16,178 research outputs found

    Expanders Are Universal for the Class of All Spanning Trees

    Full text link
    Given a class of graphs F, we say that a graph G is universal for F, or F-universal, if every H in F is contained in G as a subgraph. The construction of sparse universal graphs for various families F has received a considerable amount of attention. One is particularly interested in tight F-universal graphs, i.e., graphs whose number of vertices is equal to the largest number of vertices in a graph from F. Arguably, the most studied case is that when F is some class of trees. Given integers n and \Delta, we denote by T(n,\Delta) the class of all n-vertex trees with maximum degree at most \Delta. In this work, we show that every n-vertex graph satisfying certain natural expansion properties is T(n,\Delta)-universal or, in other words, contains every spanning tree of maximum degree at most \Delta. Our methods also apply to the case when \Delta is some function of n. The result has a few very interesting implications. Most importantly, we obtain that the random graph G(n,p) is asymptotically almost surely (a.a.s.) universal for the class of all bounded degree spanning (i.e., n-vertex) trees provided that p \geq c n^{-1/3} \log^2n where c > 0 is a constant. Moreover, a corresponding result holds for the random regular graph of degree pn. In fact, we show that if \Delta satisfies \log n \leq \Delta \leq n^{1/3}, then the random graph G(n,p) with p \geq c \Delta n^{-1/3} \log n and the random r-regular n-vertex graph with r \geq c\Delta n^{2/3} \log n are a.a.s. T(n,\Delta)-universal. Another interesting consequence is the existence of locally sparse n-vertex T(n,\Delta)-universal graphs. For constant \Delta, we show that one can (randomly) construct n-vertex T(n,\Delta)-universal graphs with clique number at most five. Finally, we show robustness of random graphs with respect to being universal for T(n,\Delta) in the context of the Maker-Breaker tree-universality game.Comment: 25 page

    Extremal density for sparse minors and subdivisions

    Full text link
    We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. Among others, \bullet (1+o(1))t2(1+o(1))t^2 average degree is sufficient to force the t×tt\times t grid as a topological minor; \bullet (3/2+o(1))t(3/2+o(1))t average degree forces every tt-vertex planar graph as a minor, and the constant 3/23/2 is optimal, furthermore, surprisingly, the value is the same for tt-vertex graphs embeddable on any fixed surface; \bullet a universal bound of (2+o(1))t(2+o(1))t on average degree forcing every tt-vertex graph in any nontrivial minor-closed family as a minor, and the constant 2 is best possible by considering graphs with given treewidth.Comment: 33 pages, 6 figure

    Extremal density for sparse minors and subdivisions

    Get PDF
    We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. Among others, ∙ (1+o(1))t2 average degree is sufficient to force the t×t grid as a topological minor; ∙ (3/2+o(1))t average degree forces every t-vertex planar graph as a minor, and the constant 3/2 is optimal, furthermore, surprisingly, the value is the same for t-vertex graphs embeddable on any fixed surface; ∙ a universal bound of (2+o(1))t on average degree forcing every t-vertex graph in any nontrivial minor-closed family as a minor, and the constant 2 is best possible by considering graphs with given treewidth

    Embedding nearly-spanning bounded degree trees

    Full text link
    We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1-\epsilon)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d\geq 2 and 0<\epsilon<1, there exists a constant c=c(d,\epsilon) such that a random graph G(n,c/n) contains almost surely a copy of every tree T on (1-\epsilon)n vertices with maximum degree at most d. We also prove that if an (n,D,\lambda)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most \lambda in their absolute values) has large enough spectral gap D/\lambda as a function of d and \epsilon, then G has a copy of every tree T as above

    Near-optimal adjacency labeling scheme for power-law graphs

    Get PDF
    An adjacency labeling scheme is a method that assigns labels to the vertices of a graph such that adjacency between vertices can be inferred directly from the assigned label, without using a centralized data structure. We devise adjacency labeling schemes for the family of power-law graphs. This family that has been used to model many types of networks, e.g. the Internet AS-level graph. Furthermore, we prove an almost matching lower bound for this family. We also provide an asymptotically near- optimal labeling scheme for sparse graphs. Finally, we validate the efficiency of our labeling scheme by an experimental evaluation using both synthetic data and real-world networks of up to hundreds of thousands of vertices

    Sublinear Distance Labeling

    Get PDF
    A distance labeling scheme labels the nn nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A DD-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least DD from each other. In this paper we consider distance labeling schemes for the classical case of unweighted graphs with both directed and undirected edges. We present a O(nDlog2D)O(\frac{n}{D}\log^2 D) bit DD-preserving distance labeling scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Ω(nD)\Omega(\frac{n}{D}). With our DD-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n)o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Ω(n)\Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate rr-additive labeling schemes, that return distances within an additive error of rr we show a scheme of size O(nrpolylog(rlogn)logn)O\left ( \frac{n}{r} \cdot\frac{\operatorname{polylog} (r\log n)}{\log n} \right ) for r2r \ge 2. This improves on the current best bound of O(nr)O\left(\frac{n}{r}\right) by Alstrup et. al. [SODA 2016] for sub-polynomial rr, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2r=2.Comment: A preliminary version of this paper appeared at ESA'1
    corecore