38 research outputs found

    Image Fusion via Sparse Regularization with Non-Convex Penalties

    Full text link
    The L1 norm regularized least squares method is often used for finding sparse approximate solutions and is widely used in 1-D signal restoration. Basis pursuit denoising (BPD) performs noise reduction in this way. However, the shortcoming of using L1 norm regularization is the underestimation of the true solution. Recently, a class of non-convex penalties have been proposed to improve this situation. This kind of penalty function is non-convex itself, but preserves the convexity property of the whole cost function. This approach has been confirmed to offer good performance in 1-D signal denoising. This paper demonstrates the aforementioned method to 2-D signals (images) and applies it to multisensor image fusion. The problem is posed as an inverse one and a corresponding cost function is judiciously designed to include two data attachment terms. The whole cost function is proved to be convex upon suitably choosing the non-convex penalty, so that the cost function minimization can be tackled by convex optimization approaches, which comprise simple computations. The performance of the proposed method is benchmarked against a number of state-of-the-art image fusion techniques and superior performance is demonstrated both visually and in terms of various assessment measures

    Reweighted lp Constraint LMS-Based Adaptive Sparse Channel Estimation for Cooperative Communication System

    Get PDF
    This paper studies the issue of sparsity adaptive channel reconstruction in time-varying cooperative communication networks through the amplify-and-forward transmission scheme. A new sparsity adaptive system identification method is proposed, namely reweighted norm ( < < ) penalized least mean square(LMS)algorithm. The main idea of the algorithm is to add a norm penalty of sparsity into the cost function of the LMS algorithm. By doing so, the weight factor becomes a balance parameter of the associated norm adaptive sparse system identification. Subsequently, the steady state of the coefficient misalignment vector is derived theoretically, with a performance upper bounds provided which serve as a sufficient condition for the LMS channel estimation of the precise reweighted norm. With the upper bounds, we prove that the ( < < ) norm sparsity inducing cost function is superior to the reweighted norm. An optimal selection of for the norm problem is studied to recover various sparse channel vectors. Several experiments verify that the simulation results agree well with the theoretical analysis, and thus demonstrate that the proposed algorithm has a better convergence speed and better steady state behavior than other LMS algorithms

    Ship Wake Detection in SAR Images via Sparse Regularization

    Get PDF
    In order to analyse synthetic aperture radar (SAR) images of the sea surface, ship wake detection is essential for extracting information on the wake generating vessels. One possibility is to assume a linear model for wakes, in which case detection approaches are based on transforms such as Radon and Hough. These express the bright (dark) lines as peak (trough) points in the transform domain. In this paper, ship wake detection is posed as an inverse problem, which the associated cost function including a sparsity enforcing penalty, i.e. the generalized minimax concave (GMC) function. Despite being a non-convex regularizer, the GMC penalty enforces the overall cost function to be convex. The proposed solution is based on a Bayesian formulation, whereby the point estimates are recovered using maximum a posteriori (MAP) estimation. To quantify the performance of the proposed method, various types of SAR images are used, corresponding to TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS2. The performance of various priors in solving the proposed inverse problem is first studied by investigating the GMC along with the L1, Lp, nuclear and total variation (TV) norms. We show that the GMC achieves the best results and we subsequently study the merits of the corresponding method in comparison to two state-of-the-art approaches for ship wake detection. The results show that our proposed technique offers the best performance by achieving 80% success rate.Comment: 18 page

    Detection of Ship Wakes in SAR Imagery Using Cauchy Regularisation

    Full text link
    Ship wake detection is of great importance in the characterisation of synthetic aperture radar (SAR) images of the ocean surface since wakes usually carry essential information about vessels. Most detection methods exploit the linear characteristics of the ship wakes and transform the lines in the spatial domain into bright or dark points in a transform domain, such as the Radon or Hough transforms. This paper proposes an innovative ship wake detection method based on sparse regularisation to obtain the Radon transform of the SAR image, in which the linear features are enhanced. The corresponding cost function utilizes the Cauchy prior, and on this basis, the Cauchy proximal operator is proposed. A Bayesian method, the Moreau-Yoshida unadjusted Langevin algorithm (MYULA), which is computationally efficient and robust is used to estimate the image in the transform domain by minimizing the negative log-posterior distribution. The detection accuracy of the Cauchy prior based approach is 86.7%, which is demonstrated by experiments over six COSMO-SkyMed images.Comment: 9 pages, 2 Figures and 2 Table

    Imposing early and asymptotic constraints on LiGME with application to nonconvex enhancement of fused lasso models

    Full text link
    For the constrained LiGME model, a nonconvexly regularized least squares estimation model, under its overall convexity condition, we newly present an iterative algorithm of guaranteed convergence to its globally optimal solution. The proposed algorithm can deal with two different types of constraints simultaneously. The first type called the asymptotic constraint requires for the limit point of the produced sequence by the proposed algorithm to achieve asymptotically. The second type called the early constraint requires for the whole sequence by the proposed algorithm to satisfy. We also propose a nonconvex and constraint enhancement of fused lasso models for sparse piecewise constant signal estimations, possibly under nonzero baseline assumptions, to which the proposed enhancement with two types of constraints can achieve robustness against possible model mismatch as well as higher estimation accuracy compared with conventional fused lasso type models.Comment: 5 pages, 7 figure
    corecore