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A ROBUST MULTILEVEL APPROXIMATE INVERSE
PRECONDITIONER FOR SYMMETRIC POSITIVE

DEFINITE MATRICES∗
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Abstract. The use of factorized sparse approximate inverse (FSAI) preconditioners in a standard
multilevel framework for symmetric positive definite (SPD) matrices may pose a number of issues
as to the definiteness of the Schur complement at each level. The present work introduces a robust
multilevel approach for SPD problems based on FSAI preconditioning, which eliminates the chance of
algorithmic breakdowns independently of the preconditioner sparsity. The multilevel FSAI algorithm
is further enhanced by introducing descending and ascending low-rank corrections, thus giving rise
to the multilevel FSAI with low-rank corrections (MFLR) preconditioner. The proposed algorithm is
investigated in a number of test problems. The numerical results show that the MFLR preconditioner
is a robust approach that can significantly accelerate the solver convergence rate preserving a good
degree of parallelism. The possibly large set-up cost, mainly due to the computation of the eigenpairs
needed by low-rank corrections, makes its use attractive in applications where the preconditioner can
be recycled along a number of linear solves.
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1. Introduction. The solution of a large sparse linear system of equations in
the form

(1.1) Ax = b

where A ∈ Rn×n, b,x ∈ Rn, and A is symmetric positive definite (SPD), typically
requires the use of preconditioned iterative methods based on Krylov subspaces. As
is well known, the key for accelerating the solver convergence is the definition of the
preconditioner, i.e., the operator that approximates the action of A−1.

There are several different approaches for building an efficient preconditioner, ei-
ther physics-based or purely algebraic. Among the algebraic algorithms, the most
popular categories are incomplete factorizations, multigrid methods, and sparse ap-
proximate inverses [2, 11], though different preconditioners can be composed to form
new ones, e.g., blending domain decomposition approaches with incomplete factor-
izations or approximate inverses, or using nested Krylov methods [7, 18, 19, 24].
Combinations of physics-based and purely algebraic approaches are also denoted as
“gray-box” solvers [2, 5]. For example, some physics-based pattern selection strategies
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can be used for algebraic sparse approximate inverse preconditioners [5] and block
variants of multilevel incomplete factorizations [17, 6].

Compared to incomplete factorizations, sparse approximate inverses are gener-
ally more robust and more appropriate for parallel computational architectures. In
particular, the factorized sparse approximate inverse (FSAI) [21] is an algebraic pre-
conditioner for SPD problems that proves effective in a wide range of applications,
especially in its dynamically adaptive variants [16, 20]. This algorithm provides a
factorized approximation of A−1:

(1.2) GTG ' A−1,

where G is a lower triangular matrix explicitly computed in the set-up phase so as to
approach the inverse of the lower Cholesky factor of A in the sense of the Frobenius
norm. One of the most attractive features of FSAI for modern computers is its intrinsic
high degree of parallelism. In fact, each row of G can be fully formed independently of
the others, with the parallelization trivially accomplished by evenly subdividing the
rows among threads and/or processes. The degree of parallelism is even redundant,
as the number of rows is much larger than the available number of computing cores.

The central idea of this work is to introduce some sequentiality in the FSAI
computation, in order to use the information extracted from the earlier set-up stages
for the remaining rows. This concept, which is the basis for incomplete factorizations,
has been already introduced in the context of approximate inverses in [8, 25], and
more recently in [12], where both a block tridiagonal and a domain decomposition
approach have been used to improve the FSAI performance. In the present paper,
we develop a more general multilevel framework that describes the former approaches
just by selecting a proper unknown ordering.

One of the difficulties arising in the multilevel generalization of the FSAI pre-
conditioner is related to the accuracy in the computation of the Schur complement
at each level. If the earlier levels are not well approximated, the resulting Schur
complement can be inaccurate, with a consequent degradation of the solver perfor-
mance. This issue has been recently addressed in the context of multilevel incomplete
factorizations with the aid of low-rank corrections [29]. Low-rank compression algo-
rithms are gaining increasing attention especially in direct linear solution methods,
e.g., [1, 14, 28, 30, 31, 32], with the basic idea of taking advantage of data sparsity in-
stead of structural sparsity. During the factorization process, the off-diagonal blocks,
which in discretized-PDE problems are usually characterized by low-rank properties,
are decomposed by SVD and compressed by neglecting those components correspond-
ing to the smallest singular values. There are several schemes to carry out the com-
pression on the entire matrix, ranging fromH-matrices Hermitian and skew-Hermitian
splitting methods to block low rank tree structured compression. Typically a drop
tolerance is set below which the singular values are dropped. If this tolerance is suffi-
ciently small, the matrix factorization is cheaper but can still be directly applied to a
right-hand side to get the system solution. With large drop tolerances, the low-rank
approach gives an approximation of the exact factorization and can be used as a pre-
conditioner, e.g., [1]. To our knowledge, the first attempt to directly use low-rank
representations in preconditioning is discussed in [23] in the context of a divide and
conquer strategy.

Within the FSAI multilevel framework presented in this work, low-rank correc-
tions are introduced for both enhancing the preconditioner quality at the earlier
levels (descending low-rank, DLR) and improving the accuracy in the Schur com-
plement computation (ascending low-rank, ALR). The paper is organized as follows.
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Algorithm 2.1. Multilevel Factorization Set-up.
1. Function ML SetUp(nl,A)
2. Set A0 = A;
3. for all l = 0, . . . , nl − 2 do

4. Partition Al as
[
K B
BT C

]
;

5. Compute L̃ such that L̃L̃T ' K;
6. Compute H̃ such that H̃ ' L−1

K B;
7. Compute S̃ such that S̃ ' C −BTK−1B;

8. Form Ml =

[
L̃ 0
H̃T I

]
;

9. Set Al+1 = S̃;
10. end for
11. Compute Mnl−1 such that Mnl−1M

T
nl−1 ' Anl−1;

12. Set M = {M0,M1, . . . ,Mnl−1};

The Multilevel FSAI (MF) preconditioner is first derived proving its robustness. It is
then demonstrated that the MF quality can be improved if the approximated Schur
complement computed at any level is corrected in order to approximate the precon-
ditioner instead of the original matrix Schur complement. Low-rank corrections are
finally introduced to further improve the MF preconditioner. The properties of this
approach are numerically investigated, and finally a few considerations close the work.

2. Multilevel FSAI preconditioning. Consider a standard multilevel ap-
proach applied to the SPD matrix A for a total number nl of levels. The matrix
Al obtained at any level l ∈ [0, nl − 1] is the Schur complement of the previous
level. Following for instance [17], we can partition Al in four blocks and perform the
factorization:

(2.1) Al =
[
K B
BT C

]
=
[

LK 0
BTL−T

K I

] [
I 0
0 S

] [
LT

K L−1
K B

0 I

]
,

where LKL
T
K is the exact Cholesky decomposition of K, K ∈ Rn1×n1 , and S =

C − BTK−1B, S ∈ Rn2×n2 , is the Schur complement of Al with respect to the
partition (n1, n2), i.e., Al+1 ≡ S. The partitioning of each level can follow some
physics-based criterion, if any. As our goal is to get a preconditioner, we can replace
each block on the right-hand side of (2.1) with an approximation:

(2.2) L̃ ' LK , H̃ ' L−1
K B, S̃ ' S

The recursive computation of (2.1) with the approximations (2.2) provides the general
framework for a multilevel preconditioner M of A, made by the list of factors Ml,
l ∈ [0, nl] (Algorithm 2.1). The preconditioner application stage, i.e., the computation
of w = M−1v for some known vector v, is provided in Algorithm 2.2.

