226 research outputs found

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Model correlation and damage location for large space truss structures: Secant method development and evaluation

    Get PDF
    On-orbit testing of a large space structure will be required to complete the certification of any mathematical model for the structure dynamic response. The process of establishing a mathematical model that matches measured structure response is referred to as model correlation. Most model correlation approaches have an identification technique to determine structural characteristics from the measurements of the structure response. This problem is approached with one particular class of identification techniques - matrix adjustment methods - which use measured data to produce an optimal update of the structure property matrix, often the stiffness matrix. New methods were developed for identification to handle problems of the size and complexity expected for large space structures. Further development and refinement of these secant-method identification algorithms were undertaken. Also, evaluation of these techniques is an approach for model correlation and damage location was initiated

    Linear optimization over homogeneous matrix cones

    Full text link
    A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the positive semidefinite matrix cone and the second order cone as important practical examples. In this paper, we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. We describe transitive subsets of the automorphism groups of the cones and their duals, and important properties of the composition of log-det barrier functions with the automorphisms in this set. Next, we consider extensions to linear slices of the positive semidefinite cone, i.e., intersection of the positive semidefinite cone with a linear subspace, and review conditions that make the cone homogeneous. In the third part of the paper we give a high-level overview of the classical algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous cone structure in primal-dual symmetric interior-point methods.Comment: 59 pages, 10 figures, to appear in Acta Numeric

    A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

    Get PDF
    The use of factorized sparse approximate inverse (FSAI) preconditioners in a standard multilevel framework for symmetric positive definite (SPD) matrices may pose a number of issues as to the definiteness of the Schur complement at each level. The present work introduces a robust multilevel approach for SPD problems based on FSAI preconditioning, which eliminates the chance of algorithmic breakdowns independently of the preconditioner sparsity. The multilevel FSAI algorithm is further enhanced by introducing descending and ascending low-rank corrections, thus giving rise to the multilevel FSAI with low-rank corrections (MFLR) preconditioner. The proposed algorithm is investigated in a number of test problems. The numerical results show that the MFLR preconditioner is a robust approach that can significantly accelerate the solver convergence rate preserving a good degree of parallelism. The possibly large set-up cost, mainly due to the computation of the eigenpairs needed by low-rank corrections, makes its use attractive in applications where the preconditioner can be recycled along a number of linear solves
    • …
    corecore