization algorithms includes those based on

connectivity rather than range measurements like those in Section 2.2.1 [28]. Such

algorithms rely on the knowledge of which nodes are within transmit distance and how

many successful transmissions there are over a specific period of time.

2.4 Passive, Device-Free Localization

As an emerging and highly desirable capability, RF-based DFL using WSNs supports

potential applications in intrusion detection, rescue-assistance, and inventory monitoring

[6]. In scenarios such as these, it is unreasonable to expect persons of interest to actively

participate in the system by carrying some type of radio device [7–9, 29]. Up until the past

decade, common radar imaging systems used for tracking moving objects indoors included
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video, pressure, infrared, and ultrasound [14]. The majority of these systems transmit

some form of electro-magnetic (EM) wave and utilize signal echoes off of an object to

determine range, altitude, direction, and speed. Such technologies typically require large

scale hardware structures and complicated software operating systems, which are costly

and challenging to maintain and are often limited by the environments in which they may

be applied [14]. In many situations, the logistics challenges of using common radar systems

prevent them from being a viable candidate for situational awareness and monitoring.

It is in these cases where WSNs consisting of RFICs stand out. They are

relatively inexpensive, do not take up much physical space, and communicate wirelessly.

Additionally, advances in peer-to-peer data networking have made it feasible to employ

large-scale RF sensor networks on the order of hundreds to thousands of simple radio

devices [12, 30, 31]. Such WSNs are employed by surrounding a physical area with

RFICs, commonly referred to as nodes or motes. Each node pair communicates wirelessly,

transmitting radio signals via a link, l, as illustrated in Figure 2.4. Most RFICs have the

inherent ability to collect RSS measurements from the network. There are various methods

in which this information can be exploited and are discussed in detail below. To paint an

accurate picture of the field of DFL, related work in the areas of Ultra-Wideband (UWB)

radar and RSS Fingerprinting is covered in Sections 2.4.1 and 2.4.2 respectively.

2.4.1 Ultra-Wideband Radar.

Another form of DFL is UWB radar which uses WSN structures similar to those in RTI

applications, except the network consists of UWB radio sensors and employs radar-based

ranging and imaging techniques [32–35]. Through-wall penetration and high resolution

detection and localization are possible over short distances with the lower frequencies used

in the UWB spectrum [32]. These networks illuminate the environment by transmitting

UWB signals and collect information about the environment by recording backscattered

waves in which the signals are delayed, phase shifted, or attenuated. Using larger RF
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bandwidths, UWB networks overcome many of the multipath fading losses that occur in

narrow-band networks like those used in RTI because they do not rely on RSS [33].

A variety of sensor types are used in specific capacities in UWB networks. Sensors

consisting of a single transmitter act as illuminators of the environment, sensors consisting

of a single receiver act as observers acquiring information about the structure of the

environment, and Single Input, Single Output (SISO) sensors act as anchor nodes placed

at verified positions to aid in self-localization. Then there are Single Input, Multiple

Output (SIMO), Multiple Input, Single Output (MISO), or MIMO nodes referred to as

“scouts” [32] which have the inherent ability to estimate directions of arrival. Sensor

deployments use various combinations of the previously described sensors depending on

the radar approach (i.e., bistatic or multistatic) [32, 35].

2.4.2 Received Signal Strength Fingerprinting.

Another form of RSS based localization uses a method known as fingerprinting. These

systems have been demonstrated in self-localization [36], active localization (targets carry

Radio Frequency Identification (RFID) or electronic devices) [22, 37–39], and in DFL

[30, 40]. This section briefly discusses RSS fingerprinting for DFL.

Fingerprint-based methods use a database of training measurements collected while

the system is offline and then compares real-time RSS measurements with the database

to estimate a target’s location [13, 30, 41]. In simple terms, training measurements are

collected by creating a passive radio map of the resulting attenuation field when a target

stands in each possible position. Measurements are taken as an entity walks through

the network, moving through a predefined grid. This area of research also seeks to

employ effective signal propagation models and further explore more efficient and effective

database search and estimation algorithms [13].

A strength in fingerprint-based localization as opposed to RTI is the ability to take

advantage of the dynamic nature of RF signal propagation, and the resulting multipath
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in an indoor environment; such effects result in very distinctive attenuation fields which

make it easier to detect location while using a training database [30]. Offline training

can be extensive depending on the network structure, and therefore is not an option for

mobile networks. Training requirements and calibration efforts change and increase when

the number of targets increases or when the network or physical area is altered such as a

door being opened while training data is collected then closed when the system is online

[29].

2.4.3 Received Signal Strength Tomography.

Tomography techniques were discovered and harnessed by the medical community for

use in medical imaging. The work resulted in the development of such well known systems

as the Computed Tomography (CT), Computed Axial Tomography (CAT Scan), Magnetic

Resonance Imaging (MRI), Positron Emission Tomography (PET), and Ultrasound. These

systems utilize various signal mediums. Modern tomography consists of gathering

projection data in a series of 2-D cross-sectional cuts from multiple angles and using

it to reconstruct a 3-D image. The results of which are integrated using tomographic

reconstruction software to form the final image by applying the Radon Transform derived

from the Projection Slice Theorem [42].

Ultimately, the use of tomographic methods and RSS data lead to the world of RTI.

RTI is a method in which imagery is created by mapping the change in attenuation in a

WSN as a function of space for the purpose of indicating the position and movement of an

object [12]. Essentially, the wireless communication over M links in the network creates

many projections that can be used to reconstruct an image of the objects that lie within

the sensored area [12]. Images provide a medium for humans and computers to interpret

the information and react. RTI is achievable using little power and with relatively small

bandwidths, making it appealing in a world where limited bandwidth is available.
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As opposed to RSS fingerprint-based DFL, there also exists model-based RSS DFL,

where the algorithm used applies a forward model in which the statistical distribution of

signal propagation is considered in determining RSS behavior when a target is present. One

advantage of model-based RSS DFL systems is that they are not dependent upon a training

measurement database which can require additional resources, setup, and maintenance

[29]. Propagation model-based RTI can be further categorized into linear and non-linear

models.

In a 2-D sensor network, the area is surrounded by K deployed wireless motes and

divided into N pixels that are ∆p × ∆p ft2 in size (3-D networks are divided into voxels of

size: ∆p × ∆p × ∆p ft3). The location of each node is either known or estimated and the

location of each pixel/voxel is known. Each mote transmits a radio signal which passes

through the physical area, experiencing absorption, reflection, diffraction, or scattering

from objects within and around the area [12]. A basestation collects RSS data from the

WSN. The wireless communication path between two nodes is called a link. Figure 2.4

illustrates the links created in a WSN. There are M = K2−K
2

unique two-way links within

the entire network such that a link between a node pair is counted only once.

Mathematically, the RSS of any one link, l at time t can be described as [12]:

rl(t) = PT − Ll(t) − S l(t) − Fl(t) − vl(t), (2.6)

where

• PT : Transmitted power (dB).

• Ll(t): Static losses due to distance, antenna patterns, device inconsistencies, etc (dB).

• S l(t): Shadowing loss due to objects attenuating the signal (dB).

• Fl(t): Fading loss caused by constructive and destructive interference of narrow-band

signals in multipath environments (Non-Shadowing Loss) (dB).

• vl(t): Measurement Noise (dB).
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Figure 2.4: Illustration of the links created in a RTI network. K=36 nodes.

Typically, for model-based systems, calibration data are required but may be

unnecessary depending on the measurement modality, discussed in Section 2.4.3.2. When

the network is initially established, any obstructions existing in the area that are considered

“common-place” become a part of the baseline. Calibration data, yc, are collected by

measuring RSS for each link of the target-free network for a specified number of passes,

m. Each pass refers to the time it takes for each mote to transmit once; yielding one frame

of link measurements, y = [r1, r2, · · · , rM]T . The duration of one frame t f is dependent on

the number of motes and the pass rate is defined in the token protocol. The calibration data

21



is an average over m frames for each link l:

r̄c,l =
1

m

m−1
∑

i=0

rl(tc − i),

yc = [r̄c,1, r̄c,2, · · · , r̄c,M]T .

(2.7)

The resulting calibration measurements provide insight into the static environment

void of any targets, and can be seen as the average signal strength for each link. During

calibration, static losses are averaged out and no shadowing losses are experienced [12].

The calibration data are then used to determine the difference in RSS for each link between

an “empty” network and real-time measurements taken when a target is present (i.e., the

shadowing losses S l(t) incurred for each link passing through any new obstructions).

2.4.3.1 Linear Signal Propagation Model.

The most common RTI system model used to describe changes in the propagation

field is linear, and is based on the effects of correlated shadowing modeled in [20, 43]. This

method can be referred to as shadowing-based RTI, where only the changing attenuation

from the current time and the time of calibration is of concern [18]. However, the work

in [18] models the changes in RSS due to the movement of an obstruction using the skew-

Laplace distribution (explained in Section 2.4.3.2), and applies a non-linear model with an

iterative particle filter algorithm to estimate the location of an obstruction. The difference in

RSS for one link l is calculated by subtracting the link RSS obtained during calibration from

a current link RSS measurement, ∆rl = rl(tr) − rl(tc) where tr is the frame currently being

evaluated. A link measurement can be further decomposed to illustrate each component

contributing to the RSS:

∆rl = S l(tr) − S l(tc) + Fl(tr) − Fl(tc) + vl(tr) − vl(tc). (2.8)

All static losses can be removed over time and the remaining loss terms are grouped

together in a single noise term:

nl = Fl(tr) − Fl(tc) + vl(tr) − vl(tc), (2.9)
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resulting in the final definition of the change in RSS:

∆rl = S l(tr) − S l(tc) − nl. (2.10)

           Wireless Node 

           Target 

           LOS Signal Path  (l) 

           Weighted Voxel  (wl,p xp) 

            Zero-weighted Voxel 

          

Figure 2.5: Illustration of a single obstructed link in an RTI network.

The shadowing loss experienced in an obstructed link can be approximated as a

weighted sum of the signal attenuation x experienced in each pixel p at time t,

S l(t) =

N
∑

p=1

wl,pxp(t). (2.11)

A precalculated weight wl,p is applied to each pixel based upon the chosen weighting model.

The weighting model is used to determine the amount of link attenuation that is distributed

in each pixel the link crosses. An illustration of an obstructed link and the affected pixels

is shown in Figure 2.5. There are many different options for weight models which are
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discussed in greater detail in Section 2.4.3.3. Thus, the change in RSS of each link can be

described as a linear sum of the change occurring in each pixel:

∆rl =

N
∑

p=1

wl,p∆xp + nl, (2.12)

where ∆xp is the change in attenuation from the calibration period tc for pixel p caused by

the presence of a target,

∆xp = xp(tr) − xp(tc). (2.13)

The entire network of RSS links can be described in matrix form [12]:

y =Wx + n. (2.14)

where each variable is defined as:

y = [∆r1,∆r2, · · · ,∆rM]T (dB),

x = [∆x1,∆x2, · · · ,∆xN]T ,

n = [n1, n2, · · · , nM]T (dB),

[W]l,p = wl,p.

(2.15)

The units of W and x are dependent upon the weighting model used as discussed in

Section 2.4.3.3. The change in attenuation in any particular pixel represents the presence

of a target; therefore, the ultimate goal is to reconstruct a radio tomographic image

by estimating x. Various estimation techniques are discussed in Section 2.4.3.4. The

reconstructed image can then be used to determine target location and possibly other details

such as size and orientation [7, 12].

2.4.3.2 Measurement Modalities.

Multiple measurement modalities exist as a means to utilize RSS. Standard RTI relies

on a single measurement of the change in RSS as previously defined in Equation (2.12).

The following methods take advantage of various statistical definitions to manipulate the

raw RSS measurements prior to image reconstruction as a means to eliminate noise.
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Mean-based Received Signal Strength. The simplest approach is to use the sample

mean of differenced RSS measurements in the presence of a target. For m frames, link RSS

is described as:

r̄l,t =
1

m

m−1
∑

i=0

rl(tb − i), (2.16)

∆r̄l,t = r̄l,t − rc,l, (2.17)

ymean = [∆r̄1,t,∆r̄2,t, · · · ,∆r̄M,t]
T . (2.18)

The vector of RSS measurements y in Equations (2.14) and (2.15) is replaced with the

vector of sample means for each link ymean =Wx+n prior to solving the inverse problem to

estimate x. Doing so reduces the effects of noise and loss due to motion [43]. The sample

mean is useful in locating both static and moving targets. It is more effective in smaller

networks when the time it takes to record one frame of RSS measurements is minimal and

when targets within the network move at a comparable pace.

Variance-based Received Signal Strength. Another modality of RTI is termed

Variance-based Radio Tomographic Imaging (VRTI), which takes advantage of the motion-

induced variance of RSS caused by the movement of an object within a sensor network

[29, 44, 45]. In a WSN it is common to experience high amounts of multipath, because a

wireless signal travels along many different paths before reaching the receiver, causing

constructive and destructive interference. When motion occurs near a wireless link, a

number of those multipath components are affected and the RSS variance will fluctuate.

The effect will be greater where there is a higher density of links, specifically closer to a

node.

The RSS at a node is dependent upon the power contained in its multipath components;

[45] quantifies this relationship of the fading environment with a Ricean distribution.

Two types of multipath are considered in this problem; that of changing or non-static

multipath which consists of the multipath components affected by the motion of some
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object, and those static multipath components that are unaffected by the same object’s

motion. Ultimately, the variance in RSS due to motion in the network can be used to

locate and track an object.

Applying the linear model described in Equation (2.14) the measurement used is the

sample variance defined over window m = tb − ta as [29, 44]:

Var[rl,t] =
1

m − 1

m−1
∑

i=0

(

r̄l,t − rl(t − i)
)2
,

rl(t) =

N
∑

p=o

wl,p

(

xp(tb) − xp(ta)
)

+ nl,

yvar = [Var[r1,t],Var[r2,t], · · · ,Var[rM,t]]
T .

