1,264 research outputs found

    Multivariate Hawkes Processes for Large-scale Inference

    Full text link
    In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems both in the number of events in the observed history nn and the number of event types dd (i.e. dimensions). The proposed Low-Rank Hawkes Process (LRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2d^2 triggering kernels using at most O(ndr2)O(ndr^2) operations, where rr is the rank of the approximation (r≪d,nr \ll d,n). This comes as a major improvement to the existing state-of-the-art inference algorithms that are in O(nd2)O(nd^2). Furthermore, the low-rank approximation allows LRHP to learn representative patterns of interaction between event types, which may be valuable for the analysis of such complex processes in real world datasets. The efficiency and scalability of our approach is illustrated with numerical experiments on simulated as well as real datasets.Comment: 16 pages, 5 figure

    Shaping Social Activity by Incentivizing Users

    Full text link
    Events in an online social network can be categorized roughly into endogenous events, where users just respond to the actions of their neighbors within the network, or exogenous events, where users take actions due to drives external to the network. How much external drive should be provided to each user, such that the network activity can be steered towards a target state? In this paper, we model social events using multivariate Hawkes processes, which can capture both endogenous and exogenous event intensities, and derive a time dependent linear relation between the intensity of exogenous events and the overall network activity. Exploiting this connection, we develop a convex optimization framework for determining the required level of external drive in order for the network to reach a desired activity level. We experimented with event data gathered from Twitter, and show that our method can steer the activity of the network more accurately than alternatives

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database
    • …
    corecore