7,427 research outputs found

    Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence

    Full text link
    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached, when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown at one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure

    Channel Allocation in An Overlaid Mesh Network

    Get PDF
    In spite of recent advancement of Wireless Mesh Technology, a lot of research challenges remained to be solved to extract the full capacity of this modern technology. As 802.11a/b/g standards make available the use of multi radio multi channel in a wireless node, a lot of research activities are going on to efficiently allocate the channel of a Mesh Network to boost its overall performances. In this research, the prospect of dividing the total network area into two non-overlapping channels of a given Mesh Network is investigated and analyzed numerically. It is found that the throughput is doubled as well as the fairness improves considerably if we deploy two channels instead of single channel backbone. An extensive simulation study has been carried out to find the optimum coverage area between two channels. The study shows that at a particular point of allocation, the network gives the optimum response.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A unified framework for traffic assignment: deriving static and quasi‐dynamic models consistent with general first order dynamic traffic assignment models

    Get PDF
    This paper presents a theoretical framework to derive static, quasi-dynamic, and semi-dynamic traffic assignment models from a general first order dynamic traffic assignment model. By explicit derivation from a dynamic model, the resulting models maintain maximum consistency with dynamic models. Further, the derivations can be done with any fundamental diagram, any turn flow restrictions, and deterministic or stochastic route choice. We demonstrate the framework by deriving static (quasidynamic) models that explicitly take queuing and spillback into account. These models are generalisations of models previously proposed in the literature. We further discuss all assumptions usually implicitly made in the traditional static traffic assignment model

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS
    corecore