(2.19)

where m − 1 is used because the population mean is unknown and r̄l,t is still defined as

in Equation (2.16). Finally, the vector of RSS measurements y in Equations (2.14) and

(2.15) is replaced with the vector of sample variances for each link yvar =Wx + n prior to

solving the inverse problem to estimate x. Note in the second part of Equation (2.19), the

change in RSS is determined for each time step rather than between the current time and

the calibration period. In VRTI there is no need to collect calibration data because only the

variance in RSS is of concern, not necessarily the change in RSS, ∆rl. But, it is also for

this reason that VRTI has proven to be less accurate at locating a static object as compared

to shadowing and mean-based RTI [44, 45].

The sample definitions of the mean and variance are used in mean-based and variance-

based RSS because they represent unbiased estimates of the actual mean and variance

which are unknown.

Channel Diversity. Research in [5] shows the localization accuracy of RTI can be

dramatically improved by exploiting multichannel communication among the nodes. Two

selection methods are used in collecting RSS measurements from multiple channels for

each link. The measured RSS for link l shown in Equation (2.6) is modified as:

rl,k = PT,k − Ll,k − S l,k(t) + Fl,k(t) − vl,k(t), (2.20)
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where k represents the frequency channel [5]. The Channel Diversity model still requires

a calibration period as described by Equation (2.7); however, a calibration measurement

is taken for each channel (i.e., ȳc,k). The sum of the change in fade loss on channel k and

the change in measurement noise from the calibration period is ∆nl,k; therefore the linear

model in Equation (2.12) is now written as:

∆rl,k =

N
∑

p=1

wl,p∆xp,k + ∆nl,k. (2.21)

Channel selection is based on one of two models, the Packet Reception Rate (PRR)

method and the Fade Level Method [5]. The PRR method selects the m channels for each

link l ∈ {1, 2, ...,M} that have the highest PRRs and forms the set S etl containing the

respective channel indices. The Fade Level method sorts all the channels for link l by fade

level Fl,c and selects the top m channels forming the set S etl.

The total change in RSS for link l is the sample average of the measured changes in

RSS for each channel k of the link which is written as:

yl =
1

m

m
∑

k∈S etl

∆rl,k, (2.22)

and the collection of link measurements is the vector,

ychan = [y1,S et1 , y2,S et2 , · · · , yM,S etM
]T . (2.23)

The PRR method selects channels maximizing the communication reliability of the

links and the Fade Level method selects channels maximizing the fade level of the link

opting for channels that are either in antifade or removing channels experiencing deeper

fade levels [5].

Fade Level-Based Measurement Model. Wilson and Patwari in [18], discovered

that each link in a network experienced unique shadowing effects based on its multipath

components. Through extensive measurements, they found the fade level of a link to be

a measurable quantity of the fading experienced on the static link when the network was
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empty, essentially leading to the discovery that each link demonstrated drastically different

behavior when obstructed as a function of the fade level [18].

When a LOS link is directly obstructed, it is safe to assume the link will be attenuated,

experiencing a reduction in RSS. However, in congested environments, most links are

NLOS and there is a significant presence of multipath. Thus, the presence of an obstruction

near a link affects only a subset of multipath components and therefore an obstruction

on a LOS link will have less predictable effects [18]. Using calibration data as defined

by Equation (2.7), the fade level experienced in link l can be quantified as the difference

between the path loss prediction described by Equation (2.4) for that link and the calibration

mean:

Fl = ȳc,l − P̄(dl). (2.24)

Links with negative fade levels are said to be in Deep Fade, meaning that they

experience destructive multipath interference, and those with positive fade levels are in

Antifade which means they experience constructive multipath interference. As a result,

links in deep fade tend to experience a high variance of RSS when an obstruction is in the

network while links in antifade are less predictable, where the RSS will vary less if at all,

and may even increase [18]. Even so, Wilson et al. found links in antifade to be more

informative. The introduction of fade loss in an RTI measurement model is expanded on

in [17] by implementing the Channel Diversity Measurement Model described previously,

in addition to considering the effects of fade losses as a result of multipath. The fade level

can be determined for each link and each channel as represented by Fl,k.

The Fade Level-based Measurement Model uses the estimated probability of an

obstruction being within a modeled ellipse (more details are provided in Section 2.4.3.3),

and relies on both the magnitude and the sign of the measured change in RSS [17].

Kaltiokallio et al. reported that with larger changes in RSS the probability increases for

both deep fade and antifade links; however, with deep fade links the modeled ellipse is
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larger. They also found that the probability of an obstruction being located within the

modeled ellipse for an antifade link was significantly higher than that of a deep fade link

for positive changes in measured RSS. Using an exponential model, the probability of an

obstruction being located within the modeled ellipse at time t with the measured change in

RSS ∆rl,k for link l on channel k can be described by:

pδl,k(t) = 1 − exp
(

βδl,k

∣

∣

∣∆rl,k(t)
∣

∣

∣

)

, (2.25)

where δ indicates the sign of the change in RSS, such that δ is - for measured decreases in

RSS and δ is + for measured increases. And lastly, βδ
l,k

is the decay rate related to the fade

level,

βδl,k = bδ exp

(

Fl,k

kδ

)

, (2.26)

where the model parameters bδ and kδ are derived using a least-squares fit to the

experimental data collected in [18]. The set of measurement vectors on channel k for all

links are defined by:

y−k = [p−1,k, p
−
2,k, · · · , p−L,k],

y+k = [p+1,k, p
+
2,k, · · · , p+L,k],

(2.27)

where channels experiencing attenuation are y−
k

and the channels experiencing an increase

in RSS are y+
k
. Thus the measurement vector for channel k is yk = [y+

k
|y−

k
], and the overall

measurement vector including measurements for every channel is:

y f ade = [y1| · · · |yC]T , (2.28)

where C is the total number of frequency channels used.

2.4.3.3 Weighting Models.

In an RTI network each pixel is assumed to have a constant attenuation loss over its

entire area (voxel→volume). The weighting model W can be decomposed into two distinct

pieces, the selection of affected pixels, sometimes referred to as the spatial impact area,
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using a binary selection matrix S, and the scalar magnitude of the weight assigned to the

pixel Ω [46]:

W = Ω ⊙ S, (2.29)

where ⊙ indicates Hadamard (element-wise) multiplication. There have been several

models explored in the literature. The following paragraphs contain descriptions of several

of them.

NeSh Normalized Ellipse Model. As shown in Equation (2.6), the received power

for any link suffers from path loss caused by three phenomena other than measurement

noise vl. As previously explained, static losses Ll can generally be removed over time.

Therefore, the received power for a particular link will vary from the ensemble mean P̄(dl)

described by Equation (2.4) mostly due to Fl and shadowing S l losses [20, 43]. The total

fading loss Zl is represented mathematically by [20, 43, 47]

Pl = P̄(dl) − Zl, (2.30)

Zl = Fl + S l. (2.31)

The large-scale path loss described above includes average fading loss at the distance

d (shown in Equation (2.4)) by allowing values for free space path loss, ηp = 2 [47].

This model considers links within geographical proximity of each other to experience

significant non-zero correlation or covariance. Shadowing losses experienced in each link

l are determined to be a function of the resulting shadowing field p(x). The shadowing of

link l is modeled as an integral over the spatial field between the endpoints xi and x j:

S l ,
1

d
1
2 i, j

∫ x j

xi

p(x)dx, (2.32)

such that the endpoints in terms of RTI would represent the transmitting and receiving

nodes and the normalization factor relates to the distance between the two nodes [47]. On

its own, this model termed as the Network Shadowing (NeSh) Model was introduced in

[47] and [20] as a means to describe the relationship between shadowing and fading losses
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on links in a multi-hop network. However, it has more recently been expanded [43] and

utilized in [5, 12, 29, 44, 45, 48]. The model is adapted, using the normalization factor as

a weight ΩNeS h =
1
√

dl

to take into account that the variance of link shadowing does not

change with distance, and adding a selection matrix to adapt it for RTI networks:

wNeS h
l,p =

1
√

dl



























1 if d1(l, p) + d2(l, p) < dl + λ

0 otherwise

, (2.33)

where wl,p is the weight assigned to pixel p for link l, dl is the distance between nodes

d1 and d2, and λ is a tunable parameter to set the width of the weighting ellipse defined

by the selection matrix shown in Equation (2.33). This model assumes each pixel falling

within the ellipse defined by dl + λ has equal weight. Relating to Equation (2.29) the NeSh

Normalized Ellipse Model is decomposed by WNeS h = ΩNeS h ⊙ SEllipse.

Line Model. The Line Model is decomposed as WLine = ΩLine⊙SLine represented by:

wLine
l,p = Ll,p



























1 if link l traverses voxel p

0 otherwise

, (2.34)

where Ll,p is the length of the section of link l passing through pixel p. The Line Model

WLine resembles the model used in CT scans in medical imaging, but was demonstrated

in its entirety in the area of RTI in [49] and [50]. The Line Selection Matrix S Line has

been demonstrated in [11, 51–53]. In this model, the weight assigned to the attenuation is

dependent on the actual length of the link passing through the obstruction as opposed to

the NeSh Model which is based on the length of the entire link [46, 49]. Of the models

discussed in this chapter, the Line Model is the cheapest computationally [46].

NeSh Line Model. The NeSh Line Model is a hybrid of the two previously discussed

models first. The weighting factor ΩNeS hLine accounts for link length and the length of link

passing through the obstruction. It was first demonstrated in [51] and [11] in combination
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with the Line Selection Matrix SLine, such that WNeS hLine = ΩNeS hLine ⊙ SLine where:

wNeS hLine
l,p =

Ll,p√
dl



























1 if link l traverses voxel p

0 otherwise

. (2.35)

Exponential Decay Model. The Exponential Decay Model considers an elliptical

model similar to that proposed in [47]; however, the width of the ellipse adapts with respect

to the object’s distance from link l [27]. For each link l, the width of the ellipse is defined

by:

λl,p(t) , d1,l(xt) + d2,l(xt) − dl, (2.36)

where d1,l(xk) and d2,l(xk) are the distances of the obstruction at time t from the transmitting

and receiving nodes for link l respectively. The ellipse is used to define the area affected by

the obstruction, where the width of the ellipse is defined by the situation such that it is the

smallest it can be to include the center of pixel p [46], as opposed to the width of the ellipse

in the NeSh Normalized Ellipse Model which is set by λ as defined by the user. However, it

is incorporated into the assigned weight Ω rather than in the selection matrix S such that:

w
ExpDec

l,p
= exp

(

λl,p

2σλ

)



























1 λl,p ≥ 0

0 otherwise

, (2.37)

where σλ controls the rate of decay of attenuation with respect to λ [27]. Taking a closer

look at the selection matrix above, it can alternatively be written as SAll = 1 for all pixels

because λl,p will always be positive; therefore WExpDec = ΩExpDec ⊙ SAll. A weight is

assigned to each pixel in the network. In this model, the pixel weighting values decrease as

the ellipse size increases [27, 46]. Essentially, pixels further away from the obstructed link

approaching the edge of the ellipse will be assigned a lower weight than those closer to the

obstructed link.

Inverse Area Elliptical Model. The Inverse Area Elliptical Model is similar to the

Exponential Decay Model; however, the weighting function is proportional to the inverse
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area of the smallest ellipse that includes the pixel in consideration [54, 55]. The selection

matrix is bounded by setting minimum and maximum semi-minor axis lengths controlled

by λl,p so the weight for points falling outside of the largest ellipse are set to 0. The Inverse

Area Elliptical Model is described by WInvArea = ΩInvArea ⊙ SEllipse , such that

wInvArea
l,p =

[

π

4
(dl + λl,p)

√

2dlλl,p + λ
2
l,p

]−1



























1 if d1(l, p) + d2(l, p) < dl + λl,p

0 otherwise

, (2.38)

where λl,p is the same as was defined in Equation (2.36) [46, 54, 55]. The model applied in

[56] is a modified form of the Inverse Area Ellipse Model. It uses the ellipse described in

Equation (2.33) such that the model is decomposed by WInvArea = ΩInvArea ⊙ SEllipse and:

wInvArea
l,p =

1

Al



























1 if d1(l, p) + d2(l, p) < dl + λ

0 otherwise

, (2.39)

where ΩInvArea = 1
Al

, and Al is the area of the ellipse defined by dl + λ. The weights within

the ellipse are constant for each pixel. The model used in [18] also uses the inverse of the

area of the ellipse. It is described in more detail in the next section.

Fade Level-Based Spatial Weight Model. The previously mentioned models do not

account for multipath and assume any signal attenuation to be the result of shadowing losses

alone. Work in [18] suggests environments rich in multipath, and those containing long link

distances, experience effects that are more complex. The Fade Level-based Spatial Weight

Model accounts for fade loss in addition to choosing a selection matrix, or spatial model,

which adapts for each link based on the specific links the target is currently obstructing

[17]. Thus the spatial impact area of affected pixels may be larger or smaller, depending

on the fade-level classification of the obstructed links dependent on the target’s position

within the network.

The results in [17] indicate that links in deep fade measured decreases in RSS within

a large area such that λl(t) in Equation (2.36) increased, while it decreased for links in

antifade. Conversely, when an increase in RSS was measured, λl(t) decreased for links
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in deep fade, meaning the change in RSS induced by an obstruction was measured in a

smaller area than the antifade links. However, the difference in the increase in λl(t) for

different fade levels was relatively small compared to the differences in the decrease in

λl(t) [17].

Using an exponential decay function to model decreases in ellipse width and an

exponential growth function to model increases in ellipse width, λ(t) can be determined

separately for each link, frequency channel and sign of RSS change based on Fl,

λδl,k = bδ exp

(

Fl,k

kδ

)

, (2.40)

where k represents the frequency channel [18]. The Fade Level-based Spatial Weight Model

parameters are derived using a least-squares fit to the experimental data collected in [18].

