186,976 research outputs found

    Performance of algebraic multigrid methods for non-symmetric matrices arising in particle methods

    Full text link
    Large linear systems with sparse, non-symmetric matrices arise in the modeling of Markov chains or in the discretization of convection-diffusion problems. Due to their potential to solve sparse linear systems with an effort that is linear in the number of unknowns, algebraic multigrid (AMG) methods are of fundamental interest for such systems. For symmetric positive definite matrices, fundamental theoretical convergence results are established, and efficient AMG solvers have been developed. In contrast, for non-symmetric matrices, theoretical convergence results have been provided only recently. A property that is sufficient for convergence is that the matrix be an M-matrix. In this paper, we present how the simulation of incompressible fluid flows with particle methods leads to large linear systems with sparse, non-symmetric matrices. In each time step, the Poisson equation is approximated by meshfree finite differences. While traditional least squares approaches do not guarantee an M-matrix structure, an approach based on linear optimization yields optimally sparse M-matrices. For both types of discretization approaches, we investigate the performance of a classical AMG method, as well as an AMLI type method. While in the considered test problems, the M-matrix structure turns out not to be necessary for the convergence of AMG, problems can occur when it is violated. In addition, the matrices obtained by the linear optimization approach result in fast solution times due to their optimal sparsity.Comment: 16 pages, 7 figure

    Using Underapproximations for Sparse Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization consists in (approximately) factorizing a nonnegative data matrix by the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis technique in numerous domains, e.g., text mining, image processing, microarray data analysis, collaborative filtering, etc. We introduce a novel approach to solve NMF problems, based on the use of an underapproximation technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the maximum edge biclique problem in bipartite graphs. We test two variants of our underapproximation approach on several standard image datasets and show that they provide sparse part-based representations with low reconstruction error. Our results are comparable and sometimes superior to those obtained by two standard Sparse Nonnegative Matrix Factorization techniques.Comment: Version 2 removed the section about convex reformulations, which was not central to the development of our main results; added material to the introduction; added a review of previous related work (section 2.3); completely rewritten the last part (section 4) to provide extensive numerical results supporting our claims. Accepted in J. of Pattern Recognitio

    Generalized power method for sparse principal component analysis

    Get PDF
    In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed.Comment: Submitte

    Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    Get PDF
    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms
    • …
    corecore