3 research outputs found

    Precursory Motion and Time-Of-Failure Prediction of the Achoma Landslide, Peru, From High Frequency PlanetScope Satellites

    Get PDF
    Landslide time-of-failure prediction is crucial in natural hazards, often requiring precise measurements from in situ instruments. This instrumentation is not always possible, and remote-sensing techniques have been questioned for detecting precursors and predicting landslides. Here, based on high frequency acquisitions of the PlanetScope satellite constellation, we study the kinematics of a large landslide located in Peru that failed in June 2020. We show that the landslide underwent a progressive acceleration in the 3 months before its failure, reaching at most 8 m of total displacement. The high frequency of satellite revisit allows us to apply the popular Fukuzono method for landslide time-of-failure prediction, with sufficient confidence for faster moving areas of the landslide. These results open new opportunities for landslide precursors detection from space, but also show the probable seldom applicability of the optical satellites for landslide time-of-failure prediction

    Sparsity Optimization Method for Slow-Moving Landslides Detection in Satellite Image Time-Series

    No full text
    International audiencehis paper presents a new method based on recent optimization technique to detect slow-moving landslides (<150m/year) in time series of displacement field generated by satellite images. Sparse optimization is applied simultaneously on the 3-D data set in space as well as in time. The proposed method takes into account the distinctive signal physical properties in space and time, by enforcing a sparse representation by blocks in space, but a continuing and monotonous representation in time of the landslides. As a result, we show that a mixed ℓ1,2-norm is the most suitable norm for this detection problem, compared to pure ℓ₁-norm or ℓ₂-norm. Moreover, an outlier estimation step is included that sets apart the Gaussian noise from locally sparse processing errors in the data. The performance of this approach is tested by applying it both on synthetic data and on a time series of displacements fields over 16 dates in the Colca Valley, Peru. This detection presents commission and omission errors for landslides of 29% and 14%, respectively, using a medium resolution (10 m) data set of optical satellite images. It detects all important landslides, already known from field investigations. Moreover, it also points out other smaller or unknown landslides, increasing the existing slow-moving landslide inventory by +50%

    Sparsity Optimization Method for Slow-Moving Landslides Detection in Satellite Image Time-Series

    No full text
    corecore