The resulting weight model WFade−S patial is described as:

wδl,k,p =
1

Al



























1 if d1(l, p) + d2(l, p) < dl + λ
δ
l,k

0 otherwise

, (2.41)

where ΩFade−S patial is the inverse area of the ellipse such that Al = np∆p; np is the number

of pixels within the ellipse of link l and ∆p is the area of the pixel [18]. In summary,

the weight assigned to pixel p for link l on channel k is dependent upon the fade level of

the link and the sign of the measured change in RSS. Using the inverse of the area of

the ellipse assigns less weight to links that have larger spatial impact areas as discussed in

Section 2.4.3.2. This model was also used in [57].

2.4.3.4 Signal Recovery & Solving the Inverse, Ill-posed Problem.

Regularized Least Squares. One of the more common estimation techniques used

to recover the image x is a Least Squares solution which is equivalent to an MLE if the

noise is assumed to be zero-mean Gaussian [12, 29, 44, 45, 48]:

x̂LS = argmin
x

‖Wx − y‖22. (2.42)
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Setting the gradient of the cost function ‖Wx−y‖22 to 0 and solving for x yields the estimate

x̂ described by

x̂LS = (WT W)−1WT y. (2.43)

However, a Least Squares solution is only valid if W is full-rank; therefore, the

solution must be regularized, leading to a Regularized Least Squares solution. Multiple

regularization methods have been explored in the literature and are discussed below.

Regularization. Due to the inherent nature of RTI, it is an ill-posed, inverse problem

[58]. Fortunately, it is also modeled linearly, making the task of regularization simpler. An

inverse problem is one that is used to determine the cause of a desired or an observed effect

or outcome [59]. It often does not fulfill the postulates described by Jacques Hadamard

when he defined well-posedness. He believed mathematical models of physical phenomena

should be subject to the following properties [59, 60]:

1. A solution exists.

2. The solution is unique.

3. The solution behavior changes continuously.

When a problem does not meet these properties it is considered ill-posed, meaning it

may not have a unique solution or that the solution is highly sensitive to changes in the final

data. Regularization can be useful as it can help to solve ill-posed problems by introducing

additional information. The additional information is determined in accordance with the

approximate nature of the initial data to promote stability. Regularization techniques

include penalizing erratic changes in the data, smoothing or eliminating small singular

values, or imposing prior distributions. In RTI, the transfer matrix, W, contains small

singular values which when inverted through algebraic manipulation as in Equation (2.43),

cause unwanted or noisy spectral components to grow out of control [58]. Below are a few

methods that have been researched in the field of RTI.

Tikhonov
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One of the most common forms of regularization, and one that has been vastly utilized in

the world of RTI is Tikhonov Regularization, which in statistics is also referred to as ridge

regression. It is appealing due to the flexibility to force desired properties in the solution

through a linear transformation of the measurement data [58]. In Tikhonov Regularization

a term is introduced into the cost function prior to minimization,

fT IK(x) =
1

2
‖Wx − y‖2 + α

(

‖Dxx‖2 + ‖Dyx‖2
)

, (2.44)

x̂T IK = argmin
x

(

1

2
‖Wx − y‖2 + α

(

‖Dxx‖2 + ‖Dyx‖2
)

)

, (2.45)

x̂T IK =
(

WT W + αQ
)−1

WT y, (2.46)

where Q is the Tikhonov Matrix and α is a tunable scaling parameter controlling the amount

of influence the regularization operator Q has [58, 61]. There exist two popular forms of

Tikhonov regularization in the literature, the first is defining Q as the first order difference

operator D for each dimension, such that:

Q , DT
x Dx + DT

y Dy. (2.47)

This method is sometimes referred to as H1 Regularization, and was used in [12, 29, 44–

46, 49] and expanded on in [58] and [61]. The modified cost function is defined by:

fT IK(x) =
1

2
‖Wx − y‖2 + α

(

‖Dxx‖2 + ‖Dyx‖2
)

, (2.48)

and the regularized MLE is:

x̂T IK =
(

WT W + α
(

DT
x Dx + DT

y Dy

))−1
WT y, (2.49)

x̂T IK = ΠT IKy,

ΠT IK =
(

WT W + α
(

DT
x Dx + DT

y Dy

))−1
WT . (2.50)

Since the calculation of Q does not require instantaneous measurements, it may be

calculated in advance [12]. As Equation (2.50) shows, the image estimate x̂T IK can be

decomposed by a linear transformation matrix Π and the RSS measurement vector y.
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The second method defines Q as the inverse of the a priori covariance matrix Cx,

where x is modeled as zero-mean multi-variate Gaussian x ∼ N (0,Cx), and the movement

of targets within a network is assumed to resemble a Poisson process such that,

[Cx]p1 ,p2
= σ2

x exp

(

−d(p1, p2)

δc

)

, (2.51)

where d(p1, p2) is the distance between pixel p1 and pixel p2, σ2
x is the variance of pixel

attenuation or x, and δc is a pixel correlation parameter that can be used to control the

amount of smoothness in the linear transformation matrix [5]. This method is equivalent to

assuming a Bayesian prior on x where f (x|y) = f (y|x) f (x), and solving for the Maximum

A-posteriori Probability (MAP) estimate [49] such that:

x̂MAP = argmin
x

f (y|x) f (x),

x̂MAP = argmin
x

(

‖Wx − y‖2 + σ2
x‖x‖2C−1

x

)

,

(2.52)

where y|x ∼ N
(

Wx, σ2
N

IM

)

and M is the number of unique two-way links. The linear

transformation matrix is now defined by:

ΠMAP =
(

WT W + σ2
nC−1

x

)−1
WT , (2.53)

where σ2
x is the noise variance and

x̂MAP = ΠMAPy. (2.54)

This form of regularization or estimation, was used in [5, 8, 17, 55–57]. Alternatively, [58]

suggests the root inverse of the covariance matrix, C
− 1

2
x in place of C−1

x in Equation (2.53).

Choosing α. In [29, 44, 45, 58], and [12], the regularization parameter α is chosen

arbitrarily. However, in [49], the MAP estimate is not used as the final solution but as

a means to derive a value for α that is based on the statistics of the environment. The

larger α is, the impact of the regularization term is greater and less information is kept

from the estimate, and vice versa. In Tikhonov Regularization where Q is the inverse of the

covariance matrix (i.e., MAP estimation assuming a Bayesian prior), α is chosen to be σ2
n.
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The work in [61] proposes multiple methods for choosing α that incorporate known

information from weight model matrix W; these methods are modified forms of Tikhonov

Regularization, called Scalar Regularization and Vector Regularization. A new matrix that

is a function of α is formed,

R(α) =WT W + αQ, (2.55)

and the linear transformation matrix becomes:

Π = R−1(α)WT y. (2.56)

Scalar Regularization

The Singular Value Decomposition (SVD) of WT W is used to impart further known

information in to the estimation problem. The SVD is written as UΛVT where U and

V are real unitary matrices, and Λ = diag(s1, s2, · · · , sN) is the diagonal matrix containing

the singular values of WT W.

In Scalar Regularization, there are three options for the selection of α [61],

• Mean (si)

• Mean (si , 0)

• Median (si , 0)

Values of α chosen in the manner described above will displace zero or near zero singular

values si with terms from the difference operator D such that R(α) is decomposed by

R(α) =

N
∑

i=1

siuiu
T
i + α̂

N
∑

i=1

gifif
T
i , (2.57)

where α̂ is chosen as explained above, and Q = UGFT is the SVD of the derivative matrix

in Equation (2.47) such that ui and fi are the ith column vectors of U and F respectively

[61].

Vector Regularization
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In Vector Regularization another new matrix is formed using a combination of the unitary

matrices from the SVD of WT W and the SVD of the Tikhonov Matrix Q,

Z = VT QU. (2.58)

The diagonal elements of Z can be used to modify R(α) as:

R(α) =

N
∑

i=1

(si + ai)uiu
T
i . (2.59)

This new form of R(α) can be used as is where each value of si is used or an additional

option is to only use those values of si that are zero or near-zero [16].

Truncated Singular Value Decomposition

Truncated Singular Value Decomposition (TSVD) Regularization is described in [58] and

is similar to Scalar Regularization where only g < N singular values from Λ are used in

the reconstruction, however they are not incorporated through the choice of α but directly

through the linear transformation matrix,

ΠTVS D =

g<N
∑

i=1

=
1

si

uiu
T
i ,

= UgΛ
−1UT

g ,

(2.60)

and the image estimate is

x̂TVS D = ΠTS VDy. (2.61)

The results in [58] found this form of regularization to result in images which were

much noiser than those formed using Tikhonov Regularization and Total Variation (TV)

Regularization.

Total Variation
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TV Regularization is a non-linear form of regularization where the cost function is

described by:

fTV(x) =
1

2
‖Wx − y‖2 + αTV(x), (2.62)

where

TV(x) =
∑

i

|∇x|i , (2.63)

and is the ith element of the gradient of x which is approximated by the difference matrix D

[58]. This form of regularization requires an approximation for the gradient of x which is

used in order for the numerical optimization algorithm to converge reliably [58], such that:

TV(x) ⋍
∑

i

√

‖∇x‖2
i
+ β2, (2.64)

where β is an extremely small constant that accounts for the discontinuity of

√

‖∇x‖2
i

at 0. TV Regularization attempts to reduce the total variation of the signal, removing

unwanted noise while preserving important details; ultimately the estimated image will

have sharp edges and high contrast without much noise [58]. Unlike the previous forms of

regularization, this method is significantly more computationally complex because of the

need for numerical optimization.

Subspace Decomposition. Another method for estimating the image uses SVD and

is referred to in the literature as Subspace Decomposition. The work in [29] defined two

forms of motion experienced in an RTI network: intrinsic and extrinsic motion. Zhao

and Patwari [29] compared similar experiments that only differed by the amount of impact

from external elements such as wind and branches of a nearby tree, yet resulted in much

different estimates. They cited the differences as a result of the intrinsic motion caused by

the wind and tree which caused additional variance in the measured RSS in such a way

that resembled noise. They decomposed the received measurement vector into two distinct

signal components, y = ŷ + ỹ, where ŷ represents the intrinsic component and ỹ is the

extrinsic component which is caused by the motion from an obstruction in the network;
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the actual focus of RTI. Through their research, they found that any motion seen in an

empty network could be attributed to intrinsic motion and therefore could be identified and

analyzed using calibration data.

First, an estimate of the covariance of the calibration data Cyc
is calculated which

is represented by the sample variance as defined in Equation (2.19) [29]. Then they

perform SVD, Cyc
= UΛUT to determine the Eigenvectors ui and values λi of Cyc

.

Next using Principal Component Analysis (PCA), Zhao and Patwari [29] discover the

first g Eigenvectors ui point in the direction of the maximum variance in the calibration

measurement which represents the intrinsic motion. Thus, they separate the unitary matrix

U into two sets: Û = [u1, u2, · · · , ug] and Ũ = [ug+1, ug+2, · · · , uM] where Û is the intrinsic

subspace and Ũ is the extrinsic subspace. Using these subspaces to form projection

matrices, they are able to project future RSS measurement vectors y onto the extrinsic

subspace as a means to reduce the effects of intrinsic motion on future results. The intrinsic

and extrinsic signal components and projection matrices are described by:

ŷ = ΠIy = ÛÛT y, (2.65)

ỹ = ΠEy = (I − ÛÛT )y, (2.66)

whereΠI is the projection matrix for the intrinsic subspace, andΠE is the projection matrix

for the extrinsic subspace [29]. To obtain the final image estimate, the projection of the

measurement vector onto the extrinsic subspace is used in place of y in Equation (2.49),

x̂S UB = ΠT IKỹ, (2.67)

where a new linear transformation matrix can be defined as:

ΠS UB = ΠT IKΠE,

ΠS UB = (WT W + αQT Q)−1WT (I − ÛÛT ).

(2.68)

This method of estimation was also used in [48].
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Weighted Least Squares. Another RTI image estimation technique reported in the

literature is a form of Weighted Least Squares which uses the inverse of the covariance

matrices of both the noise Cn and the change in RSS Cx [29]. In this method, the use

of Cx is justified in the Bayesian sense as described in the section covering Tikhonov

Regularization and as was defined in Equation (2.51). Also included is theLedoit-Wolf

estimator as a means to define Cn,

Cn = vµI + (1 − v)C∗n, (2.69)

where C∗n is the sample covariance matrix as described in Equation (2.19), µ is a scaling

parameter for the identity matrix I, and v is a shrinkage parameter that shrinks the sample

covariance matrix towards the scaled Identity matrix [29]. Assuming there is no extrinsic

motion during the calibration period, Zhao and Patwari [29] approximate C∗n = Cyc
. The

modified cost function for this estimator is:

fWLS (x) = ‖Wx − y‖2Cn
+ ‖x − xa‖2Cx

, (2.70)

while xa can be included in the tracking period, and is therefore assumed to be zero here.

The final image estimate is described by:

x̂WLS = ΠWLS y, (2.71)

where

ΠWLS = (WT C−1
n W + C−1

x )−1WT C−1
n . (2.72)

Least Absolute Shrinkage and Selection Operator. Another form of estimation seen

in the literature is a variation of l1-minimization referred to as Least Absolute Shrinkage and

Selection Operator (LASSO) [51]. The associated cost function is defined as:

fLAS S O(x) =
1

2
‖Wx − y‖2 + λ‖x‖l1, (2.73)

where ‖x‖l1 is the l1-norm of x and λ is a scaling parameter that regulates the amount of

sparsity versus signal intensity. This method was is used in [11].
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2.4.3.5 Cylindrical Human Model.

In order to assess the accuracy of RTI images, a truth image must be generated for

comparison. A model for a human obstruction that considers position, size, shape, and

density would be ideal, but is difficult. A simple model found in the literature is that of

uniformly attenuating cylinder with radius RH. This model modestly attempts to consider

position, size, and shape. The model of a human located at position cH = (xH, yH, zH) yields

the truth image xc:

xc,p =



























1 if ‖(x, y, z)p − cH‖ < RH

0 otherwise

, (2.74)

where xc,p is the center location of voxel p [12]. Another model seen in the literature is that

of a sphere [49].