Because of the recursion in the computation of M , we can restrict to the two-level
case with no loss of generality. Hence, Al in (2.1) coincides with A and n1 + n2 = n.
A popular choice is to use an incomplete factorization as the main kernel for the
approximations in (2.2), i.e., setting L̃ equal to the incomplete Cholesky (IC) factor
of K as in [26, 22, 17, 4]. In the same framework, the use of FSAI as the main kernel
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Algorithm 2.2. Multilevel Factorization Application.
1. Function w = ML Apply(nl,M ,v)
2. Set levstart = 1;
3. for all l = 0, . . . , nl − 2 do
4. Solve Mlz = v;
5. Set levend = levstart + n1 − 1;
6. Form w (levstart : levend) = v (1 : n1);
7. Set v = v (n1 + 1 : n);
8. Update levstart = levend + 1;
9. end for

10. Solve (Mnl−1M
T
nl−1)z = v;

11. Form w (levstart : n) = z;
12. Set levend = levstart − 1;
13. for all l = nl − 2, . . . , 0 do
14. Set levstart = levend − n1 + 1;
15. Retrieve wl = w (levstart : n);
16. Solve MT

l z = wl;
17. Form w (levstart : n) = wl;
18. Update levend = levstart − 1;
19. end for

is straightforward. After computing G such that GTG ' K, the approximations in
(2.2) become

(2.3) L̃ ' G−1, H̃ ' GB, S̃ ' C − H̃T H̃.

In contrast to what typically happens using an incomplete factorization as the main
kernel, no dropping is necessary to compute efficiently H̃ and S̃, because G is usually
very sparse. In fact, recall that the sparsity of G is controlled by the user, while the
one of L̃−1 is not.

Unfortunately, this straightforward implementation of the MF preconditioner is
very prone to breakdowns. In fact, the Schur complement approximation S̃ = C −
H̃T H̃ is computed as the difference between two SPD matrices and can be indefinite.
Such an experience is quite common even in relatively well-conditioned problems.
The reason for this resides in the poor approximation of the leftmost eigenvalues
usually obtained by FSAI. Figure 1 compares the eigenspectra of the bcsstk16 matrix
(structural problem, n = 4, 884 with 290,378 nonzero entries) from the University of
Florida sparse matrix collection [9] with its approximations by IC and FSAI, L̃L̃T and
(GTG)−1, respectively, where L̃ and G are computed with the same number of non-
zeros. Both IC and FSAI are not able to capture the smallest eigenvalues of a matrix,
though IC is generally better. The smallest eigenvalues of K are the largest of K−1,
and therefore control the most significant entries of BTK−1B. As a consequence,
H̃T H̃ computed as in (2.3) often fails in approximating accurately the largest entries
of BTK−1B, leading to the appearance of negative eigenvalues in S̃ and causing the
breakdown of the procedure. This occurrence can happen using IC as a kernel in a
multilevel preconditioning framework as well. To address this issue some stabilization
techniques, e.g., based on diagonal shifts [17, 27], have been successfully introduced.
Unfortunately, these strategies do not provide satisfactory results when used for the
computation of S̃ with the aid of FSAI as a kernel.
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Fig. 1. Comparison between the eigenspectra of A, L̃L̃T , and (GTG)−1 for the bcsstk16 matrix
from the University of Florida sparse matrix collection.

The robustness of the MF preconditioner can be ensured by computing S̃ so as
to be SPD independently of G. To this aim, we can use the following result.

Theorem 2.1. Let A ∈ Rn×n be an SPD (2× 2)-block matrix,

(2.4) A =
[
K B
BT C

]
,

with K ∈ Rn1×n1 , B ∈ Rn1×n2 , and C ∈ Rn2×n2 , and let V ∈ Rn×n2 and D ∈ Rn2×n

be the 2-block rectangular matrices

(2.5) V =
[
FT

I

]
, D =

[
0 Z

]
,

with F ∈ Rn2×n1 and Z ∈ Rn2×n2 , such that the Frobenius norm ‖D − V TL‖F is
minimum for any Z, L being the lower Cholesky factor of A. Then, S = V TAV is
the Schur complement of A with respect to the partition (n1, n2).

Proof. Recalling (2.1), the lower Cholesky factor of A reads

(2.6) L =
[

LK 0
BTL−T

K LS

]
,

where LS is the lower Cholesky factor of the Schur complement of A, i.e., LSL
T
S =

C −BTK−1B. The matrix (D − V TL) is therefore

(2.7) D − V TL =
[
FLK +BTL−T

K , Z − LS

]
,

whose Frobenius norm is minimum for any Z if FLK +BTL−T
K = 0; i.e.,

(2.8) F = −BTK−1.

The matrix S = V TAV reads

(2.9) S = FKFT +BTFT + FB + C.

Introducing (2.8) into (2.9) provides V TAV = C −BTK−1B.
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Remark 2.2. The matrix F of Theorem 2.1 is generally dense. If (2.8) is enforced
only for the entries located in a prescribed set of positions S̃ ⊂ S = {(i, j) : 1 ≤
i ≤ n1, 1 ≤ j ≤ n2}, the sparsity of F can be retained at a workable level. This
definition for F coincides with the block FSAI preconditioner introduced in [18] and
[16], where the nonzero pattern S̃ is defined either statically or dynamically during
the computation of F . Using a sparse F in (2.9) produces an approximation S̃ of the
exact Schur complement S of A.

Corollary 2.3. The Schur complement approximation S̃ computed with (2.9)
and a sparse block FSAI F is SPD.

Proof. The expression of S̃ can be easily rearranged by adding and subtracting
BTK−1B:

(2.10) S̃ = C −BTK−1B + (F +BTK−1)K(K−TB + FT ) = S +WTKW.

The result immediately follows by noting that WTKW is SPD.

Based on these results, the MF preconditioner is built as follows. The zero-level
preconditioner M−1

0 is made by two factors:

(2.11) M−1
0 = PbPa.

An explicit approximation of K−1 is computed as GTG using an adaptive FSAI
procedure [20] and introduced in Pa:

(2.12) Pa =
[
G 0
0 I

]
.

Then, the preconditioned matrix PaAP
T
a is computed,

(2.13) PaAP
T
a =

[
GKGT GB
BTGT C

]
,

and the adaptive block FSAI [16] of PaAP
T
a is computed for the second factor:

(2.14) Pb =
[
I 0
F I

]
.

The zero-level preconditioned matrix M−1
0 AM−T

0 reads
(2.15)

M−1
0 AM−T

0 =
[
I 0
F I

] [
GKGT GB
BTGT C

] [
I FT

0 I

]
=
[
GKGT −RT

F

−RF S̃

]
,

where RF = −F (GKGT ) − BTGT is the residual on F i.e., RF approaches the null
matrix as the accuracy in the computation on F increases. Finally, the (2,2) block of
M−1

0 AM−T
0 is the approximation of the first-level Schur complement

(2.16) S̃ = C + FGB +BTGTFT + FGKGTFT

that becomes the new matrix for the next level. As S̃ in (2.16) is SPD for any F and
G (see Corollary 2.3), no breakdown is possible. The operations required for building
the robust MF preconditioner are provided in Algorithm 2.3.
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Algorithm 2.3. FSAI-based Multilevel Preconditioner Set-up.
1. Function MF SetUp(nl,A)
2. Set A0 = A;
3. for all l = 0, . . . , nl − 2 do

4. Partition Al as
[
K B
BT C

]
;

5. Compute the adaptive FSAI approximation G of K such that GTG ' K−1;

6. Set Pa =
[
G 0
0 I

]
;

7. Compute Pb =
[
I 0
F I

]
the adaptive block FSAI approximation of PaAlP

T
a ;

8. Compute S̃ = C + FGB +BTGTFT + FGKGTFT ;
9. Form M−1

l = PbPa;
10. Set Al+1 = S̃;
11. end for
12. Compute M−1

nl−1 as the adaptive FSAI approximation of Anl−1;
13. Set M−1 =

{
M−1

0 ,M−1
1 , . . . ,M−1

nl−1

}
;

2.1. Theoretical properties. In this section, we will obtain some theoretical
bounds on the eigenspectrum of the preconditioned matrix according to the different
approximations introduced in the MF computation. At every level of the MF pre-
conditioner set-up, the partial factorization of the approximated Schur complement
(2.16) is computed. This operation introduces additional approximations level after
level, potentially yielding to a Schur complement quite different from the exact one.
Consider the zero-level preconditioner M−1

0 of (2.11):

(2.17) M−1
0 =

[
G 0
FG I

]
.

