765 research outputs found

    Efficient Data Gathering in Wireless Sensor Networks Based on Matrix Completion and Compressive Sensing

    Full text link
    Gathering data in an energy efficient manner in wireless sensor networks is an important design challenge. In wireless sensor networks, the readings of sensors always exhibit intra-temporal and inter-spatial correlations. Therefore, in this letter, we use low rank matrix completion theory to explore the inter-spatial correlation and use compressive sensing theory to take advantage of intra-temporal correlation. Our method, dubbed MCCS, can significantly reduce the amount of data that each sensor must send through network and to the sink, thus prolong the lifetime of the whole networks. Experiments using real datasets demonstrate the feasibility and efficacy of our MCCS method

    Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) for Non-smooth Data Field

    Full text link
    Compressive Sensing (CS) has been applied successfully in a wide variety of applications in recent years, including photography, shortwave infrared cameras, optical system research, facial recognition, MRI, etc. In wireless sensor networks (WSNs), significant research work has been pursued to investigate the use of CS to reduce the amount of data communicated, particularly in data aggregation applications and thereby improving energy efficiency. However, most of the previous work in WSN has used CS under the assumption that data field is smooth with negligible white Gaussian noise. In these schemes signal sparsity is estimated globally based on the entire data field, which is then used to determine the CS parameters. In more realistic scenarios, where data field may have regional fluctuations or it is piecewise smooth, existing CS based data aggregation schemes yield poor compression efficiency. In order to take full advantage of CS in WSNs, we propose an Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) scheme. The proposed schemes dynamically chooses sparsity values based on signal variations in local regions. We prove that A-HDACS enables more sensor nodes to employ CS compared to the schemes that do not adapt to the changing field. The simulation results also demonstrate the improvement in energy efficiency as well as accurate signal recovery

    Toward a Robust Sparse Data Representation for Wireless Sensor Networks

    Full text link
    Compressive sensing has been successfully used for optimized operations in wireless sensor networks. However, raw data collected by sensors may be neither originally sparse nor easily transformed into a sparse data representation. This paper addresses the problem of transforming source data collected by sensor nodes into a sparse representation with a few nonzero elements. Our contributions that address three major issues include: 1) an effective method that extracts population sparsity of the data, 2) a sparsity ratio guarantee scheme, and 3) a customized learning algorithm of the sparsifying dictionary. We introduce an unsupervised neural network to extract an intrinsic sparse coding of the data. The sparse codes are generated at the activation of the hidden layer using a sparsity nomination constraint and a shrinking mechanism. Our analysis using real data samples shows that the proposed method outperforms conventional sparsity-inducing methods.Comment: 8 page

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    Distributed Data Aggregation for Sparse Recovery in Wireless Sensor Networks

    Get PDF
    We consider the approximate sparse recovery problem in Wireless Sensor Networks (WSNs) using Compressed Sensing/Compressive Sampling (CS). The goal is to recover the n \mbox{-}dimensional data values by querying only m≪nm \ll n sensors based on some linear projection of sensor readings. To solve this problem, a two-tiered sampling model is considered and a novel distributed compressive sparse sampling (DCSS) algorithm is proposed based on sparse binary CS measurement matrix. In the two-tiered sampling model, each sensor first samples the environment independently. Then the fusion center (FC), acting as a pseudo-sensor, samples the sensor network to select a subset of sensors (mm out of nn) that directly respond to the FC for data recovery purpose. The sparse binary matrix is designed using unbalanced expander graph which achieves the state-of-the-art performance for CS schemes. This binary matrix can be interpreted as a sensor selection matrix-whose fairness is analyzed. Extensive experiments on both synthetic and real data set show that by querying only the minimum amount of mm sensors using the DCSS algorithm, the CS recovery accuracy can be as good as dense measurement matrices (e.g., Gaussian, Fourier Scrambles). We also show that the sparse binary measurement matrix works well on compressible data which has the closest recovery result to the known best k\mbox{-}term approximation. The recovery is robust against noisy measurements. The sparsity and binary properties of the measurement matrix contribute, to a great extent, the reduction of the in-network communication cost as well as the computational burden

    Efficient Data Compression with Error Bound Guarantee in Wireless Sensor Networks

    Get PDF
    We present a data compression and dimensionality reduction scheme for data fusion and aggregation applications to prevent data congestion and reduce energy consumption at network connecting points such as cluster heads and gateways. Our in-network approach can be easily tuned to analyze the data temporal or spatial correlation using an unsupervised neural network scheme, namely the autoencoders. In particular, our algorithm extracts intrinsic data features from previously collected historical samples to transform the raw data into a low dimensional representation. Moreover, the proposed framework provides an error bound guarantee mechanism. We evaluate the proposed solution using real-world data sets and compare it with traditional methods for temporal and spatial data compression. The experimental validation reveals that our approach outperforms several existing wireless sensor network's data compression methods in terms of compression efficiency and signal reconstruction.Comment: ACM MSWiM 201

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks
    • …
    corecore