2.4.3.6 Cramer-Rao Lower Bound.

The Cramer-Rao Lower Bound (CRLB), the well-known lower bound on the variance

of an unbiased estimator, is used in RTI as a lower bound on the estimation error. The work

of Wilson and Patwari in [12] derives a pixel-by-pixel bound on x̂T IK in terms of estimating

the attenuation field. It is described by:

COV[x̂T IK] ≥ J−1
pp ,

J−1
pp =

(

γWT W + C−1
x

)−1

pp
,

(2.75)

where J−1
pp represents the diagonal elements of the Fisher Information Matrix (FIM) J, and

as such are the lower bounds on the Normalized Mean Squared Error (NMSE)R for pixel p.

In [49], Martin et al. derive a lower bound on the estimation of the obstruction’s

position, size, and attenuation based on a spherical obstruction model. And later on in [50],

Martin et al. derive the CRLB in the form of compact scalar metrics for evaluating the

weighting models in Equations (2.33), (2.34), (2.35), (2.37), (2.38) as a function of voxel

size, test area size, number of sensors, amount of regularization, and various other model

parameters.
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2.5 Chapter Summary

This chapter explained the most basic forms of geolocation leading up to the

exploration of DFL. Furthermore, the various signal propogation models, measurement

modalities, and weighting models for RTI that exist in the literature were explained. Lastly,

common estimation and regularization techniques for sparse signal recontruction were

presented. More specifically, the models used in this research were explained, and include

the Linear Signal Propagation Model as a system and measurement model, the Line Model

for the purpose of attenuation weighting, and Regularized Least Squares with Tikhonov

Regularization for image estimation and reconstruction.
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III. Methodology

T
his chapter describes the methodologies used in this research to establish and collect

data from an RTI network comprised of a number RFICs. The following sections

outline the hardware and tools used, the research assumptions, the steps taken to simulate

truth data, the design and implementation of experiments, and how the data post-processing

is accomplished.

Throughout the next two chapters, when an RTI network exists in 3-D the data will be

discussed in terms of a volume or voxel of size [∆p×∆p×∆p], while for a 2-D RTI network

the data will be discussed in terms of an area or pixel of size [∆p × ∆p]. Understanding the

different terms in regard to dimensionality is most applicable for experiments focused on

localizing and tracking the positions and movement of targets within the x − y plane.

3.1 Equipment and Tools

The equipment used in this research includes the Memsic TelosB mote platform[62]

and a laptop for data collection and processing. Many tools were used in this research and

are described below. Data simulation and analysis were completed in MATLABr.

Memsic TelosB Mote Platform. The radios used in this research are made by

Crossbow Techonology Incorporated (Inc.) based out of San Jose, California. The chosen

model is the TelosB mote TPR2420, an open-source platform developed for experimental

use in the research community by University of California (UC) Berkeley as shown in

Figures 3.1 and 3.2. The TPR2400 includes an Institute of Electrical and Electronics

Engineers (IEEE) 802.15.4 compliant, 250 kilobits per second (kbps) high data rate radio

with an integrated antenna, and a low-power 8 megahertz (MHz) Microcontroller Unit

(MCU) with 10 kilobytes (kBs) of Random Access Memory (RAM). This radio offers
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programming and data collection via a Universal Serial Bus (USB) interface. It has a

maximum range 100 meters outdoors or 30 meters indoors.

Figure 3.1: TelosB Mote. Figure 3.2: Size Demonstration.

The TPR2420 operates in the frequency range of 2.4000 gigahertz (GHz) to 2.4835

GHz. This band is one of several bands called the Industrial, Scientific and Medical (ISM)

bands, as defined by the International Telecommunication Union (ITU). The radio draws

up to 25 milliamps (mAs) of current, and uses up to 1 milliwatt (mW) of power for radio

transmission. Each radio mote can be powered by two AA batteries or via the USB

interface. The datasheet containing additional specifications for this platform is available

at [62].

Cygwin. The motes were programmed using Cygwin on a Microsoft Windowsr 7

64-bit laptop machine. Cygwin is a large collection of GNU and open-source tools which

provide functionality similar to a Linux distribution on Microsoft Windowsr [63].

TinyOS. The TelosB motes were equipped with the Tiny Operating System (OS)

open-source, Berkely Software Distribution (BSD)-licensed OS written in NesC [64].

TinyOS includes the program file titled “BaseStation,” for programming the mote acting

as the network BaseStation.
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Spin. The deployed motes within the network were loaded with the program “Spin,”

created by the Sensing and Processing Across Networks (SPAN) lab at the Department of

Electrical and Computer Engineering at the University of Utah. Spin is an open-source

TinyOS program written in NesC that collects RSS information from a WSN using a token

passing protocol. With the token passing protocol, nodes transmit sequentially rather than

at the same time; making the network more robust to lost packets. To download or read

more about the Spin program refer to [65].

RTI LINK GUI. Data was collected using the RTI LINK Graphical User Interface

(GUI) created by Mr. Alex Folkerts (Southwestern Ohio Council for Higher Education

(SOCHE) Intern), Mr. Tyler Heinl (SOCHE Intern), and Dr. Richard K. Martin (Associate

Professor of Electrical Engineering at the Air Force Institute of Technology (AFIT)). The

RTI LINK GUI is a MATLABr based application designed to collect and save RTI data while

also allowing the user to view the data in near-real time while the experiment is conducted.

The GUI parses the raw hexadecimal data written in two’s complement collected by the

BaseStation, and converts it into a signed integer in the form of link RSS. The collection

of unique link RSS measurements is the vector y = [y1, y2, · · · , yM]T . The GUI implements

the user-specified models and parameters, and estimates the change in RSS, x, providing

immediate feedback. The final data was saved in the form of raw link RSS measurements

to provide further flexibility in comparing the impacts of regularization and pixel size.

3.2 Assumptions

The following are the assumptions that were made in this research:

1. Pl ∼ N
(

P̄(dl), σ
2
)

.

2. n ∼ N
(

0, σ2
nIM

)

3. y|x ∼ N
(

Wx, σ2
nIM

)

4. x ∼ N (0,Cx) where Cx is described by Equation (2.51)

5. Calibration data for the network is available.
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6. Radios are oriented in a manner leading to the most effective and efficient use of

antenna gain.

7. Obstructions in the network affect signal propagation strictly through RSS attenua-

tion as a result of shadowing losses.

8. Shadowing losses caused by an obstruction maintain a constant spatial impact area

regardless of the obstruction’s location within the network.

9. Fade loss as a result of multipath is insignificant and not included in the chosen

measurement and weighting models.

10. Measurement noise and static losses are insignificant and are averaged out over time.

11. Assets tracked during experiments monitoring resource usage are upright.

12. The number of targets is known.

13. The height of a target is known for 3-D position estimation. It is not assumed in

attenuation image estimation and not used in motion tracking.

14. RSS attenuation is uniform over the area of a pixel (or volume of a voxel).

15. The use of filters (adaptive or otherwise) are not used in the control of noise related

effects, motion tracking, or obstruction modeling.

3.3 System Models

This research applied shadowing-based RTI using the Linear Signal Propagation model

described in Section 2.4.3.1. The system model is defined by Equation (2.14), and the set of

system equations and chosen measurement model are described by Equation (2.15). Using

a linear model simplified signal recovery and reduced computational complexity.

The Line model was chosen for the weight model and selection matrix described in

Section 2.4.3.3 and defined by Equation (2.34) because it is computationally cheap, but

more importantly, because the resulting attenuation estimate intuitively accounts for the

path lengths of links passing through the obstruction.
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Signal recovery was achieved with a Tikhonov Regularized Least Squares solution

using a first order difference operator for the Tikhonov matrix as defined by Equation (2.49);

however, it was modified for use in a 3-D WSN. The regularization parameter α was

selected after completing analysis of several single and dual stationary target experiments

as described in Section 3.7. The results of this analysis are presented in Chapter 4.

In summary:

• System Model: y =Wx + n

• Measurement Model: y = [∆r1,∆r2, · · · ,∆rM]T

• Calibration: yc = [r̄c,1, r̄c,2, · · · , r̄c,M]T

• Weight Model: [W]Line
l,p
= Ll,p



























1 if link l traverses voxel p

0 otherwise

• Estimator: x̂T IK = argmin
x

(

‖Wx − y‖2 + α‖Qx‖2
)

• Tikhonov Matrix: Q , DT
x Dx + DT

y Dy + DT
z Dz

3.4 Network Setup

The RTI network covered a [10 ft × 10 ft] area surrounded by 80 wireless motes

mounted on structures made of Polyvinyl Chloride (PVC). Pictures of the network structure

are shown in Figure 3.3. The floor was marked with Painters Tape in a [1 ft × 1 ft] grid.

Grid intersections represent voxel center coordinates. An illustration of the grid is shown

in Figure 3.4.

There were four rows of motes along the z-axis at the heights

z = [1.71, 3.42, 5.12, 6.83] ft. For each row of motes, the lateral separation between

motes was 2 ft in both the x and y directions; however the first and third layer of motes

were staggered in placement from the second and fourth rows. Various views of the mote

topology can be seen in Figures 3.4 and 3.5.
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(a) Lateral View (b) Corner View from (10,10)

Figure 3.3: Experimental RTI network structure.
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(c) All Rows Included.

Figure 3.4: Aerial view of mote topology.

The chosen mote topology provided ample coverage of the area contained within the

network. Preliminary visualization of network coverage was possible using MATLABr

scripts which plotted relative coverage patterns from various possible mote topologies.

Additionally, the use of a 3-D network provided significantly higher link density versus

what would be seen in a 2-D network. Link density leads to an increase in available RSS
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Figure 3.5: Lateral and three-dimensional views of mote topology.

information from the network. Multiple dimensions are exploited when RSS measurements

are averaged along the z-dimension to locate an obstruction on the x − y plane, ultimately

compressing three-dimensions into two-dimensions. The 3-D network also provided an

opportunity to explore 3-D images generated from RTI and how the network performed in

various dimensions with a human obstruction present. Images illustrating the link density

of the network are shown in Figures 3.6 and 3.7.

Another motivation behind the chosen mote topology was the respective voxel-by-

voxel lower-bound of the variance of the linear estimator. As with an MLE, the CRLB is

a means of representing the performance of the actual estimator since the CRLB is equal

to the variance [50]. Applying the derivation of the CRLB as described in Section 2.4.3.6

and using the parameters in Table 3.1; the voxel-based bound can be visualized in a 3-D

scatter-plot as seen in Figure 3.8a. To reduce the clutter in the figure, only values within

the top 10% of the maximum value are kept as shown in Figure 3.8b. Using the derived

form of the CRLB only considers the estimator’s ability to estimate the change in RSS
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Figure 3.6: Three-dimensional views of link coverage.

where another form of CRLB could provide insight into the estimator’s ability to estimate

an object’s position, size, and attenuation.

To further simplify the interpretation of the CRLB as it applies to a 3-D network, the

mean, variance, and maximum value in the z-dimension are considered and shown in the

surface plots shown in Figure 3.9, essentially compressing the information. The ability to

understand the estimator’s performance in the x − y plane is more useful for this research
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Figure 3.7: Two-dimensional views of link coverage.

Table 3.1: CRLB Construction Parameters.

Parameter Value Description

∆p 1.0 Voxel width (ft)

δc 4.27 Voxel correlation constant (ft)

σ2
x 0.1 Voxel variance (dB2)

γ 0.5483 Bound parameter

RH 1.1 Human radius for

cylindrical model (ft)

since the focus lies in the ability of the estimator to accurately locate and track a grounded

obstruction within the network which occupies multiple levels in the z-dimension.

Figure 3.9a illustrates the average expected variance of the estimator’s performance,

while Figure 3.9b shows the amount of variation to be expected in the variance of the

estimator (i.e., higher variance in the bound leads to areas that may be less predictable

in estimating attenuation). Lastly, Figure 3.9c illustrates the maximum variance that is

experienced along the z-axis throughout the network. The ability to analyze the CRLB and
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Figure 3.8:
√

CRLB volume [ dB
f t2

].

link coverage for various topologies before hand eliminated the need for trial and error, and

enabled a more educated approach in deciding sensor placement before constructing the

network.

Radio Orientation. Referring to specifications for the Inverted-F Antenna (IFA)

in the TelosB TPR2420 located at [66], orienting the motes horizontally in the network

aligned with the most effective antenna gain pattern.

Human Subjects. Human subjects were used in this research. Required training has

been completed by the principal investigators, and the AFIT RTI protocol approved by the

Air Force Research Laboratory (AFRL) Institutional Review Board (IRB). Each subject

was briefed, signed an Informed Consent Document (ICD), and voluntarily participated in

experiments.
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3.5 Choosing Model and Experiment Parameters

Model parameters α and ∆p, were chosen after review of existing results from trade-off

analysis conducted for similar networks in [12, 50], and a series of controlled preliminary

experiments. Data from these experiments were analyzed using a range of values for α and

∆p and the resulting Mean Squared Error (MSE) for each data set was compared.

3.6 Simulated Truth Data

The Cylindrical Human model described in Section 2.4.3.5 was used to generate the

truth attenuation images for stationary targets such that cH is set to be the known (x, y, z)sT
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coordinates of the stationary targets to be localized,

[x]CHM,p = xCHM,p =



























1 if ‖(x, y, z)p − cH‖ < RH

0 otherwise

, (3.1)

where the true attenuation image, xCHM,Targets is a [Lx, Ly, Lz] matrix consisting of ones

in the voxels occupied by the cylindrical model centered on cH with radius RH and zeros

elsewhere. The dimensions [Lx, Ly, Lz] represent the number of voxels in the x, y, and

z dimensions respectively. Since the size of the modeled cylinder depends upon RH, the

number of voxels set to one may include those bordering the voxel centered on cH. The

truth matrix, xCHM is compressed along the z-axis into a matrix of size [Lx, Ly] to compare

to the 2-D aerial view of the estimated attenuation image for stationary localization.