The natural choice for the next level preconditioner is

(2.18) M̃−1
1 =

[
I 0
0 L−1

S̃

]
,

where LS̃L
T
S̃

= S̃. However, S̃ is an approximated Schur complement. Should S be
available, one could use

(2.19) M−1
1 =

[
I 0
0 L−1

S

]
with LSL

T
S = S. Using either M̃−1

1 or M−1
1 as the next level preconditioner of A

leads to a different performance. The two propositions that follow provide a theo-
retical upper bound for the eigenvalues of the preconditioned matrices M̃−1AM̃−T

and M−1AM−T , in order to allow for an a priori assessment of the preconditioner
quality.

Proposition 2.4. The eigenvalues λ of the preconditioned matrix M̃−1AM̃−T ,
with M̃−1 = M̃−1

1 M−1
0 as defined in (2.17) and (2.18), satisfy

(2.20) |λ− 1| ≤
‖EK‖+

√
‖EK‖2 + 4‖Q̃T ‖‖Q̃‖

2
,
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where Q̃ = G(KGTFT +B)L−T

S̃
= −RT

FL
−T

S̃
and EK = GKGT−I, for any consistent

matrix norm.

Proof. The preconditioned matrix M̃−1AM̃−T reads
(2.21)

M̃−1AM̃−T =

[
GKGT G(KGTFT +B)L−T

S̃

L−1
S̃

(FGK +BT )GT I

]
=

[
I + EK Q̃

Q̃T I

]
.

Its eigenpairs (λ,w), w = [u,v]T , satisfy by definition the relationship

(2.22)

[
I + EK Q̃

Q̃T I

]{
u
v

}
= λ

{
u
v

}
,

which is equivalent to

(2.23)

[
EK Q̃

Q̃T 0

]{
u
v

}
= (λ− 1)

{
u
v

}
.

Taking consistent norms at both sides of the first and second set of equations we have

(2.24)

{
‖EK‖‖u‖+ ‖Q̃‖‖v‖ ≥ |λ− 1|‖u‖,
‖Q̃T ‖‖u‖ ≥ |λ− 1|‖v‖,

which, by setting t = ‖v‖/‖u‖, can be rearranged as

(2.25)

{
|λ− 1| ≤ ‖EK‖+ ‖Q̃‖t,
|λ− 1| ≤ ‖Q̃T ‖/t.

If ‖u‖ = 0, then trivially v ∈ Ker(Q̃) and λ = 1, thus satisfying the inequality (2.20).
The right-hand side of the first and second inequality in (2.25) increases and decreases
monotonically with t, respectively (Figure 2). The intersection point is

(2.26) t̄ =
−‖EK‖+

√
‖EK‖2 + 4‖Q̃T ‖‖Q̃‖

2‖Q̃‖
,

and thus for any t we have

(2.27) |λ− 1| ≤
‖EK‖+

√
‖EK‖2 + 4‖Q̃T ‖‖Q̃‖

2
.

Proposition 2.5. The eigenvalues λ of the preconditioned matrix M−1AM−T ,
with M−1 = M−1

1 M−1
0 as defined in (2.11) and (2.19), satisfy

(2.28)

|λ− 1| ≤
‖EK‖+ ‖QT ‖‖ (I + EK)−1 ‖‖Q‖+

√
(‖EK‖ − ‖QT ‖‖ (I + EK)−1 ‖‖Q‖)2 + 4‖QT ‖‖Q‖

2
,

where Q = G(KGTFT +B)L−T
S = −RT

FL
−T
S and EK = GKGT−I, for any consistent

matrix norm.
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Fig. 2. Schematic representation of the system of inequalities (2.25).

Proof. Operating as in the proof of Proposition 2.4, it can be shown that the
eigenpairs of M−1AM−T satisfy

(2.29)
[
I + EK Q

QT I +QT (I + EK)−1
Q

]{
u
v

}
= λ

{
u
v

}
,

which is equivalent to

(2.30)
[
EK Q

QT QT (I + EK)−1
Q

]{
u
v

}
= (λ− 1)

{
u
v

}
.

Again, taking consistent norms on both sides of the first and second set of equations,
and setting t = ‖v‖/‖u‖, we get

(2.31)
{
|λ− 1| ≤ ‖EK‖+ ‖Q‖t,
|λ− 1| ≤ ‖QT ‖/t+ ‖QT ‖‖ (I + EK)−1 ‖‖Q‖.

If ‖u‖ = 0, then trivially v ∈ Ker(Q) and λ = 1, thus satisfying the inequality
(2.28). Otherwise, denoting by t̄ the intersection point between the right-hand sides
of (2.31),

(2.32)

t̄ =
−‖EK‖+ ‖QT ‖‖ (I + EK)−1 ‖‖Q‖+

√
(‖EK‖ − ‖QT ‖‖ (I + EK)−1 ‖‖Q‖)2 + 4‖QT ‖‖Q‖

2‖Q‖

for any t, we have

(2.33)

|λ− 1| ≤
‖EK‖+ ‖QT ‖‖ (I + EK)−1 ‖‖Q‖+

√
(‖EK‖ − ‖QT ‖‖ (I + EK)−1 ‖‖Q‖)2 + 4‖QT ‖‖Q‖

2
.

Now, to understand which preconditioner, either M̃−1 or M−1, is expected to
ensure a faster convergence, we compare the upper bounds provided in Propositions
2.4 and 2.5. These bounds depend on the norms of EK and Q or Q̃, which in turn
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are controlled by the accuracy in the computation of G and F , respectively. As GTG
approaches K−1, ‖EK‖ → 0, and in the limit the bounds (2.20) and (2.28) read

(2.34) |λ− 1| ≤
√
‖Q̃‖‖Q̃T ‖

and

(2.35) |λ− 1| ≤ 1
2

[
‖Q‖‖QT ‖+

√
‖Q‖‖QT ‖ (4 + ‖Q‖‖QT ‖)

]
,

respectively. Similarly, as F approaches −BTK−1G−1, ‖Q‖, ‖Q̃‖ → 0 and the bounds
(2.20) and (2.28) trivially provide

(2.36) |λ− 1| ≤ ‖EK‖.

The previous relationships hold true for any consistent matrix norm. However, to
compare the bounds in an easier way, we restrict our attention to the matrix norm
induced by the 2-norm of vectors. In this case we have

‖EK‖2 = λ1(EK) = ε1, ‖Q‖2 =
√
λ1(QTQ) = η1, ‖Q̃‖2 =

√
λ1(Q̃T Q̃) = η̃1,

‖(I + EK)−1‖2 = λ−1
n (GKGT ) = κ−1

n ,

(2.37)

and the bounds (2.20) and (2.28), respectively, become

|λ− 1| ≤ ε1 +
√
ε21 + 4η̃2

1

2
,(2.38)

|λ− 1| ≤
ε1 + η2

1κ
−1
n +

√(
ε1 − η2

1κ
−1
n

)2
+ 4η2

1

2
.(2.39)

Remark 2.6. When ε1 = 0, it is easy to prove that the maximum and minimum
eigenvalues of M̃−1AM̃−T are 1 + η̃1 and 1 − η̃1, respectively, and the maximum
and minimum eigenvalues of M−1AM−T are 1 + (η2

1 +
√
η4
1 + 4η2

1)/2 and 1 + (η2
1 −√

η4
1 + 4η2

1)/2, respectively.

The following results suggest the use of M̃−1 instead of M−1 as the MF precon-
ditioner of A.

Theorem 2.7. For any choice of G and F in (2.17), the bound (2.38) is narrower
than or equal to the bound (2.39).

