64,748 research outputs found

    Comparison of Clustering Methods for Time Course Genomic Data: Applications to Aging Effects

    Full text link
    Time course microarray data provide insight about dynamic biological processes. While several clustering methods have been proposed for the analysis of these data structures, comparison and selection of appropriate clustering methods are seldom discussed. We compared 33 probabilistic based clustering methods and 33 distance based clustering methods for time course microarray data. Among probabilistic methods, we considered: smoothing spline clustering also known as model based functional data analysis (MFDA), functional clustering models for sparsely sampled data (FCM) and model-based clustering (MCLUST). Among distance based methods, we considered: weighted gene co-expression network analysis (WGCNA), clustering with dynamic time warping distance (DTW) and clustering with autocorrelation based distance (ACF). We studied these algorithms in both simulated settings and case study data. Our investigations showed that FCM performed very well when gene curves were short and sparse. DTW and WGCNA performed well when gene curves were medium or long (>=10>=10 observations). SSC performed very well when there were clusters of gene curves similar to one another. Overall, ACF performed poorly in these applications. In terms of computation time, FCM, SSC and DTW were considerably slower than MCLUST and WGCNA. WGCNA outperformed MCLUST by generating more accurate and biological meaningful clustering results. WGCNA and MCLUST are the best methods among the 6 methods compared, when performance and computation time are both taken into account. WGCNA outperforms MCLUST, but MCLUST provides model based inference and uncertainty measure of clustering results

    Directional clustering through matrix factorization

    No full text
    This paper deals with a clustering problem where feature vectors are clustered depending on the angle between feature vectors, that is, feature vectors are grouped together if they point roughly in the same direction. This directional distance measure arises in several applications, including document classification and human brain imaging. Using ideas from the field of constrained low-rank matrix factorization and sparse approximation, a novel approach is presented that differs from classical clustering methods, such as seminonnegative matrix factorization, K-EVD, or k-means clustering, yet combines some aspects of all these. As in nonnegative matrix factorization and K-EVD, the matrix decomposition is iteratively refined to optimize a data fidelity term; however, no positivity constraint is enforced directly nor do we need to explicitly compute eigenvectors. As in k-means and K-EVD, each optimization step is followed by a hard cluster assignment. This leads to an efficient algorithm that is shown here to outperform common competitors in terms of clustering performance and/or computation speed. In addition to a detailed theoretical analysis of some of the algorithm's main properties, the approach is empirically evaluated on a range of toy problems, several standard text clustering data sets, and a high-dimensional problem in brain imaging, where functional magnetic resonance imaging data are used to partition the human cerebral cortex into distinct functional regions

    Parsimonious Time Series Clustering

    Full text link
    We introduce a parsimonious model-based framework for clustering time course data. In these applications the computational burden becomes often an issue due to the number of available observations. The measured time series can also be very noisy and sparse and a suitable model describing them can be hard to define. We propose to model the observed measurements by using P-spline smoothers and to cluster the functional objects as summarized by the optimal spline coefficients. In principle, this idea can be adopted within all the most common clustering frameworks. In this work we discuss applications based on a k-means algorithm. We evaluate the accuracy and the efficiency of our proposal by simulations and by dealing with drosophila melanogaster gene expression data

    Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation

    Full text link
    Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not scalable enough to handle the sizes of modern high-dimensional data sets (often on the order of terabytes), and assume Gaussian samples. To address these deficiencies, we introduce HP-CONCORD, a highly scalable optimization method for estimating a sparse inverse covariance matrix based on a regularized pseudolikelihood framework, without assuming Gaussianity. Our parallel proximal gradient method uses a novel communication-avoiding linear algebra algorithm and runs across a multi-node cluster with up to 1k nodes (24k cores), achieving parallel scalability on problems with up to ~819 billion parameters (1.28 million dimensions); even on a single node, HP-CONCORD demonstrates scalability, outperforming a state-of-the-art method. We also use HP-CONCORD to estimate the underlying dependency structure of the brain from fMRI data, and use the result to identify functional regions automatically. The results show good agreement with a clustering from the neuroscience literature.Comment: Main paper: 15 pages, appendix: 24 page

    Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering

    Get PDF
    International audienceFunctional neuroimaging can measure the brain's response to an external stimulus. It is used to perform brain mapping: identifying from these observations the brain regions involved. This problem can be cast into a linear supervised learning task where the neuroimaging data are used as predictors for the stimulus. Brain mapping is then seen as a support recovery problem. On functional MRI (fMRI) data, this problem is particularly challenging as i) the number of samples is small due to lim- ited acquisition time and ii) the variables are strongly correlated. We propose to overcome these difficulties using sparse regression models over new variables obtained by clustering of the original variables. The use of randomization techniques, e.g. bootstrap samples, and clustering of the variables improves the recovery properties of sparse methods. We demonstrate the benefit of our approach on an extensive simulation study as well as two fMRI datasets
    corecore