Additionally, the truth matrix is compressed along the y-axis rendering a matrix of size

[Lz, Lx] to compare the 2-D lateral view of the estimated attenuation image for stationary

localization. For each of 2-D matrix, the voxels are compressed to pixels. For a target’s

true 3-D position, the known x − y position is replicated along the z-dimension relative to

the target’s height. The target’s height is rounded toward infinity to account for the target’s

presence in a pixel or voxel regardless of the amount in conjunction with the assumption

that attenuation caused by a target is uniform throughout the pixel or voxel. Therefore, the

height illustrated in a true attenuation image and position will be in respect to pixel or voxel

size. The target’s true 2-D and 3-D position is discretized and centered in the respective

pixel or voxel the target occupies.

Simulated truth data for motion tracking did not utilize the Cylindrical Human model.

Instead a matrix xmT of the size [Lx, Ly] was created simply by setting only those pixels

to one, whose center coordinates were either the known positions (x, y)sT,Targets, or were

included in the known target path (x, y)mT,path and all others were set to zero. In exploring

3-D RTI networks, the target’s height was considered when generating truth images,

image estimates, and position estimates for stationary targets. The target’s height was
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not considered in data analysis for motion tracking and spatial pattern monitoring truth

data and experiments. Figures 3.10 and 3.12 show examples of the simulated truth images

for a single stationary target and two stationary targets respectively where ∆p = 1.0ft.

Figures 3.11 and 3.13 illustrates the same images but for a pixel size of ∆p = 0.5ft. Lastly,

Figures 3.14 and 3.15 show examples of the simulated true paths for a single moving target

for the controlled motion tracking experiments. Figures 3.15 and 3.16 show the simulated

true paths and attenuation images used in the spatial pattern monitoring experiments which

contained furniture obstructions.
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(e) 3-D View: xCHM,1

Figure 3.10: Truth Images: Single stationary target standing at (x, y)sT,1 = (3, 6). Target

height: 5′1′′.
{

∆p = 1.0ft
}
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(e) 3D View: xCHM,1

Figure 3.11: Truth Images: Single stationary target standing at (x, y)sT,1 = (3, 6). Target

height: 5′1′′.
{

∆p = 0.5ft
}
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(e) xCHM,2

Figure 3.12: Truth Images: Two stationary targets standing at (x, y)sT,1 = (2, 7) and

(x, y)sT,2 = (8, 3). Target heights: 5′8′′ and 5′5′′.
{

∆p = 1.0ft
}
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(e) 3-D View: xCHM,2

Figure 3.13: Truth Images: Two stationary targets standing at (x, y)sT,1 = (2, 7) and

(x, y)sT,2 = (8, 3). Target heights: 5′8′′ and 5′5′′.
{

∆p = 0.5ft
}
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Figure 3.14: Time Averaged 2-D Truth Images: Single target motion tracking over triangle

path (x, y)mT = (2, 8) − (2, 2) − (8, 2) without obstructions.
{

∆p = 1.0ft
}
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3.7 Experiment Design

This research utilized a series of experiments broken into several categories focused

on stationary localization of a single target and multiple targets, motion tracking of a single

target, and spatial pattern monitoring using a single target and multiple targets in both

obstructed and non-obstructed environments. One experiment is defined as a single data

collection period within one of the defined experiment categories. Within each experiment,

model parameters were controlled and logged, and a set of truth data was created using the

means described in Section 3.6 to match the hypothesized results for the purpose of error

analysis. Network calibration was conducted for each experiment prior to starting, while

the network was empty of any targets, and only permanent obstructions were in place if

they were to be included in the subsequent experiment; link RSS measurements were taken

for approximately 1 minute as time was tracked using the same watch.

Stationary Localization. Controlled experiments for stationary target localization

were conducted as a means to verify network reliability and explore 3-D RTI. The focus

was on verifying the network’s ability to localizae a target. A total of 70 experiments

were conducted; the variations between the experiments included the number of targets;

target height, size, and position; and the presence of permanent obstructions. A table of the

experiment statistics can be seen in Table 3.2. The only other variation was in the last two

experiments listed in the table; the first consisted of the targets sitting while the second had

the targets standing.

For each experiment within the stationary localization category, targets remained

stationary at predetermined coordinates for a total of 30 seconds, and the same set of targets

was used each time. Examples of the truth images are shown in Figures 3.10, 3.11, 3.12,

and 3.13.
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Table 3.2: Stationary Localization Experiments.

Number of

Experi-

ments

Number

of Targets

Target

Height

Target

Orientation
(x, y)sT Obstructions

8 1 5’1" Standing (3,6) No

2 1 5’8" Standing (3,6) No

2 1 6’1" Standing (3,6) No

5 1 5’1" Standing (3,6) Yes

10 1 5’1" Standing (7,5) No

5 1 5’1" Standing (7,5) Yes

5 1 5’1" Standing (7,6) Yes

4 2 5’8" / 5’5" Standing (5,2) / (7,6) No

1 2 5’8" / 5’5" Standing (5,2) / (7,6) Yes

1 2 5’8" / 5’5" Sitting (2,4) / (8,3) Yes

Motion Tracking. Following network verification, a series of experiments for

motion tracking were conducted in a similar fashion to the stationary localization

experiments. In order to be able to compare results between each experiment, a metronome

was used to regulate the pace of moving targets within the network to ensure it was

consistent between experiments. The paths for these experiments were selected for the

purpose of ensuring the network was adequately covered and hot-spots, such as the

network’s center and borders, were included.

Within the category of tracking a single target moving through the network, there

were a total of 20 experiments. There were three paths used, two of which were also

utilized when collecting spatial pattern data. The initial set of experiments were conducted

using various metronome tempos in beats per minute (BPM). to determine a moving pace

that balanced realism and experimental control. The breakdown of these experiments is

presented in Table 3.3.

Link RSS data was collected only for as long as it took the target to travel the

predetermined path. The results of these experiments aided in verifying the network could
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accurately track moving targets and thus determine the frequency of a target’s presence at

a particular location within the network. Example truth images are shown in Figure 3.14.

Table 3.3: Motion Tracking Experiments.

Number of Number of Target
(x, y)mT

Metronome
Obstructions

Experiments Targets Height Tempo (BPM)

1 1 5’1" (2,8)-(2,2)-(8,2) 35 No

1 1 5’1" (2,8)-(2,2)-(8,2) 34 No

1 1 5’1" (2,8)-(2,2)-(8,2) 33 No

10 1 5’1" (2,8)-(2,2)-(8,2) 32 No

4 1 5’1" (3,4)-(7,8) 32 Yes

3 1 5’1" (7,3)-(7,8) 32 Yes

Monitoring Spatial Patterns. Finally, the last set of experiments were designed

based on the previous work from Section 3.7, with the ultimate focus of answering the

question posed in Section 1.3: “Can an indoor RTI network be used to monitor resource

usage within a room?” In the context of this research, spatial pattern monitoring aims to

track the movements of assets in an office environment in order to determine high traffic

areas. With this information, leadership may make informed decisions on office layout to

increase productivity and efficiency. These concepts dictated the design of each experiment.

It was important to maintain parameter control such that each experiment could build on

top of the previous one. With that said, the stationary localization and motion tracking

experiments were conducted to verify the effective use of RTI in each of the different

aspects contributing to spatial pattern monitoring.

Six distinct experiments were conducted under the spatial pattern monitoring category.

The first and second experiments consisted of a single asset in an obstructed network. The

obtstructed network consisted of a two padded office chairs and a small folding table. A

primary position was defined as the location where the asset remained while not moving

through the network. The purpose of the primary positions was to act as the assets’ personal
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work spaces where they are most frequently located throughout the workday. When the

asset moved through the network, the same path, end point, and pace were used each

time. The difference between the two experiments was the frequency of how often the

asset walked the path. Varying trip frequency was necessary to demonstrate the ability

to distinguish between varying high traffic areas. The third and fourth experiments were

structured in the same manner; however, a different primary position was defined and a

new path to the same end-point was used. The two primary positions and paths from these

experiments were the same ones used in the next two experiments. The paths represent

high traffic areas to a common focus point such as a printer.

The last two experiments consisted of two assets; movement was coordinated in the

same way the single asset experiments were and the same primary positions and paths were

used. Between the two experiments, the only varying parameter was the trip frequency. In

the first experiment, asset 1 made the trip down his/her respective path two times while

asset 2 made the trip four times. This was reversed for the second experiment. In each

of them, the same assets were used and assigned the same primary positions and paths

respectively.

Table 3.4: Spatial Pattern Monitoring Experiments.

Number of Number of Target
(x, y)mT λT

Metronome
Obstructions

Experiments Targets Height Tempo (BPM)

1 1 5’1" (3,4)-(7,8) 2 32 Yes

1 1 5’1" (3,4)-(7,8) 4 32 Yes

1 1 5’1" (7,3)-(7,8) 4 32 Yes

1 1 5’1" (7,3)-(7,8) 2 32 Yes

1 2
5’8" (3,4)-(7,8) 2

32 Yes
5’5" (7,3)-(7,8) 4

1 2
5’8" (3,4)-(7,8) 4

32 Yes
5’5" (7,3)-(7,8) 2
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Figure 3.15: Truth Path: Motion tracking and spatial pattern monitoring with obstructions.

The motivation for using the same paths in each experiment was the ability to compare

the results from different experiments. Additionally, if the experiment consisted of random

movement or using different paths each time throughout the network it would not be

possible to simulate the respective truth data based on hypothesized results. Controlling

the paths taken and the trip frequency also made it possible to distinguish between

false positives in terms of inaccurately identified occupied pixels. Each spatial pattern

monitoring experiment lasted for 9 minutes. Illustrations of the true paths used in both the
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Figure 3.16: Time Averaged Aerial Truth Images: Motion tracking and spatial pattern

monitoring with obstructions.
{

∆p = 1.0ft
}

motion tracking and spatial pattern monitoring experiments are shown in Figure 3.15. The

time averaged aerial truth images that were used to compare with the pseudo attenuation

image estimates generated from the same experiments are shown in Figure 3.16.
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3.8 Data Analysis

All data analysis and processing was accomplished using MATLABr. Most of the

techniques used for data manipulation and processing were similar for each type of

experiment; however, there were a few differences between the stationary localization

experiments versus the motion tracking and spatial pattern monitoring experiments. For

each experiment, the first and last three frames were removed from the data set to account

for the period of time it took for assets to get positioned within the network. For each

experiment, the collection of raw link RSS measurements was recorded using the RTI LINK

GUI. Then the models listed in Section 3.3 were applied while varying α and ∆p; resulting

in an attenuation volume estimate x̂T IK for each data set. Next, the processing techniques

described below were utilized on the estimates relative to the experiment type.

Stationary Target Localization. In stationary target localization, the goal is to

correctly identify the position a target is standing in. The first step is to compute the sample

average of the data set across all frames. The result is a 3-D volume of estimated voxel

attenuation of the size [Lx, Ly, Lz]. A 3-D position estimate is determined from the 3-D

voxel attenuation matrix by locating a single maximum value in each x− y plane. Next, the

attenuation estimate is compressed in two different ways. First, by determining the mean

along the vertical dimension z providing an aerial view of the estimated 2-D attenuation

image, and the second by determining the mean along the lateral dimension y providing a

lateral view of the estimated 2-D attenuation image. Compressing the data along the z-axis

results in 2-D estimates and therefore voxels are reduced to pixels. Additionally, due to

the sporadic nature of RTI, pixels can be incorrectly identified as occupied; false-positives

happen infrequently and are negligible.

Compressing the data now results in a [Lx, Ly] matrix of estimated pixel attenuation

in the x − y plane. A search for the maximum value results in a (x, y) position estimate.

Attenuation is assumed to be uniform over the entire area of the pixel (or volume of the
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voxel); therefore, the target’s estimated position is generalized to be the center of the

respective pixel or voxel, when the target’s true position could be anywhere within the pixel

or voxel. The same method is used for multiple targets by searching for the two maximum

values. The same attenuation image estimates are generated which show the varying range

of attenuation values. Using the attenuation imagery, targets may be located through visual

inspection. However, for this research, the number of targets must be known to determine

how many maxima should be expected. Adaptive filter and machine vision techniques are

explored in the literature [17, 18, 44, 45, 56] to estimate the number of targets and then

accurately track them, but they were not implemented because they were not the focus of

this research.

Motion Tracking and Spatial Pattern Monitoring. Data analysis for motion

tracking and spatial pattern monitoring are similar in the fact that the targets are moving

and therefore the data is not time averaged before processing. Therefore, the same steps

used in analyzing stationary target localization data are implemented, except a maximum

value is located in each frame and stored in a new matrix of [Lx, Ly, # o f f rames] size.

The new matrix can be used to generate a single, aerial 2-D attenuation image estimate

that shows the maximum attenuation values over time and all others are set to zero. Each

maximum value represents a target’s position at that point in time. The values are stored

sequentially so the path may be estimated as well.

An additional step that was not taken in the analysis of stationary localization

data was applying some form of logic to throw out unreliable estimates. In stationary

localization, it wasn’t necessary because a time average was taken and therefore if a frame

of measurements was unreliable, the effects of an inaccurate estimate were minimized. For

motion tracking, the maximum value of each frame of data was analyzed; the maximum

represents a position estimate for that point in time, if the value was less than 50% of the

maximum attenuation value of the entire data set (each frame included), it was thrown out.
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The last step in analyzing motion tracking and spatial pattern monitoring data was

the process of generating a histogram storing the frequency of occupied pixels over time.

Ultimately, the histogram will not only show the estimated positions and paths but also the

frequency with which the respective pixel was occupied. The final histogram considered

only those estimates that were considered to be reliable passing the logic test described

above.

Error Calculations. Two forms of error calculation were used in the data analysis

of this research. The first is the error in the position estimate, ǫD, which is calculated using

the Euclidean Distancebetween each true position and corresponding estimated position:

ǫD =
1

Nz × NT

NT
∑

i=1

Nz
∑

ii=1

‖(x̂, ŷ, ẑ)i,ii − (x, y, z)sT,i,ii‖, (3.2)

where (x, y, z)sT is the target’s true stationary position, (x̂, ŷ, ẑ) is the estimated position, Nz

is the number of estimates in the z-dimension based on target height, and NT is the number

of targets. This form of error was used in analyzing the results from stationary localization

experiments. To determine the error in a 3-D position estimate, the true position and

estimated position from each x− y plane were compared. For a 2-D position estimate, only

one truth-estimate comparison was needed per target. In each case, the position estimate

error is an average per x − y estimate.