Proof. Using the arguments of Corollary 2.3, it follows that S̃ = S + H̃, with H̃
a symmetric positive semidefinite matrix, hence ‖SS̃−1‖2 ≤ 1. In particular,

S̃ = C + FGKGTFT + FGB +BTGTFT

= C −BTK−1B + (F +BTK−1G−1)(GKGT )(F +BTK−1G−1)T

= S +RF (GKGT )−1RT
F .(2.40)

Moreover, the matrix Q̃T Q̃ is similar to LT
S S̃

−1LSQ
TQ. In fact, recalling that

Q = −RT
FL

−T
S and Q̃ = −RT

FL
−T

S̃
, we obtain

(2.41) RT
FRF = LSQ

TQLT
S = LS̃Q̃

T Q̃LT
S̃
,
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from which the similarity follows. Hence

(2.42) ‖Q̃T Q̃‖2 = ‖LT
S S̃

−1LSQ
TQ‖2 ≤ ‖LT

S S̃
−1LS‖2‖QTQ‖2 ≤ ‖QTQ‖2

because LT
S S̃

−1LS is similar to SS̃−1. As a consequence, η̃1 = αη1 for some α ≤ 1.
The thesis of the theorem reads

(2.43)
ε1 +

√
ε21 + 4η̃2

1

2
≤
ε1 + η2

1κ
−1
n +

√(
ε1 − η2

1κ
−1
n

)2
+ 4η2

1

2
.

Introducing η̃1 = αη1 in (2.43), after some algebra we obtain

(2.44) α2 ≤ 1 +

√(
ε1 − η2

1κ
−1
n

)2
+ 4η2

1 −
(
ε1 − η2

1κ
−1
n

)
2

,

which holds true for any F and G.

Theorem 2.7 suggests that the use of S̃ in the MF preconditioner is likely to be
more appropriate than the exact Schur complement S. In particular, in the theoret-
ical case of GTG = K−1 it is possible to compute explicitly the ratio between the
conditioning numbers of the preconditioned matrices M−1AM−T and M̃−1AM̃−T as
follows.

Theorem 2.8. If EK = 0, the ratio between the conditioning number of the pre-
conditioned matrices (2.29) and (2.21) is

(2.45) r(η1) =

(
1 +

η2
1 +

√
η4
1 + 4η2

1

2

)2

1 + 2η2
1 + 2

√
η4
1 + η2

1

.

Proof. If EK = 0, it can be easily verified from (2.40) that S̃ = S +RFR
T
F and

(2.46) L−1
S S̃L−T

S = I + L−1
S RFR

T
FL

−T
S = I +QTQ.

Recalling from the proof of Theorem 2.7 that Q̃T Q̃ is similar to LT
S S̃

−1LSQ
TQ we

have

(2.47) ‖Q̃T Q̃‖2 = ‖(I +QTQ)−1QTQ‖2.

Trivially, (I+QTQ)−1QTQ is symmetric positive definite and has the same eigenvec-
tors as QTQ. Denoting by λ an eigenvalue of QTQ, the norm ‖(I + QTQ)−1QTQ‖2
is the maximum of the function

(2.48) f (λ) =
λ

1 + λ
.

As f(λ) monotonically increases with λ, its maximum value is attained for the largest
eigenvalue of QTQ, i.e., ‖QTQ‖2 = η2

1 . Hence

(2.49) ‖Q̃T Q̃‖2 =
‖QTQ‖2

1 + ‖QTQ‖2
⇒ η̃1 =

√
η2
1

1 + η2
1
.

The proof is completed by introducing (2.49) in the results of Remark 2.6.

Remark 2.9. The ratio r(η1) monotonically increases with η1 and takes value 1
for η1 = 0, i.e., F = −BTK−1G−1 and S̃ = S. For η1 →∞, r monotonically diverges
to infinity as the second power of η1. Hence, the sparser or more inaccurate F , the
more important is using S̃ instead of S in the MF preconditioner.
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3. Improving the MF performance with low-rank corrections. The frame-
work developed in section 2 provides the formulation for a robust multilevel FSAI
preconditioner that can be computed in a stable way for any choice of the fill-in
degree used for the basic kernels. Using low fill-in degrees obviously keeps the com-
putational cost for the preconditioner set-up and application under control, but may
yield a poor convergence. The quality of the MF preconditioner can be improved
by using low-rank corrections. The idea of using low-rank corrections in a multilevel
framework has been already introduced in [29], giving rise to the robust multilevel
Schur complement-based low-rank (MSLR) preconditioner. The basic concept can be
briefly recalled as follows. Define the matrix

(3.1) Y = L−1
C BTK−1BL−T

C = L−1
C (C − S)L−T

C ,

where LC is the exact lower factor of C, i.e., C = LCL
T
C . It is easily recognized that

the eigenvalues σi of Y are such that

(3.2) 0 ≤ σn2 ≤ · · · ≤ σ1 < 1.

The separation of the eigenvalues θi of X = LT
C(S−1 −C−1)LC is larger than that of

Y , because

(3.3)

θi = σi
1− σi

, i = 1, . . . , n2,

θi − θi+1 = σi − σi+1
(1− σi)(1− σi+1) , i = 1, . . . , n2 − 1.

The separation of the eigenvalues of L−T
C XL−1

C = S−1 − C−1 has a stronger impact
on the performance of the MSLR preconditioner [29], however studying X is easier
and the main results for X are to some extent still valid for S−1 − C−1. Equation
(3.3) suggests that approximating with a low-rank matrix (S−1−C−1) is easier than
(S − C) because of the faster eigenvalue decay. A better approximation of S−1 can
be computed as

(3.4) S−1 ' C−1 +WkΘkW
T
k

with WkΘkW
T
k a rank-k approximation of L−T

C XL−1
C which can be obtained from

the eigendecomposition of Y . In fact, by retaining the k largest eigenvalues and
corresponding eigenvectors of Y we can write

(3.5) Y ' UkΣkU
T
k .

Noting that

(3.6) S−1 − C−1 = L−T
C [(I − Y )−1 − I]L−1

C = L−T
C [Y (I − Y )−1]L−1

C ,

the rank-k correction to S−1 − C−1 is found by setting

(3.7) Θk = Σk(I − Σk)−1

and Wk = L−T
C Uk.
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In the original formulation outlined above, the low-rank corrections are used to
make the action of C−1 closer to that of S−1. By distinction, we use low-rank cor-
rections to improve the action of S̃−1. A consequence of Corollary 2.3 is that the
eigenvalues σi of the matrix

(3.8) Y = L−1
S̃

(S̃ − S)L−T

S̃

satisfy the condition (3.2). Thus, following the procedure outlined above for C, we
can compute the k largest eigenpairs of Y

(3.9) Y ' UkΣkU
T

k ,

and get the expression of the corrected Schur complement inverse:

(3.10) S−1 ' S̃−1 +W kΘkW
T

k ,

where Θk = Σk(I − Σk)−1 and W = L−T

S̃
U . However, the idea of correcting the

application of S̃−1 so as to better resemble the one of S−1 is not that good. First, the
computation of (3.9) may be quite expensive, since every multiplication by S requires
a solution of a linear system with K. Second, according to Theorems 2.7 and 2.8, the
use of S−1 in our multilevel framework is not optimal.

The low-rank corrections can be more effectively implemented in another way.
Since we are working in a multilevel framework, S̃−1 will not be used exactly. Rather,
a new approximation, say Ŝ−1 ' S̃−1, will be computed. Thus, Ŝ will be the new
target of the low-rank correction. Moreover, as shown by (2.20), reducing ‖EK‖ is
also useful for improving the convergence. Also this task can be performed by a
low-rank correction. Therefore, we use two low-rank correction techniques for the
preconditioner set-up:

• Descending low-rank corrections: computed at each level, from the first to
the last, to reduce ‖EK‖;

• Ascending low-rank corrections: computed at each level, from the last to the
first, to reduce the gap between Ŝ and S̃.

3.1. Descending low-rank corrections. The aim of this correction is to en-
hance the approximation of the inverse of K. We can define the matrix

(3.11) Y = G[(GTG)−1 −K]GT = I −GKGT

obtained from (3.8), where (GTG)−1 and K replace S̃ and S, respectively, and com-
pute its rank-k approximation:

(3.12) Y ' UkΣkU
T

k .

Note that the computation of Uk and Σk is less expensive than in (3.9), because both
G and K are explicitly known. The enhanced preconditioner for K reads

(3.13) K−1 ' GTG+W kΘkW
T

k .

The eigenvalues of Y are bounded from above by 1 as GKGT is positive definite,
but there is not a lower bound in this case. Actually this is not a problem, as we are
mainly interested in the computation of the eigenvalue σi of Y closest to 1. From the
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implementation point of view, it is better to dispose of a symmetrically split operator.
Hence, we define

(3.14) G̃ = (I + UkΨkU
T

k )G

in order to have

(3.15) G̃T G̃ = GT (I + UkΨkU
T

k )(I + UkΨkU
T

k )G = GTG+W kΘkW
T

k .

Recalling that W k = GTUk, the diagonal k× k matrix Ψk is simply found by solving

(3.16) I + 2UkΨkU
T

k + UkΨ
2
kU

T

k = I + UkΘkU
T

k .

Using (3.3), the entries of Ψk read

(3.17) ψi = −1 +
√

1
1− σi

, i = 1, . . . , k.

Since GKGT is positive definite, σi < 1 and ψi is real for any i.
This correction can significantly reduce ‖EK‖. However, the update in G̃ prop-

agates in the other blocks of the preconditioned matrix, potentially shattering the
overall procedure efficiency:

PaAP
T
a =

[
G̃KG̃T G̃B

BT G̃T C

]
=
[
GKGT GB
BTGT C

]
(3.18)

+

[
UkΨkU

T
k GKG

T +GKGTUkΨkU
T
k + UkΨkU

T
k GKG

TUkΨkU
T
k UkΨkU

T
k GB

BTGTUkΨkU
T
k C

]
.

Actually, this is not the case. In fact, the block FSAI F̃ computed as the (2,1) block of
Pb when using G̃ is the approximate solution of the multiple right-hand-side system:

(3.19) F̃T ' −(G̃KG̃T )−1G̃B = −G̃−TK−1B.

By expanding (3.19) with G̃ definition, we note that F̃ can be easily found as:

(3.20) F̃ = F (I + UkΨkU
T

k )−1,

where F is the standard block FSAI computed using G. Moreover, from (3.20)
and (3.14) we notice that FG = F̃ G̃. This implies that the approximate Schur
complement (2.16) is not affected by the use of F̃ and G̃:
(3.21)
S̃ = C + F̃ G̃B +BT G̃T F̃T + F̃ G̃KG̃T F̃T = C + FGB +BTGTFT + FGKGTFT .

As a consequence, descending low-rank corrections on G have only a local impact with
no changes for the following levels.

3.2. Ascending low-rank corrections. We define the matrix Ŷ and compute
its rank-k approximation:

(3.22) Ŷ = I − ĜS̃ĜT ' ÛkΣ̂kÛ
T
k ,
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where Ĝ is the lower inverse factor of Ŝ; i.e., (ĜT Ĝ)−1 = Ŝ, which is explicitly available
by the approximation of lower levels. The computation of (3.22) is relatively cheap,
because the explicit expression of every matrix is known. The new approximation to
S̃ is given by:

(3.23) S̃−1 ' ĜT Ĝ+ ŴkΘ̂kŴ
T
k ,

where Ŵk = ĜT Ûk and Θ̂k = Σ̂k(I − Σ̂k)−1. Notice that during the set-up, we use a
split update, as done for the descending low-rank corrections, because it is operatively
necessary to compute ĜS̃ĜT . However, during the preconditioner application, the use
of (3.23) is more efficient as it only requires one update.

4. Numerical results. The multilevel FSAI preconditioner with low-rank cor-
rections (MFLR) can be implemented and applied through a recursive function (Al-
gorithms 4.1 and 4.2, respectively). The key parameters for the MFLR computation
and application are the matrix A, the number of levels nl, the current level index l,
and the size of the ascending and descending low-rank corrections, alr and dlr. Other
threshold parameters are actually needed by the inner kernels, such as those required

Algorithm 4.1. MFLR Set-up.
1. Recursive Function MFLR SetUp(l,nl,A,alr,dlr)
2. if l < (nl − 1) then

3. Partition Al as
[
K B
BT C

]
;

4. Compute the adaptive FSAI approximation G of K such that GTG ' K−1;

5. Set Pa =
[
G 0
0 I

]
;

6. Compute Pb =
[
I 0
F I

]
as the adaptive block FSAI approximation of

PaAlP
T
a ;

7. Compute S̃ = C + FGB +BTGTFT + FGKGTFT ;
8. Compute a rank-k approximation UkΣkU

T

k of Y = I −GKGT ;
9. Set G̃ = (I + UkΨkU

T

k )G with Ψk = (I − Σk)−1/2 − I;

10. Set P =
[

G̃ 0
FG I

]
;

11. [Qalr, QM] = MFLR SetUp(l + 1,nl,S̃,alr,dlr);
12. Use Qalr and QM to compute the rank-k correction Ŵk and Θ̂k as in (3.23);

13. Set P̃ =
[
I 0
0 I + ŴkΘ̂kŴ

T
k

]
;

14. Push P̃ in the head of Qalr;
15. Push P in the head of QM;
16. return Qalr, QM;
17. else
18. Compute the adaptive FSAI approximation G of A such that GTG ' A−1;
19. Set Qalr = ∅;
20. Set QM = {G};
21. return Qalr, QM;
22. end if
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Algorithm 4.2. MFLR Application.
1. Recursive Function MFLR Apply(l,nl,Qalr,QM,x)
2. if l < (nl − 1) then
3. Pop P from the head of QM;
4. Pop P̃ from the head of Qalr;
5. Compute y = Px;
6. Partition y into y1 = y(1 : n1) and y2 = y(n1 + 1 : n1 + n2);
7. Compute z2 = MFLR Apply(l + 1,nl,Qalr,QM,y2);
8. Form z with y1 and z2;
9. Compute y = P̃z;

10. Update y← PT y;
11. Push P in the head of QM;
12. Push P̃ in the head of Qalr;
13. return y;
14. else
15. Pop G from the head of QM;
16. Compute y = GTGx;
17. Push G in the head of QM;
18. return y;
19. end if

by the computation of G and F , and the level-of-fill control of the matrix-matrix
products. For the sake of readability, these parameters are dropped from the list of
arguments of the MFLR SetUp and MFLR Apply functions. The preconditioner
is stored using the lists Qalr and QM , and the parallelization is performed equally
partitioning each level among the available cores using the OpenMP directives. The
reason for this choice, which limits the algorithm scalability and the problem size, is
that the aim of this work is mainly the analysis of the MFLR preconditioner behavior.
The MPI implementation is an ongoing task.

The MFLR preconditioner behavior is investigated on a set of test cases. First, its
theoretical properties are verified in a small problem. Second, the MFLR sensitivity
to the user-specified parameters that control the preconditioner quality and density
are analyzed with an extensive numerical experimentation on a medium-size matrix.
Finally, the performance in a few large-size problems is considered.

4.1. Theoretical properties. We analyze the bcsstk38 matrix from the Uni-
versity of Florida Sparse Matrix Collection [9]. This SPD matrix has 8,032 rows
and 355,460 nonzeroes, and has been scaled so as to have a unitary diagonal. Its
eigenspectrum is provided in the leftmost frame of Figure 3. The matrix is uniformly
partitioned into two levels (n1 = n2 = 4, 016). The approximate Schur complement S̃
is computed using (2.9), where F is the block FSAI of A obtained using the dynamic
strategy introduced in [16] and a variable number kF,max of entries retained per row.
The nonzero eigenspectrum of (S̃ − S) is shown in the rightmost frame of Figure 3
and is strictly positive for any F , as expected from Corollary 2.3.