The second form, NMSER, is the error in the estimated pseudo attenuation images

from the motion tracking and spatial pattern monitoring experiments. The truth image xmT

is generated from a matrix of ones and zeros, and therefore the estimated image must also

be normalized between zero and one. The pseudo attenuation image estimate, x̂mC , is a

time averaged estimate capturing the entire estimated path such that the pixels that were

estimated to be occupied at some point in time were set to one and all others were set to

zero. The NMSE of the normalized image is defined as:

NMS ER =
‖x̂T − xmC‖2

Np

, (3.3)
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where Np is the number of pixels in the image and x̂T is the true image consisting of ones

in pixels the known path traverses and zeros elsewhere. Error estimation for spatial pattern

monitoring was accomplished as a means to verify primary position and path localization.

3.9 Chapter Summary

This chapter described the equipment and tools used in this research and presented the

methodologies used to establish an RTI network, simulate truth data, design experiments,

and analyze the data from those experiments.
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IV. Results and Discussion

T
his chapter presents results of various stationary localization, motion tracking, and

spatial pattern monitoring experiments for one and two targets both in unobstructed

and obstructed networks. The effects on stationary target localization accuracy and

attenuation image estimate resolution as a result of parameters, α and ∆p, are discussed.

The 2-D and 3-D position and attenuation image estimation results are presented

for comparison from a select number of stationary localization and motion tracking

experiments; the research observations and conclusions drawn apply to each of the

experiments conducted in that category as described in Tables 3.2 and 3.3. Additional

comparisons are made between experiments where the target’s position is varied, furniture

obstructions are introduced, and a second target is present. Lastly, the results from each

spatial pattern monitoring experiment are discussed. Focus is placed on the impacts of the

specific path used, how often the path is traveled, and the presence of more than one target.

4.1 Stationary Target Localization

Stationary localization experiments were categorized by the number of targets, the

true position, and the presence of additional obstructions in the area. The results of varying

∆p and α for each experiment were analyzed. The average localization error, ǭD, of 2-D

and 3-D position estimates across the range of α = [1 : 150] for each experiment category

are presented in Table 4.1.

In all but two cases, the 2-D position estimates were 100% accurate when ∆p = 1.0

ft regardless of the value of α. The average localization error when ∆p = 0.5 ft was

insignificant for single target estimates and still modest, less than 2.0 ft, for experiments

with two targets. 3-D position estimates generally suffered larger average localization error

in each category across the range of α and for both values of ∆p. Conversely, the average
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localization error for 3-D position estimates was larger when ∆p = 1.0 ft. In both cases

of ∆p, 3-D position estimates experienced the largest values of ǫD across the board. As is

shown in later figures in this section, high α values can have a negative impact when two

targets are within close proximity of each other. The smoothing effects can overtake the

estimate and result in “blending” the two high attenuation spatial impact areas together,

making it difficult to differentiate between multiple targets. When additional obstructions

are introduced into the area multipath may increase and link RSS may be absorbed by

the new obstructions, increasing the challenge of locating multiple targets. For single

target 3-D position estimation, the larger values of error are relative. This will be further

illustrated in Figure 4.6 and discussed in that particular section.

Table 4.1: Average localization error, ǭD,α (ft) per experiment, across the range α = [1 :

150] for 2-D and 3-D position estimates of stationary targets.

Experiment Details 2-D 3-D

Number of
(x, y)sT Obstructions ∆p = 0.5 ft ∆p = 1.0 ft ∆p = 0.5 ft ∆p = 1.0 ft

Targets

1 (3,6) No 1.20 0.32 1.17 1.31

1 (3,6) Yes 0.28 0.00 0.69 1.22

1 (7,5) No 0.34 0.00 1.20 1.47

1 (7,5) Yes 0.06 0.00 0.59 1.15

1 (7,6) Yes 0.18 0.00 0.95 1.27

2
(5,2)

No 1.87 0.00 3.29 3.34
(7,6)

2
(5,2)

Yes 1.96 0.55 2.82 3.35
(7,6)

Furthermore, the average localization error between similar experiments, where the

only difference was the presence of additional obstructions tended to either be lower or

unaffected when obstructions, were present. The presence of additional obstructions had

little impact, if any at all, on stationary localization. This data provided insight into the

performance of RTI in a naturally obstructed environment.
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The addition of a second target resulted in larger average localization error for 2-D

position estimates when ∆p = 0.5 ft and 3-D position estimates for both voxel sizes as

compared to single target estimates. The addition of a second target generally resulted

in noisier measurements making localization more challenging. Additional results from

two-target localization experiments are discussed later on.

In this research, target tracking depended on the 2-D position estimate; therefore, ∆p

will remain at 1.0 ft for motion tracking and spatial pattern monitoring experiments since

it yielded the most favorable results.

The parameter α determines how much influence the regularization term has on the

estimate dictating the amount of original measurement information present in the final

estimate. The variance of the average localization error, σ2
ǫD

, as a function of α and ∆p

for each experiment category is presented in Table 4.2. In each experiment category, there

was little variance in the average localization error over the range of α for each experiment

category. Values of 5 ≥ α ≤ 150 yielded the same results for 2-D position estimates

of stationary targets. That same range of α resulted in only slight variations for 3-D

position estimates of stationary targets. Overall, there was less variance in the average

localization error as a result of α for 3-D position estimates versus 2-D position estimates.

Small variances illustrate the consistency of both 2-D and 3-D stationary target localization

regardless of α.
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Table 4.2: Variance of average localization error, σ2
ǫD

(ft2) for 2-D and 3-D position

estimates of stationary targets across the range α = [1 : 150].

Experiment Details 2-D 3-D

Number of
(x, y)sT Obstructions ∆p = 0.5 ft ∆p = 1.0 ft ∆p = 0.5 ft ∆p = 1.0 ft

Targets

1 (3,6) No 0.04 0.03 0.03 0.08

1 (3,6) Yes 0.06 0.00 0.02 0.02

1 (7,5) No 0.03 0.00 0.04 0.03

1 (7,5) Yes 0.06 0.00 0.02 0.04

1 (7,6) Yes 0.06 0.00 0.01 0.01

2
(5,2)

No 0.01 0.00 0.01 0.05
(7,6)

2
(5,2)

Yes 0.10 0.70 0.03 0.12
(7,6)

The choice for α had visually apparent impacts on estimated attenuation images versus

position estimates. For smaller values of α the impact was more evident, but as α was

increased, the impact on a set of results between subsequent values of α grew to be less

noticeable to the human eye. This is not true for extremely large values of α shown in

Figures 4.14 and 4.16. As α is increased, the image visually appears to tighten around

the obstruction as the high attenuation intensities caused by the obstruction stand out more

and the intensity of noisy areas within the image is reduced. The overall intensity of the

image is reduced across each pixel. As α is increased, the attenuation image will become

smoother and the higher attenuation intensities caused by the obstruction will begin to blur

over the entire image.

Figures 4.1 and 4.2 present the 2-D aerial attenuation images x̂(3,6) (dB/ft) of a target

that is 5′8′′ tall standing at position (x, y)sT = (3, 6) ft as marked with the asterisk. The

figures provide comparisons for each value of ∆p as the value of α is increased from

1.0 to 125.0. Note how noisy areas are reduced and the image appears smoother, and

stronger attenuation intensities appear concentrated around the target for both pixel sizes.

Ultimately, the grouping of higher intensities where the target is standing disperses or

76



spreads over a greater area revealing a smoother image, especially when ∆p = 0.5 ft. This

smoothing effect is the intended result Tikhonov Regularization, to help fill-in and smooth

sparse and highly varied data. Values of α larger than those investigated in this research

would be expected to have even greater smoothing effects until the spatial impact area of

the target is blurred across the entire image.

Image estimates generated with ∆p = 0.5 ft versus ∆p = 1.0 ft appear to provide

additional image resolution and thus are more aesthetically pleasing. However, image

resolution does not necessarily correspond with localization accuracy as the position

estimate is based on the maximum registered attenuation value. One such example is

provided in Figure 4.3. The localization results for this experiment yielded in an inaccurate

2-D position estimate when ∆P = 0.5 ft, but an accurate estimate for the larger pixel size

regardless of the value of α. The physical size of a pixel as it relates to the average size of

a human target is an important relationship, the larger pixel size provides more tolerance in

physical position estimation. If ∆p were set to be much larger than the expected target size

the estimates may no longer be useful because the possible occupied area identified in the

estimate would be too large.

Choosing an appropriate pixel size should not only depend on the fidelity needed, but

on the achievable node density and available link coverage. The number of unique two-way

links should be equal to or greater than the number of pixels or voxels (i.e., M ≥ N). When

the number of pixels or voxel is greater than the number of links in the network, the same

amount of RSS information from M links is expected to be discretized over a finer area

than was actually measured.

The impacts of α and ∆p are consistent in 3-D position estimation, and 2-D lateral and

3-D attenuation image estimation. The corresponding 2-D lateral attenuation images from

the same experiment presented in Figures 4.1 and 4.2 are shown in Figures 4.4 and 4.5.

There is a decrease in the registered attenuation intensity of the target as α is increased.

77



The negative impact in position estimation between two images with the same value of α

as ∆p is varied is less apparent in lateral images. However, from these images we transition

to 3-D position and attenuation image estimation, and the possibility of extracting target

features such as height, size, and density.

Figure 4.6 shows the 3-D position estimates for a stationary target that is 5′1′′ tall

standing at (x, y)sT = (3, 6) ft. 2-D localization error ǫD appears to stabilize for ∆p = 1.0 ft

at lower values of α, while for ∆p = 0.5 increased regularization is needed. In 3-D position

estimation ǫD doesn’t stabilize until regularization is increased to approximately α = 75 for

both voxel sizes. Figure 4.6 further illustrates that image resolution does not necessarily

coincide with localization accuracy. Even though ǫD is larger for ∆p = 1.0 ft than ∆p = 0.5

ft, a larger voxel size yielded four of the five accurately estimated occupied voxels while

for each value of α presented, none of the occupied voxels were correctly estimated when

∆p = 0.5 ft. For the smaller voxel size some experimental results did yield accurately

estimated voxels; however, the majority of results were in favor of a larger voxel size for

both 2-D and 3-D position estimates. Examples are shown in Figure 4.12.

Figures 4.7 and 4.8 are 3-D attenuation images for a stationary target that is 5′1′′ tall

standing at (x, y)sT = (3, 6). Voxels with a registered attenuation value greater than 50%

of x̂p,MAX are enlarged so they are more visible. The grouping of higher attenuation values

cluster near the target’s true position. Higher values of α smooth the estimate, and the

smaller voxel size provides a higher resolution image. This is more aesthetically appealing,

and results in a denser estimate of the target’s volume within the space.

Three targets with different heights were used to determine if a 3-D RTI network

could be used to extract physical features of a target such as height, size, and density.

Multiple data sets were recorded for each target; the target’s position remained constant

at (x, y)sT = (3, 6) ft. Figures 4.9, 4.10, and 4.11 provide comparisons of 2-D and 3-D

attenuation images from multiple experiments where target position, α, and ∆p remained
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constant but the target’s height was different in each set. Examining the 2-D lateral

attenuation images, the target’s height is somewhat discernible, but it varies between

experiments. In every case, the strongest attenuation values were registered in the lowest

layer of voxels. Figure 4.11 provides the aerial views from the same set of experiments. In

the 2-D attenuation images, there appears to be a relationship in the scale and shape of the

attenuation caused by the target and the target’s features, such as height in the aerial view,

and width or density in the lateral view. A consistent relationship between target features

and the resulting 3-D attenuation image for each experiment is not evident.

As stated earlier, a higher resolution would be more useful for higher fidelity in feature

extraction. The smoothing effects of higher α values may also prove more beneficial or even

necessary for feature extraction in addition to using smaller pixel sizes. Examples of the

effects of significantly increasing α for the same experiments used previously are provided

in Figures 4.13, 4.14, 4.15, and 4.16. The intense smoothing effects of α = [500.0, 1000.0]

on the 3-D attenuation image requires that only the voxels with registered attenuation values

within 30% of x̂p,MAX be enlarged.

Figure 4.17 includes aerial and lateral 2-D attenuation images for a localization

experiment of two, stationary targets while the value of α is varied. When a second

target is present a number of links will be attenuated before intersecting the second target,

which will be more detrimental in networks with limited link coverage. Additionally, the

introduction of a second target in the network results in more multipath and noise. In these

images, mid-range values of α are effective in reducing the noise so it is easier to accurately

locate both targets without blurring the two spatial impact areas together.

Through visual inspection, the value of α = 75.0 appeared to result in attenuation

images where targets were clearly identifiable between each experiment category. It was

also one of the first values of α where the average localization error stabilized between 2-D
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and 3-D estimates. The regularization parameter α = 75.0 was selected for presenting the

results of the motion tracking and spatial pattern monitoring experiments.

Estimation accuracy is also dependent on the target’s physical location within the

network. Ultimately it is dependent on the link coverage and the multipath due to the

area’s topography specific to the respective target’s location. Figure 4.18 provides a

comparison of the estimates from two experiments where a stationary target stood at two

different locations within the network. The average localization error when the target stood

at (x, y)sT = (7, 5) ft was lower for 2-D and 3-D position estimates when compared to

experiments where the target stood at (x, y)sT = (3, 6) ft. Over the set of experiments for

each position, the 2-D aerial attenuation images for x̂(7,5) (dB/ft) appeared to be less noisy

than those for x̂(3,6) (dB/ft); the opposite was true for the lateral view of the attenuation

images.

In Figures 4.19 and 4.20, the same two points used in the previous set of experiments

are re-examined when additional obstructions are introduced into the area. Adding

furniture to the environment had little affect on the 2-D and 3-D position estimates. It does

appear that additional noise was visible in the attenuation images, specifically in the lateral

views. It also seems that impact of additional obstructions was greater in the estimated

attenuation images when the target stood at (x, y)sT = (7, 5) as opposed to (x, y)sT = (3, 6)

ft.