The analysis is performed by introducing step-by-step new ingredients to the
MFLR preconditioner. In particular, (i) the exact inverse of K is used to evaluate
the effect of using either S̃ or S, (ii) the approximation GTG ' K−1 is introduced,
and (iii) low-rank corrections are added to improve the preconditioner.
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Fig. 3. bcsstk38 test case: eigenspectrum of A (left) and (S̃ − S) (right) for different block
FSAI F .

Table 1
bcsstk38 test case: comparison between the conditioning numbers of (2.29) and (2.21) varying

F with ‖EK‖ = 0. λ and λ̃ denote the eigenvalues of M−1AM−T and M̃−1AM̃−T , respectively.

kF,max η1 η̃1 [λn, λ1] [λ̃n, λ̃1] r(η1)
30 4.395 0.975 [0.0470, 21.273] [0.0249, 1.975] 5.709
60 2.867 0.944 [0.0988, 10.121] [0.0558, 1.944] 2.939
90 2.248 0.914 [0.1448, 6.9069] [0.0863, 1.914] 2.153

First, we want to verify that the main claim of section 2, i.e., the use of S̃ is
more appropriate than that of S in the presented multilevel framework, is actually
correct using the exact inverse of K. The ratio between the conditioning numbers of
M−1AM−T and M̃−1AM̃−T , as obtained in Theorem 2.8, is reported in Table 1 for
different block FSAI F . Should F be computed exactly as a full matrix, there would
be no difference between M̃−1 and M−1. By distinction, decreasing the quality of F
means increasing η1 = ‖Q‖2 and η̃1 = ‖Q̃‖2. As a consequence, the effectiveness of
M̃−1 improves with respect to M−1; i.e., the sparser F , the more important it is to
use S̃ instead of S. For this test problem, the ratio r(η1) between the conditioning
numbers of (2.29) and (2.21) increases up to 5.709.

Theorem 2.8 no longer holds if we introduce the approximation GTG for K−1.
However, it is still true that the theoretical eigenvalue bounds for M̃−1 are tighter
than those for M−1. The matrix G is computed as the FSAI of K using the adaptive
strategy implemented in the FSAIPACK software package [20]. The quality of G is
controlled by the maximum number of entries kG,max retained per row. First of all,
notice that S̃ computed as in (2.3) might be indefinite if G is not accurate enough. For
instance, even with kG,max = 250 the approximate Schur complement (C−BTGTGB)
still has one negative eigenvalue. Changing the fill-in degree of G modifies the values
obtained from the bounds (2.38) and (2.39), which become tighter and tighter as
kG,max increases. Such bounds along with the actual eigenvalue intervals are reported
in Table 2 for different choices of G and F . It can be observed that the role played by
ε1 and η̃1, i.e., a measure of the quality of G and F , respectively, has a similar impact
on the actual eigenvalue distribution of M̃−1AM̃−T , as expected from the right-hand
side of inequality (2.38). Hence, one may argue that improving both G and F is
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Table 2
bcsstk38 test case: eigenvalue distribution of (2.29) and (2.21) varying F and G. The same

notation as in Table 1 is used.

bound bound
kG,max kF,max ε1 η1 η̃1 [λn, λ1] [λ̃n, λ̃1] (2.39) (2.38)

30 30 1.076 4.505 0.812 [1.8e-04, 47.3] [1.7e-04, 2.1] 19473.3 2.512
30 60 1.076 3.181 0.790 [1.8e-04, 33.2] [1.8e-04, 2.1] 9707.6 2.494
30 90 1.076 2.617 0.648 [1.8e-04, 29.1] [1.8e-04, 2.1] 6570.8 2.380
60 30 1.240 4.393 0.718 [3.9e-04, 40.0] [3.9e-04, 2.2] 8291.3 2.569
60 60 1.240 3.037 0.641 [4.0e-04, 29.5] [4.0e-04, 2.2] 3963.8 2.512
60 90 1.240 2.466 0.589 [4.0e-04, 25.8] [4.0e-04, 2.2] 2613.6 2.475
90 30 1.092 4.300 0.738 [6.6e-04, 36.0] [6.5e-04, 2.1] 5353.9 2.464
90 60 1.092 2.935 0.651 [6.8e-04, 26.8] [6.7e-04, 2.1] 2495.6 2.396
90 90 1.092 2.434 0.620 [6.9e-04, 23.3] [6.8e-04, 2.1] 1716.8 2.372
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Fig. 4. bcsstk38 test case: eigenspectrum of EK (left) and rightmost eigenvalues of the pre-
conditioned matrices (2.29) and (2.21)(right) for kG,max = 30 and kF,max = 60. The upper bound
(2.38) is also shown.

essential for a better MF performance. On the other hand, the bound (2.39) is less
significant because of the presence of κ−1

n , which can be quite large. Nonetheless,
the actual eigenvalue distribution of M−1AM−T is in any case worse than that of
M̃−1AM̃−T .

As an example, Figure 4 shows the eigenvalue distribution of EK for kG,max = 30,
and the preconditioned matrices (2.29) and (2.21) for the same kG,max and kF,max =
60. The matrix EK is indefinite, with the eigenvalues almost equally distributed
between negative and positive values approximately in the interval [−1, 1]. The matrix
M̃−1AM̃−T has a more favorable eigenvalues distribution than M−1AM−T .

Finally, we add to the frame descending and ascending low-rank corrections. We
fix kG,max = 30 and kF,max = 60, and change the number of eigenpairs computed to
correct either G (dlr) or Ŝ−1 (alr). Their effect on the variation of the conditioning
number of M̃−1AM̃−T is shown in Table 3. Using both low-rank strategies greatly
helps reduce the conditioning number. For example, in this case retaining 20 eigen-
pairs for both corrections yields a reduction of the conditioning number of about two
orders of magnitude, i.e., from about 24,000 to 500. By distinction, notice that cor-
recting S̃−1 towards S−1 is not as effective, as expected from the MFLR theoretical



A ROBUST MFLR PRECONDITIONER FOR SPD MATRICES 141

Table 3
bcsstk38 test case: effect of descending and ascending low-rank corrections, dlr and alr, re-

spectively, with kG,max = 30 and kF,max = 60. The target of ALR correction is S̃−1 and S−1 in
the upper and lower table, respectively.

alr target alr dlr [λn, λ1] λ1/λn

0 0 [1.682e-04, 2.337e+00] 2.389e+04
0 10 [4.391e-04, 2.337e+00] 5.321e+03
0 20 [4.438e-04, 2.337e+00] 5.265e+03

10 0 [1.682e-04, 2.076e+00] 1.234e+04
S̃−1 10 10 [4.391e-04, 2.077e+00] 4.731e+03

10 20 [4.438e-04, 2.137e+00] 4.816e+03
20 0 [1.744e-04, 2.076e+00] 1.190e+04
20 10 [3.380e-03, 2.077e+00] 6.145e+02
20 20 [4.413e-03, 2.137e+00] 4.843e+02
10 0 [1.753e-04, 1.467e+01] 8.371e+04
10 10 [4.342e-03, 1.482e+01] 3.414e+03

S−1 10 20 [6.308e-03, 1.493e+01] 2.367e+03
20 0 [1.772e-04, 3.220e+01] 1.817e+05
20 10 [5.475e-03, 3.270e+01] 5.973e+03
20 20 [9.065e-03, 3.290e+01] 3.630e+03

properties. It is also interesting to observe that the largest eigenvalue is the most
sensitive to the selection of the target matrix for the ALR corrections, while it is
insensitive to the DLR corrections, which mainly affect the smallest eigenvalue.

4.2. Sensitivity to user-specified parameters. To test the influence of the
user-specified parameters that control the MFLR behavior, we use the medium-size
matrix Cube arising from a homogeneous and uniformly discretized structural problem
by P1 finite elements, with 190,581 unknowns and 7,531,389 nonzero entries. The
linear system (1.1) is solved by using an MFLR-preconditioned conjugate gradient
(PCG) method, with an exit tolerance on the relative residual equal to 10−8. The
right-hand-side b is such that the solution x is the vector with components xj = j+1,
j = 1, . . . , n. All tests reported here are obtained using a machine equipped with
Intel(R) Xeon(R) E5-2680 v2 processors at 2.80 GHz and 256 Gbyte of RAM. Each
CPU has 10 cores. For these preliminary tests, just one thread is used. The MFLR
preconditioner is implemented in Fortran90, with the code compiled by the Intel
Fortran compiler using the -O3 optimization level. We also used BLAS and LAPACK
routines from the Intel Math Kernel Library. For the computation of the eigenpairs
needed by the low-rank corrections, we used the Laneig software, that is part of the
Filtlan package [10].

The user-specified parameters that control the MFLR quality and performance
are as follows:

1. nl: number of levels. Therefore, (nl − 1) is the number of computed Schur
complements;

2. εG: tolerance for the adaptive computation of G, see [20];
3. εF : tolerance for the adaptive computation of F , see [16];
4. dlr: DLR correction size, i.e., number of eigenpairs used to enrich G. This is

a local improvement;
5. alr: ALR correction size, i.e., number of eigenpairs used to enrich Ŝ−1. This

is a global improvement, in the sense that the Schur complement size grows
up to the size of the zero-level partition.
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Table 4
Cube test case: MFLR performance varying nl and εG (εF = 10−2, dlr = alr = 0).

εG nl nit ρ Tp Ts εG nl nit ρ Tp Ts

10−1 10 930 0.43 14.5 26.8 10−2 10 640 0.77 34.5 21.9
20 843 0.73 132.0 34.3 20 591 1.17 265.9 29.3
50 664 1.47 349.9 49.1 50 503 2.04 441.7 41.6
100 612 2.78 515.1 79.2 100 464 3.67 612.9 67.0

10−3 10 446 1.97 268.4 24.0 10−4 10 362 3.83 2232.9 37.3
20 416 2.53 881.2 29.5 20 338 4.67 3741.6 35.7
50 386 3.45 829.9 41.8 50 329 5.74 2404.2 47.4
100 367 5.71 956.9 66.3 100 318 8.88 2053.8 73.1

The Cube test matrix is reordered with the Reverse Cuthill McKee algorithm and
uniformly partitioned into equal-size levels. The results are evaluated in terms of
number of iterations, nit, time needed to compute the preconditioner, Tp, the time
spent in the PCG iterations, Ts, and the preconditioner density, ρ, defined as

(4.1) ρ =
1

nnz(A)

nl−1∑
i=0

(
nnz(Qi

alr) + nnz(Qi
M )
)
,

where nnz(·) gives the number of nonzero entries stored for the operator (·) and all the
remaining symbols are defined as in Algorithm 4.1. For these preliminary tests, the
matrix-matrix products are fully computed, i.e., any use of thresholds and/or levels
of fill is avoided.

Similarly to the previous section, the analysis is carried out step by step, adding
one ingredient at a time. First, the performance of the robust MF preconditioner
with no low-rank corrections is investigated by changing the fill-in degree of G and F .
Then, low-rank corrections are added to the frame to identify their effect. It is worth
mentioning that only the robust MF preconditioner is addressed here, because the
standard multilevel FSAI algorithm breaks down, giving rise to indefinite Schur com-
plements.

Table 4 shows the results obtained by varying the number of levels nl and the
tolerance εG. The other tolerance εF is set to 10−2 and no low-rank corrections are
applied, i.e., dlr = alr = 0. As expected, the iteration count decreases progressively
as εG decreases, i.e., G is more accurate, and nl grows. The preconditioner density
also increases, so that the set-up burden and the cost per iteration grows. Notice
that, in particular, the set-up time can become very heavy. Although such a cost
could be reduced by introducing thresholds and level-of-fills in the matrix-matrix
computations with no substantial loss in the PCG acceleration, it appears that the
proposed multilevel approach is of interest whenever the preconditioner can be reused
several times, e.g., in eigensolvers or in some transient simulations, so that its set-up
cost can be properly amortized and set apart in the present analysis. Hence, we focus
on the solution time Ts only. With the most efficient εG value, i.e., 10−2, we vary εF
and nl. The results, provided in Table 5, show that the MFLR preconditioner appears
to be less sensitive to the quality of F than of G. In fact, the iteration count is more
stable than in Table 4.

With εG = 10−2, εF = 10−2, and nl = 10, we test the effects of corrections.
Table 6 shows the impact of using either DLR and ALR corrections. Increasing the
rank size, the number of iterations decreases for both approaches, but ALR correc-
tions have a stronger impact on the solution time Ts. This is somewhat expected
because ALR corrections have a global effect on the overall preconditioner, while
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Table 5
Cube test case: MFLR performance varying nl and εF (εG = 10−2, dlr = alr = 0).

εF nl nit ρ Tp Ts εF nl nit ρ Tp Ts

10−1 10 660 0.65 29.1 22.8 10−2 10 640 0.77 34.5 21.9
20 632 0.94 216.8 29.5 20 591 1.17 265.9 29.3
50 601 1.61 369.8 47.8 50 503 2.04 441.7 41.6
100 579 2.81 498.0 78.7 100 464 3.67 612.9 67.0

10−3 10 621 1.13 85.7 27.0 10−4 10 585 2.304 1163.3 35.1
20 544 1.79 639.2 32.9 20 460 3.445 4513.5 39.3
50 403 3.21 1129.2 43.0 50 309 5.550 4020.9 43.6
100 348 6.98 2278.7 71.2 100 255 11.192 6029.8 68.6

Table 6
Cube test case: MFLR performance varying either dlr or alr (εG = εF = 10−2, nl = 10).

dlr nit ρ Tp Ts alr nit ρ Tp Ts

5 534 0.90 71.3 29.3 5 289 1.35 95.1 17.0
10 485 1.01 66.1 29.4 10 213 1.92 78.0 15.1
20 450 1.24 65.9 25.5 20 196 3.06 88.1 14.1
50 405 1.92 75.0 30.1 50 186 6.48 214.5 36.7

Table 7
Cube test case: MFLR performance varying both dlr and alr (εG = εF = 10−2, nl = 10).

dlr alr nit ρ Tp Ts

1 1 525 0.92 76.3 34.4
1 10 204 1.95 87.7 14.8
1 20 188 3.09 112.5 18.5
10 1 381 1.13 71.7 25.0
10 10 148 2.15 83.6 10.9
10 20 134 3.29 100.0 11.3
20 1 341 1.35 86.6 23.9
20 10 132 2.38 100.5 10.4
20 20 123 3.52 100.1 10.8

DLR corrections improve locally the current level approximation of K−1. Finally, the
combined effect of both corrections is investigated in Table 7. This allows for obtain-
ing the best result in terms of both iteration count and solution time Ts decrease. In
particular, the latter is more than halved with respect to the case with no corrections
with at least dlr = alr = 10. The solver acceleration is paid with a bigger set-up
cost, which makes the MFLR approach interesting when the preconditioner can be
recycled.

Although the present analysis cannot be thoroughly exhaustive, it is possible to
observe that dlr and alr appear to be the most sensitive user-specified parameters.
The number of levels nl strongly depends on the size of the matrix and should be
selected such that each level is not too small. In the Cube test case it can be seen that
with more than 20 levels, i.e., less than 10,000 unknowns per level, the preconditioner
application cost grows quickly and is no longer compensated by the iteration count
reduction. By distinction, the selection of the tolerances εG and εF does not appear
to be overly difficult. In fact, the MFLR performance does not change much with
respect to a variation of these parameters in the interval [10−3, 10−1].