Figure 4.21 illustrates the impact of additional obstructions in an experiment with

two targets. The lateral attenuation images appear to be most affected by the multipath

introduced as a result of the new obstructions. The second target is not discernible when

there is furniture in the way; however, the impact isn’t noticeable in the aerial estimates.
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(c) α = 5.0 | ǫD = 0.5 ft
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(e) α = 15.0 | ǫD = 0.0 ft
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Figure 4.1: Relationship between pixel size and 2-D position and aerial attenuation images,

x̂(3,6) (dB/ft). Stationary 5′8′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column

∆p = 0.5ft and in the second column ∆p = 1.0ft. {α = [1.0, 5.0, 15.0]}

81



0 2 4 6 8 10
0

2

4

6

8

10

X [ft]

Y
 [

ft
]

 

 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) α = 30.0 | ǫD = 0.0 ft

0 2 4 6 8 10
0

2

4

6

8

10

X [ft]

Y
 [

ft
]

 

 

0

0.05

0.1

0.15

0.2

0.25
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(c) α = 75.0 | ǫD = 0.0 ft
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(e) α = 125.0 | ǫD = 0.0 ft
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Figure 4.2: Relationship between pixel size and 2-D position and aerial attenuation images,

x̂(3,6) (dB/ft). Stationary 5′8′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column

∆p = 0.5ft and in the second column ∆p = 1.0ft. {α = [30.0, 75, 125.0]}
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(a) α = 1.0 | ǫD = 1.0 ft
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(b) α = 1.0 | ǫD = 0.0 ft
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(c) α = 75.0 | ǫD = 0.5 ft
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(d) α = 75.0 | ǫD = 0.0 ft
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(e) α = 125.0 | ǫD = 0.5 ft
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Figure 4.3: Relationship between pixel size and 2-D position and aerial attenuation images,

x̂(3,6) (dB/ft). Stationary 6′1′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column

∆p = 0.5ft and in the second column ∆p = 1.0ft. {α = [1.0, 75.0, 125.0]}
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(c) α = 5.0
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(e) α = 15.0
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Figure 4.4: Relationship between pixel size and 2-D lateral attenuation images, x̂(3,6)

(dB/ft). Stationary 5′8′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column

∆p = 0.5ft and in the second column ∆p = 1.0ft. {α = [1.0, 5.0, 15.0]}
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(c) α = 75.0
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Figure 4.5: Relationship between pixel size and 2-D lateral attenuation images, x̂(3,6)

(dB/ft). Stationary 5′8′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column

∆p = 0.5ft and in the second column ∆p = 1.0ft. {α = [30.0, 75, 125.0]}
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(b) α = 1.0 | ǫD = 2.07 ft
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(c) α = 50.0 | ǫD = 0.76 ft
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(d) α = 50.0 | ǫD = 1.81 ft
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(e) α = 75.0 | ǫD = 0.76 ft
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Figure 4.6: Relationship between pixel size and 3-D position estimates, (x̂, ŷ, ẑ) ft.

Stationary 5′1′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column ∆p = 0.5ft

and in the second column ∆p = 1.0ft. {α = [1.0, 50.0, 75.0]}
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Figure 4.7: Relationship between pixel size and 3-D attenuation images, x̂(3,6) (dB/ft).

Stationary 5′1′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column ∆p = 0.5ft

and in the second column ∆p = 1.0ft. {α = [1.0, 50.0]}
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(b) α = 75.0 | ∆p = 1.0 ft

0
5

10

0
5

10
0

2

4

6

8

X [ft]Y [ft]

Z
 [

ft
]

(c) α = 125.0 | ∆p = 0.5 ft
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Figure 4.8: Relationship between pixel size and 3-D attenuation images, x̂(3,6) (dB/ft).

Stationary 5′1′′ tall target standing at (x, y)sT = (3, 6) ft. In the first column ∆p = 0.5ft

and in the second column ∆p = 1.0ft. {α = [75, 125.0]}
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(c) Exp. 1 - Height: 5′8′′ |Weight: 190 lbs
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(e) Exp. 1 - Height: 6′1′′ |Weight: 185 lbs
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Figure 4.9: Comparison of 2-D lateral attenuation images, x̂(3,6) (dB/ft) of targets with

different heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

∆p = 0.5 ft | α = 150
}
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Figure 4.10: Comparison of 3-D attenuation images, x̂(3,6) (dB/ft) of targets with different

heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

α = 150 | ∆p = 0.5 ft
}
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Figure 4.11: Comparison of 2-D aerial attenuation images, x̂(3,6) (dB/ft) of targets with

different heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

α = 150 | ∆p = 0.5 ft
}
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(a) Exp. 1 - Height: 5′1′′ | ǫD = 1.98 ft
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(b) Exp. 2 - Height: 5′1′′ | ǫD = 1.33 ft
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(c) Exp. 1 - Height: 5′8′′ | ǫD = 0.45 ft
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(d) Exp. 2 - Height: 5′8′′ | ǫD = 0.04 ft
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(e) Exp. 1 - Height: 6′1′′ | ǫD = 0.56 ft
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(f) Exp. 2 - Height: 6′1′′ | ǫD = 0.56 ft

Figure 4.12: Comparison of 3-D position estimates, (x̂, ŷ, ẑ)sT (dB/ft) of targets with

different heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

α = 150 | ∆p = 0.5 ft
}
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(a) Exp. 1 - Height: 5′1′′ |Weight: 130 lbs
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(c) Exp. 1 - Height: 5′8′′ |Weight: 190 lbs
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(d) Exp. 2 - Height: 5′8′′ |Weight: 190 lbs
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(e) Exp. 1 - Height: 6′1′′ |Weight: 185 lbs
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Figure 4.13: Comparison of 2-D lateral attenuation images, x̂(3,6) (dB/ft) of targets with

different heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

∆p = 0.5 ft | α = 500.0
}
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Figure 4.14: Comparison of 3-D attenuation images, x̂(3,6) (dB/ft) of targets with different

heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

∆p = 0.5 ft | α = 500.0
}
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(a) Exp. 1 - Height: 5′1′′ |Weight: 130 lbs
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(b) Exp. 2 - Height: 5′1′′ |Weight: 130 lbs
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(c) Exp. 1 - Height: 5′8′′ |Weight: 190 lbs
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(d) Exp. 2 - Height: 5′8′′ |Weight: 190 lbs
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(e) Exp. 1 - Height: 6′1′′ |Weight: 185 lbs
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Figure 4.15: Comparison of 2-D lateral attenuation images, x̂(3,6) (dB/ft) of targets with

different heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

∆p = 0.5 ft | α = 1000.0
}
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Figure 4.16: Comparison of 3-D attenuation images, x̂(3,6) (dB/ft) of targets with different

heights. Stationary target standing at (x, y)sT = (3, 6) ft.
{

∆p = 0.5 ft | α = 1000.0
}
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(b) Lateral View | α = 1.0
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(c) Aerial View | α = 30.0
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(d) Lateral View | α = 30.0
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(e) Aerial View | α = 75.0
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(f) Lateral View | α = 75.0

Figure 4.17: Relationship between α and 2-D attenuation images x̂(5,2),(7,6) (dB/ft) of two

stationary targets standing at (x, y)sT,1 = (5, 2) and (x, y)sT,2 = (7, 6) ft where ∆p = 1.0 ft.

Targets are 5′8′′ and 5′4′′ respectively.
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(a) (x̂, ŷ, ẑ)(3,6,z) | ǫD = 1.79 ft
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(b) (x̂, ŷ, ẑ)(7,5,z) | ǫD = 1.34 ft
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(c) Aerial View: x̂(3,6)
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(d) Aerial View: x̂(7,5)
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(e) Lateral View: x̂(3,6)
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(f) Lateral View: x̂(7,5)

Figure 4.18: Comparison of 3-D position and 2-D attenuation images x̂sT (dB/ft) based on

the position of a single stationary target who is 5′1′′. [α = 75.0 | ∆p = 1.0 ft].

98



0
5

10

0
5

10
0

2

4

6

8

 

X [ft]Y [ft]
 

Z
 [

ft
]

(x, y, z)sT
(x̂, ŷ, ẑ)s
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(c) Aerial View: x̂(3,6)
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(d) Aerial View: x̂(3,6),O
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(e) Lateral View: x̂(3,6)
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Figure 4.19: Comparison of 3-D position and 2-D attenuation images x̂(3,6) (dB/ft) for a

stationary 5′1′′ target standing at (x, y)sT = (3, 6) ft with and without furniture within the

area. The first column has the results from the unobstructed network and the second column

has the results from the obstructed network [α = 75.0 | ∆p = 1.0 ft].
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(a) ǫD = 1.34 ft (b) ǫD = 0.72 ft
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(c) Aerial View: x̂(7,5)
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(d) Aerial View: x̂(7,5),O
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(e) Lateral View: x̂(7,5)
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Figure 4.20: Comparison of 3-D position and 2-D attenuation images x̂(7,5) (dB/ft) for a

stationary 5′1′′ target standing at (x, y)sT = (7, 5) ft with and without furniture within the

area. The first column has the results from the unobstructed network and the second column

has the results from the obstructed network [α = 75.0 | ∆p = 1.0 ft].
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(a) ǫD = 2.74 ft (b) ǫD = 3.13 ft
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(c) Aerial View: x̂(5,2)|(7,6)
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(d) Aerial View: x̂(5,2)|(7,6),O
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(e) Lateral View: x̂(5,2)|(7,6)
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(f) Lateral View: x̂(5,2)|(7,6),O

Figure 4.21: Comparison of 3-D position and 2-D attenuation images x̂(5,2),(7,6) (dB/ft) for

the same two stationary targets standing at (x, y)sT,1 = (5, 2) and (x, y)sT,2 = (7, 6) ft with and

without furniture within the area. Targets are 5′8′′ and 5′4′′ respectively. The first column

has the results from the unobstructed network and the second column has the results from

the obstructed network [α = 75.0 | ∆p = 1.0 ft].
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4.2 Motion Tracking

There were three categories of motion tracking experiments conducted each consisting

of a single target. In the first set, there were no additional obstructions in the environment

and the target walked a longer more comprehensive path covering a larger area. A

walking pace was chosen using a metronome tempo trainer by comparing the subsequent

results from these experiments. The next two sets of experiments included additional

obstructions and covered shorter paths through the network so they were shorter in duration

comparatively. The purpose of these experiments was to establish a baseline for the spatial

pattern monitoring experiments. Table 4.3 shows the average normalized MSER of the

aerial pseudo-attenuation images generated as a function of α from each experiment. The

average normalized MSER was lowest when ∆p = 1.0 ft. There was very little dispersion

in error across the range of α. Figure 4.22 further illustrates the little impact α has on the

set of single target, motion tracking experiments. Experiments using path 2 had a lower

average normalized MSER than experiments using path 1.

Table 4.3: Average normalized mean squared error, NMS ER and standard deviation,

σNMS ER
of single target motion tracking experiments using aerial pseudo-attenuation

images evaluated over α.

Experiment Details NMSER σMSER

Path (x, y)mT Obstructions ∆p = 0.5 ft ∆p = 1.0 ft ∆p = 0.5 ft ∆p = 1.0 ft

Triangle (2,8)-(2,2)-(8,2) No 0.23 0.067 0.00 0.00

Path 1 (3,4)-(7,8) Yes 0.07 0.01 0.00 0.00

Path 2 (7,3)-(7,8) Yes 0.07 0.00 0.00 0.00

Figures 4.23, 4.24, and 4.25 illustrate the pseudo-attenuation images generated after

removing estimated pixel attenuation values less than 50% of the maximum attenuation

value registered during the entire data set x̂p ≤ 0.5x̂MAX yielding a “clean-estimate”. The

choice to remove estimates below 50% was made through visual inspection of various
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Figure 4.22: Average normalized mean squared error as a function of α and ∆p of single

target motion tracking experiments for each path. The bold lines represent ∆p = 1.0 ft, and

the lighter lines represent ∆p = 0.5 ft. {α = [1.0 : 1.0 : 150.0]}

experimental results. Estimates registering such low attenuation values in comparison to

the strongest registered attenuation value were generally attributable to the sporadic nature

of RTI when targets are moving and were not accurate position estimates.

Figure 4.26 provides a comparison of the histograms illustrating the occupied

pixel frequency over the course of the particular data collection set for each type of

motion tracking experiment. As expected, the high traffic areas are evident because

the corresponding pixels registered a target’s presence during one frame or another.

Additionally, the number of times a particular pixel was occupied is only on the order

of single digits because the target was constantly moving and only traveled the path once in

the case of (x, y)mT,tri and twice for paths 1 and 2. The values are not exactly even for each

pixel likely due to a combination of the sporadic nature of RTI and the instances when a

target was occupying two pixels during one frame of measurements.
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Figure 4.23: Pseudo-attenuation image estimate and path estimates of a single target

traveling the path (x, y)mT,tri = (2, 8) − (2, 2) − (8, 2) ft. Clean estimates are a result of

throwing out each x̂p ≤ 0.5 × x̂MAX.
{

∆p = 1.0 ft | α = 75.0
}
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(c) Original path estimate
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(d) Clean-path estimate

Figure 4.24: Pseudo-attenuation image estimate and path estimates of a single target

traveling the path (x, y)mT,2 = (3, 4) − (7, 8) ft. Clean estimates are a result of throwing

out each x̂p ≤ 0.5 × x̂MAX. x̂p ≤ 0.5 × x̂MAX.
{

∆p = 1.0 ft | α = 75.0
}
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(c) Original path estimate
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(d) Clean-path estimate

Figure 4.25: Pseudo-attenuation image estimate and path estimates of a single target

traveling the path (x, y)mT,2 = (7, 3) − (7, 8) ft. Clean estimates are a result of throwing

out each x̂p ≤ 0.5 × x̂MAX. x̂p ≤ 0.5 × x̂MAX.
{

∆p = 1.0 ft | α = 75.0
}
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Figure 4.26: Histograms results for short duration controlled motion tracking experiments

of a single target where α = 75.0 and ∆p = 1.0 ft.
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4.3 Spatial Pattern Monitoring

The results of the previous series of experiments were used to provide an experimental

method for choosing values for α and ∆. They also provided an avenue for verifying

the ability of the established RTI network used in this research to accurately locate and

track targets in a naturally obstructed environment. The results from the shorter duration

motion tracking experiments provided insight into the expected outcome of spatial pattern

monitoring experiments longer in duration which were similar in the selected primary

positions and paths.