4.3. Preconditioner performance. The computational performance of the
MFLR preconditioner is finally evaluated in a set of large size SPD matrices taken
from the University of Florida Sparse Matrix Collection [9]. The main properties of



144 FRANCESCHINI, MAGRI, FERRONATO, AND JANNA

Table 8
Test matrices.

Size Number of nonzeroes
af shell3 504,855 17,588,875
af shell8 504,855 17,579,155
Emilia 923 923,136 40,373,538
Geo 1438 1,437,960 60,236,322
StocF 1465 1,465,137 21,005,389

Table 9
Computational performance of the adaptive FSAI and MFLR preconditioners for the test ma-

trices of Table 8.

Adaptive FSAI MFLR
nit ρ Tp [s] Ts [s] nit ρ Tp [s] Ts [s]

af shell3 963 0.89 88.8 63.9 126 4.50 237.8 31.5
af shell8 1033 0.86 81.2 68.0 131 3.22 174.8 28.6
Emilia 923 1513 0.11 5.0 128.5 575 0.25 82.8 80.4
Geo 1438 491 0.31 59.4 89.6 456 0.49 159.8 110.4
StocF 1465 937 0.93 51.3 133.4 936 1.66 260.4 222.2

the selected test cases are provided in Table 8, while the best results obtained by
the MFLR preconditioner in terms of iteration CPU time Ts are given in Table 9.
As a benchmark, in the same table the performance provided by the native adaptive
FSAI algorithm is also shown. All the CPU times are obtained using 1 thread on the
computer defined in section 4.2. It is worth mentioning that the native adaptive FSAI
is used as a benchmark because the standard multilevel FSAI generally gives rise to
indefinite Schur complements. Hence, only the robust MF algorithm presented here
can be effectively used, with or without low-rank corrections. The latter may improve
the convergence rate but have no effect as to the preconditioner robustness.

As already observed, the MFLR preconditioner set-up can be quite expensive,
especially because of the computation of the eigenpairs needed by the low-rank cor-
rection procedures. However, its effectiveness in the iteration count and CPU time
can be quite significant. For instance, in the af shell3 and af shell8 test cases, nit

is approximately reduced by a factor 10 and Ts is more than halved. Hence, the use
of the MFLR preconditioner can be of great interest whenever the set-up time can
be amortized along several linear solves. On the other hand, if the reduction of the
number of iterations is marginal, such as in the Geo 1438 and StocF 1465 test cases,
the adaptive FSAI proves more efficient than the MFLR preconditioner.

For the sake of a comparison, the computational performance obtained by other
multilevel packages, such as ILUPACK [3] and the Trilinos ML [13], is provided in
Table 10. The ILUPACK parameters are set so as to obtain approximately the same
memory footprint as MFLR, i.e., a density close to the one provided in Table 9. By
distinction, the default parameters are retained for Trilinos ML. The results show
that the ILUPACK performance in terms of solution time Ts is close to MFLR
for af shell3 and af shell8, much better for StocF 1465, and much lower for
Emilia 923 and Geo 1438. In particular, the ILU density for the Emilia 923 test
case must be increased up to 3.8 to attain convergence in just 62 iterations, other-
wise the convergence is not reached after 3,000 iterations. Recalling that ILUPACK
cannot thoroughly exploit a growing parallelism of the computational architecture,
the comparison with MFLR appears to be quite satisfactory. As far as the results
with Trilinos ML are concerned, it can be observed that with the default parameters
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Table 10
Computational performance of the test matrices of Table 8 with ILUPACK and Trilinos ML.

ILUPACK – GMRes Trilinos ML – CG
nit ρ Tp [s] Ts [s] nit ρ Tp [s] Ts [s]

af shell3 79 4.12 64.0 24.6 356 1.01 1.2 80.1
af shell8 78 4.12 62.2 24.4 309 1.02 1.2 57.4
Emilia 923 > 3000 0.40 34.0 – 586 1.15 6.5 367.0
Geo 1438 878 0.50 57.3 385.8 118 1.15 9.6 93.7
StocF 1465 108 1.50 49.2 33.3 759 1.16 3.8 278.0
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Fig. 5. Strong scalability test for a regular 3003 Laplacian.

the MFLR preconditioner is always superior, with the exception of the Geo 1438 test
case, where the two performances are roughly equivalent.

Finally, to show the potential parallelism of the MFLR preconditioner, a scal-
ability test has been carried out on a discrete Laplacian computed over a regular
300× 300× 300 grid. The numerical experiment is performed on the Marconi cluster
at the CINECA Center of High Performance Computing, Bologna, Italy. The clus-
ter is still under construction and, at the moment of writing this work, it consists
of 1,512 nodes with 128 Gbyte of RAM memory each. Every node is equipped with
2 Intel Xeon E5-2697v4 Broadwell processors at 2.3 GHz with 36 cores. This pre-
liminary implementation of MFLR makes use of shared-memory parallelism through
the OpenMP directives, hence in the strong scalability test provided in Figure 5, a
single node only is used with up to 32 threads. The strong scalability of the MFLR
preconditioner is compared to that of the Adaptive FSAI algorithm as far as both
the set-up and the iteration time, Tp and Ts, are concerned. In particular, Figure 5
provides the speed-up,

Sp =
Tp(t)
Tp(1)

, Ss =
Ts(t)
Ts(1)

,(4.2)

with Tp(t) and Ts(t) the set-up and iteration wall-clock times measured with t threads.
It has been already verified that the native Adaptive FSAI practically has an ideal
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speed-up [20], according to the hardware properties of the specific computational ar-
chitecture used for the numerical experiments. In the case of the multi-core processors
of the Marconi cluster, it is well-known that it is virtually impossible to obtain ideal
speed-ups with iterative solvers as these algorithms are bandwidth limited, being char-
acterized by a low bit per flop ratio. The MFLR preconditioner is theoretically less
parallel than FSAI, because of the intrinsic sequentiality introduced by the multilevel
framework. Nevertheless, Figure 5 shows that the strong scalability is only marginally
affected by such a sequentiality and the MFLR preconditioner still preserves a good
degree of parallelism.

5. Conclusions. The development of a multilevel framework is often useful in
several applications. However, using the FSAI preconditioner as the basic kernel
in a standard multilevel approach may give rise to some difficulties related with the
approximations introduced in the computation of the Schur complement at each level.
With SPD problems, such a Schur complement might be indefinite, thus causing a
breakdown of the multilevel algorithm.

The present work develops a robust multilevel framework for SPD matrices based
on the use of adaptive FSAI as the main kernel. An alternative way of computing
the Schur complement is introduced so as to guarantee its positive definiteness in-
dependent of the preconditioner sparsity. A theoretical analysis is formulated with
the aim of providing appropriate bounds for the eigenspectrum of the preconditioned
matrix. The multilevel FSAI preconditioner is further enhanced by introducing low-
rank corrections at both a local and a global level, namely DLR and ALR corrections,
respectively, thus producing the MFLR preconditioning framework.

The MFLR preconditioner has been investigated in a set of test problems to
analyze (i) the relative influence of the user-specified parameters controlling the al-
gorithm set-up, and (ii) the computational performance and potential scalability in
a parallel environment. The numerical results show that the proposed approach is
generally able to significantly accelerate the solver convergence rate still preserving a
good degree of parallelism. At the present time, the solver acceleration is paid off by
a large set-up cost, which is mainly due to the computation of the eigenpairs needed
by the low-rank corrections. The increase of the cost for building the preconditioner
with respect to the native adaptive FSAI makes this approach attractive especially
for those applications where the preconditioner can be effectively recycled along a
number of linear solves.

The main goal of this work was to prove the robustness and effectiveness of
a multilevel framework in explicit preconditioning. Further investigations will be
devoted in the development of a faster set-up stage by using, for instance, randomized
approaches while computing low-rank corrections [15], and enforcing sparsity in the
resulting factors.
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