A set of single target spatial pattern monitoring experiments was conducted for each

path where the number of times each path was traveled, λT , was varied. Each experiment

lasted for 9 minutes. The purpose of these experiments was to show that the high traffic

pattern illustrated in the histograms between two experiments with different λT would be

distinguishable in scale but the paths would still be identifiable as the same.

Additionally, spatial pattern monitoring experiments with only one target were done

prior to introducing the second target because it had already been shown that localizing and

imaging two targets was generally more challenging than localizing and imaging a single

target. The two-target spatial pattern monitoring experiments utilized the same paths as

those in the single target spatial pattern monitoring experiments. The expectation was that

the results between them would be similar with respect to the path traveled and λT .

Figure 4.27 illustrates the average normalized MSER as a function of α, ∆p, λT , and

the path traveled. Varying each of these parameters for path 1 resulted in little change in the

average normalized MSER. The impact of varying these parameters in the spatial pattern

monitoring experiments for path 2 was clearer and more consistent. When λT = 4 there

is more movement within the network over the entire data collection period; the target is

moving more often than it is remaining stationary. As a result, the average normalized

MSER is higher for experiments when the path is traveled more frequently because the
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RTI network used in this research proved less effective at motion tracking as opposed to

stationary localization.

Figures 4.28 and 4.29 illustrate the time-averaged clean-path estimates and histograms

from the single target spatial pattern monitoring experiments for each path as λT is varied.

The histogram images for each experiment are very similar. The noticeable differences are

the presence of more noise in the path 1 attenuation images, and the range of histogram

values for each experiment as a function of λT . When the path is traveled less frequently,

the primary position is occupied more often and therefore a higher value is present in that

pixel. As λT is increased, the primary position value is reduced and the pixels that lie in

the traveled path have higher values respectively. The final pixel at the end of each path,

opposite of the primary position, has a higher value than the intermediate pixels because it

is the target’s turn around point.

Figure 4.30 introduces the average normalized MSER for the spatial pattern monitoring

experiments of two targets. Even though λT is varied for each path between the two

experiments, the total number of times any path is traveled between the two experiments

is the same, so, as expected, the average normalized MSER is relatively consistent between

them. Figure 4.31 compares the average normalized MSER of a single two-target spatial

pattern monitoring experiment with the two corresponding single target spatial pattern

monitoring experiments based on λT per path.

Figure 4.32 shows the clean, pseudo-attenuation images for each two-target spatial

pattern monitoring experiment. As expected the images are also similar as were the average

normalized MSER results presented in Figure 4.31. Figure 4.33 provides the final histogram

results from two different viewpoints for the two spatial pattern monitoring experiments of

two targets. The two paths are identifiable as high traffic areas, and their histogram values

are representative of the value of λT . Path 1 is not as distinguishable as path 2 regardless of

λT .
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Figure 4.27: Average normalized mean squared error as a function of α and ∆p of spatial

pattern monitoring experiments with one target. Each figure illustrates the estimation

error based on the path traveled, how often the path was traveled λT , and pixel size

∆p. The bold lines represent ∆p = 1.0 ft, and the lighter lines represent ∆p = 0.5 ft.

{α = [1.0 : 1.0 : 150.0]}
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(c) Clean-path estimate | λT,1 = 2
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(d) Clean-path estimate | λT,1 = 4
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Figure 4.28: Clean-path estimates and histogram results for single target, spatial pattern

monitoring with varied trip frequency λT over the path. Plotted values are scaled between

0 and 25 for visual clarity as shown on the colorbar. The z-axis illustrates true counts.

(x, y)mT,1 [α = 75.0 | ∆p = 1.0 ft].
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(c) Clean-path estimate | λT,2 = 2

0 2 4 6 8 10
0

2

4

6

8

10

X [ft]

Y
 [

ft
]

 

 
(x, y)mT

(x, y)sT
(x̂, ŷ)mC
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(d) Clean-path estimate | λT,2 = 4
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Figure 4.29: Clean-path estimates and histogram results for single target, spatial pattern

monitoring with varied trip frequency λT over the path. Plotted values are scaled between

0 and 25 for visual clarity as shown on the colorbar. The z-axis illustrates true counts.

(x, y)mT,2 [α = 75.0 | ∆p = 1.0 ft].
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Figure 4.30: Average normalized mean squared error as a function of α and ∆p of spatial

pattern monitoring experiments with two targets. Illustrates the estimation error based on

how often the respective path was traveled λT , and pixel size ∆p. The bold lines represent

∆p = 1.0 ft, and the lighter lines represent ∆p = 0.5 ft. λT was varied between the two

experiments.
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Figure 4.31: Average normalized mean squared error as a function of α and ∆p of spatial

pattern monitoring experiments. Each figure illustrates the estimation error based on the

path traveled, how often the path was traveled λT , and the number of targets. The bold lines

represent the experiments with two targets, and the lighter lines represent experiments with

one target.
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Figure 4.32: Estimates from two target, spatial pattern monitoring experiments with varied

trip frequency λT per path. The first column contains the results for λT,1 = 2 and λT,2 = 4,

and the second column contains the results for λT,1 = 4 and λT,2 = 2. [α = 75.0 |∆p = 1.0 ft]

115



 0 1 2 3 4 5 6 7 8 910
 0 1 2 3 4 5 6 7 8 910

0

200

400

 

X [ft]Y [ft] 0

5

10

15

20

25

(a) λT,1 = 2 | λT,2 = 4

 0 1 2 3 4 5 6 7 8 910
 0 1 2 3 4 5 6 7 8 910

0

200

400

 

X [ft]Y [ft] 0

5

10

15

20

25

(b) λT,1 = 4 | λT,2 = 2

 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

0

200

400

 

X [ft]
Y [ft]

 0

5

10

15

20

25

(c) λT,1 = 2 | λT,2 = 4

 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

0

200

400

 

X [ft]
Y [ft]

 0

5

10

15

20

25

(d) λT,1 = 4 | λT,2 = 2

Figure 4.33: Multiple viewpoints of histogram results from spatial pattern monitoring

experiments for two targets with varied trip frequency λT per path. Plotted values are

scaled between 0 and 25 for visual clarity as shown on the colorbar. The z-axis illustrates

true counts. [α = 75.0 | ∆p = 1.0 ft]
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4.4 Chapter Summary

This chapter presented results of various stationary localization, motion tracking, and

spatial pattern monitoring experiments for one and two targets both in unobstructed and

obstructed networks. The RTI network appeared most effective in single target, stationary

localization. Introducing additional obstructions in the environment had little effect, as

did the choice of the regularization parameter in position estimation. The choice of pixel

size had more of an impact in localization accuracy especially for lower values of the

regularization parameter.
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V. Conclusion and Future Work

T
his chapter summarizes this thesis, presents research conclusions, and provides

recommendations for future work. The growing field of DFL has sparked the

exploration of WSNs constructed of small, inexpensive RFICs. Promising research

exists in the application of WSN-based RTI for use in quality and inventory monitoring,

surveillance, classification, and localization. RTI is especially useful in situations where

there is a need for flexibility and privacy. Various models are used to form the entire RTI

problem, including signal propagation, measurement, attenuation weighting, obstructions,

and environment topography. Several models from each area were discussed in Chapter 2.

As an inverse, ill-posed problem, RTI requires estimation and regularization techniques that

can combat model sparsity effects in image reconstruction. Several common estimation and

regularization techniques in the literature were also presented in Chapter 2.

This thesis explored a new application for RTI. A 3-D WSN consisting of 80 RFICs

was constructed and used to monitor asset movement over a prolonged period of time in an

indoor, moderately obstructed environment. Monitoring asset movement can be useful to

identify high traffic patterns in an area such as an office, and thus can be used to effectively

determine the placement of office equipment and furniture to maximize workplace comfort

and efficiency. Preliminary stationary localization experiments were used to explore the

ability of a 3-D RTI network to produce 3-D position and attenuation estimates, and

furthermore, to determine if target features such as height, size, and density could be

extracted from attenuation images.

In a series of controlled, coordinated spatial pattern monitoring experiments consisting

of both a single target and two targets, position estimates from each data frame were used

to build running totals of occupied pixels over time. The data from each spatial pattern

monitoring experiment were presented in histograms to illustrate high traffic patterns and
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frequently occupied positions. The results from the set of single target experiments were as

expected. The primary positions and paths were identifiable, and the comparisons between

similar experiments led to recognizable differences in the scale of the histogram based on

λT .

The results from the two spatial pattern monitoring experiments with two targets

produced identifiable high traffic patterns, but they weren’t as clear or consistant as those

from single target experiments. The two primary positions and paths were identifiable;

however, path 1 was not as prominent as path 2 in both sets of results regardless of λT . It

is likely the noise and multipath generated from two moving targets is the cause; however,

more research would be needed to make that conclusion.

The results from this research provide a preliminary indication that an RTI WSN can

be effectively used to monitor the usage of a space by identifying high traffic patterns used

by assets within a sensored area. In a fully functioning office environment there will be an

increased number of assets to track, significantly more furniture constructed of a variety of

materials, and possibly the inclusion of walls. Therefore there is still more research needed

to fully vet the capability of an RTI WSN in this capacity.

The 2-D lateral and 3-D attenuation images from a series of experiments where the

target’s position remained constant and target height was varied illustrated the feasibility

of using RTI to identify significant target features. It was determined that smooth, higher

resolution images achieved by regularization and small voxel sizes would be necessary to

achieve accurate feature estimation within specified tolerances. It is also likely that higher

node density and link coverage would be necessary. Minimizing multipath from reflections

off of the floor would also provide more accurate estimates. A list of recommendations for

future research that would be beneficial for both of the research objectives considered in

this thesis is featured below.
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WSN Self-Localization. In this research, the physical locations of each wireless node

were manually set in the data collection program. Determining mote location manually

can introduce additional measurement error which can lead to inaccurate estimates as

attenuation weighting is dependent on the distance between nodes. Investigating WSN self-

localization algorithms that enable motes to determine their respective position based on

known locations of a few seed nodes will limit the amount of human induced measurement

error, and will present the opportunity to employ ad-hoc networks [15, 23–25, 28].

Optimizing Topology. This research utilized a 3-D network with 80 wireless motes

in a 100 sqft area; however, in a real-world application it is more cost effective to employ

networks covering larger areas with the fewest number of motes possible, while remaining

effective and accurate. Optimizing the network’s topology to minimize the number of motes

needed to provide effective link coverage will provide more efficient network structures for

implementation [1, 67].

Through-wall, Office Environment. The network in this research was employed

indoors with very limited furniture obstructions in a 100 sqft area. This is not representative

of common office environments which contain considerably more furniture in addition

to walls or structural obstructions. Implementing an experimental RTI network in more

representative environments will help determine the effects and explore methods to combat

those effects.

Multiple Targets. This research used at most two targets. The results showed that

introducing a second target resulted in noisier images, and in the experiments where the

targets were moving, the second target is often unidentifiable when in-line with the first

target. Recommend further research on the impacts of increasing the number of targets

tracked within the network, and how to combat any negative effects seen in the imagery

[10, 56].

Measurement Model. This research used link RSS measurements on a single channel

from each frame of data. Recommend exploring the use of channel diversity and fade-
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level in the measurement model to minimize the effect of multipath and possibly improve

measurement reliability [17, 56].

Weighting Model. This research used the Line Model to determine pixel attenuation

weights from link RSS measurements. There are many weighting models presented in

the literature that have not been demonstrated in the application of RTI for spatial pattern

monitoring. Recommend exploring additional models and comparing the outcomes in a

spatial pattern monitoring capacity [11, 17, 27, 51, 54, 55].

Image Estimation and Regularization. This research employed a weighted MLE

using Tikhonov Regularization with a difference matrix operator to reconstruct the image.

There are many possible estimation techniques that exist in the literature in addition

to those that have been demonstrated in RTI. Exploring various image estimation and

regularization techniques may lead to more accurate RTI-based motion tracking and spatial

pattern monitoring systems.

Image De-noising and Obstruction Modeling. This research did not utilize any

specific image de-noising techniques. Inaccurate position estimates were identified based

on their registered RSS attenuation magnitude in comparison to the maximum attenuation

value measured in that data set; however, this is a simple approach. Applying image de-

noising and more realistic target obstruction models such as a Gaussian Filter will improve

localization accuracy and more accurate spatial pattern monitoring results [56].

Kalman Filter Tracking. This research required knowledge about the number of

targets present in the network in order to estimate multiple target positions. Implementing

estimation techniques to estimate the number of targets present in a network through

thresholding and clustering can further automate an RTI system making it more relevant

[56]. Tracking multiple, unknown targets in an RTI network using Kalman Filter tracking

has been shown to improve target tracking and thus could be used to improve the accuracy

of spatial pattern monitoring [17, 44, 48, 56].
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3-D RTI. This research explored the capabilities of 3-D RTI networks to generate

3-D attenuation image estimates, and to determine the level of fidelity that can be achieved;

such as the ability to determine a target height. To date, the demonstration of an RTI

network in a 3-D capacity does not exist in the literature. The only research that approaches

the subject is [7], which employs an RTI network with two layers of motes in the

vertical axis to provide fall-detection. When larger attenuation values are registered in

the lower layer of the network, they are attributed to a fallen target. 3-D imagery was not

demonstrated. Improving the capabilities of 3-D RTI can lead to higher 3-D image fidelity

for possible feature recognition (i.e., target height and size).
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