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Abstract: This paper studies the issue of sparsity adaptive channel reconstruction in time-varying cooperative 

communication networks through the amplify-and-forward transmission scheme. A new sparsity adaptive system 

identification method is proposed, namely reweighted 𝒍𝒑 norm (𝟎 < 𝒑 < 𝟏) penalized least mean square（LMS）algorithm. 

The main idea of the algorithm is to add a 𝒍𝒑 norm penalty of sparsity into the cost function of the LMS algorithm. By doing 

so, the weight factor becomes a balance parameter of the associated 𝒍𝒑  norm adaptive sparse system identification. 

Subsequently, the steady state of the coefficient misalignment vector is derived theoretically, with a performance upper 

bounds provided which serve as a sufficient condition for the LMS channel estimation of the precise reweighted 𝒍𝒑 norm. 

With the upper bounds, we prove that the 𝒍𝒑  (𝟎 < 𝒑 < 𝟏  ) norm sparsity inducing cost function is superior to the 

reweighted 𝒍𝟏 norm. An optimal selection of 𝒑 for the 𝒍𝒑 norm problem is studied to recover various 𝒅 sparse channel 

vectors. Several experiments verify that the simulation results agree well with the theoretical analysis, and thus 

demonstrate that the proposed algorithm has a better convergence speed and better steady state behavior than other LMS 

algorithms.   

1. Introduction 

Cooperative communication has been widely studied recently 

in wireless networks because of its significant performance in 

enhancing the transmission capacity and exploiting spatial 

diversity to against the influence of path loss and channel 

fading [1]. In cooperative communication systems, the accurate 

channel impulse response (CIR) is needed for equalization, 

coherent signal detection, and so on, and it can also improve 

the communication quality of service in 5G wireless 

communication systems, especially for the dynamically 

changing channel and its sparsity. Therefore, the issue of 

accurately estimate the channel state information in dynamic 

cooperative relay channel systems becomes significant and 

challenging. 

In cooperative communication systems, the multipath tap-

weights are spread widely in time with only a few significant 

components, and the impulse response of multipath wireless  

channel contains only a small fraction of nonzero coefficients,  

which means the cooperative channel has sparse structure. As 

such, the cooperative relay multipath wireless channel is the  

cooperative relay multipath wireless channel is characterized  

 

as a fast time-varying and sparse feature. By utilizing and 

exploiting the inherent sparsity of cooperative channel 

impulse response, the channel estimation performance can be 

improved. Currently, there has been a growing interest in 

sparse channel estimation, and advanced channel estimation 

algorithms have been developed such as compressed sensing 

(CS) algorithms and sparse adaptive filtering (SAF) 

algorithms [2–6] and so forth.  

Sparse channel estimation methods mainly include: 

optimization methods, thresholding methods and greedy 

methods. Classic algorithms include basis pursuit (BP) 

algorithm, orthogonal matching pursuit (OMP) method and 

iterative thresholding algorithms [7-9]. Unfortunately, these 

algorithms are not applicable for sparse channel estimation in 

fast time-varying environments. In [3], the sparsity adaptive 

expectation maximization (SAEM) used expectation 

maximization algorithm (EM) and Kalman filter which can 

utilize channel sparsity well and trace the true support set of 

time-varying channel [3]. However, SAEM has high 

computational complexity. 

Accordingly, the LMS-based sparse adaptive filtering or 
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recursive least squares (RLS) algorithms are developed 

attribute to their simplicity in application [10–13]. In addition, 

a class of novel sparse adaptive algorithms has emerged based 

on regularized LMS algorithms, where the sparsity penalty 

induced strategy is used by exerting various sparsity penalty 

terms into the instantaneous error of a traditional adaptive 

filtering algorithm. The sparsity constraint can be 𝑙1 norm 

[10], reweighted 𝑙1  norm [12], 𝑙0  norm [13], and non-

convex sparsity penalty. These algorithms have good 

performance on faster convergence rate and smaller mean 

square error (MSE) comparing with the traditional adaptive 

filtering method, such as zero-point attraction Least Mean 

Square algorithm (ZA-LMS) [10], reweighted zero attracting 

LMS (RZA-LMS) [11] and so on. ZA-LMS uses a 𝑙1 norm 

penalty in the cost function of the traditional LMS algorithm, 

where 𝑙1 norm acts as a zero-point attracted term to modify 

the parameter vector update equation. RZA-LMS introduces 

the log-sum penalty and its performance is similar to the 𝑙0 

norm algorithm. Y. Gu proposed the 𝑙0  norm Constraint 

LMS Algorithm [13], by exerting the 𝑙0 norm penalty into 

the cost function of the LMS algorithm. The 𝑙0 norm, a more 

accurate measure of sparsity, is defined as the number of non-

zero elements in the unknown system vector. Similarly, as 

proposed in [14], ZA-RLS-I and ZA-RLS-II added 𝑙1 norm 

penalty and approximated 𝑙1norm of the parameter vector 

penalty term instead of an adaptively weighted 𝑙2  norm 

penalty to cost function of the RLS algorithm. The ZA-RLS 

algorithms achieve better performance than the other LS 

algorithms, however, their MSEs are not as good as sparse 

LMS algorithms. 

Recently, the non-convex methods have received 

tremendous attentions in solving the problem of sparse 

recovery [15-18]. Furthermore, some studies have presented 

that the non-convex penalties might induce better sparsity than 

the convex penalties. In addition, the local and global 

optimality of 𝑙𝑝   minimization for sparse recovery can be 

guaranteed even under weaker conditions in comparison with 

the convex 𝑙1 minimization when the penalty approaches the 

𝑙𝑝 norm [17]. In this work, we study the fast identification of 

sparse cascaded channel by using the framework of an adaptive 

filter. In order to explore the sparse features of the cooperative 

relay communication system, we propose a new sparse aware 

LMS algorithm for relay channel reconstruction. The 

expectation of the misalignment vector is derived and discussed 

under different algorithm parameters and system sparsity. 

Simulation studies are conducted to verify the high robustness, 

low computational cost and easy implementation of the 

proposed algorithm. 

This paper is organized as follows. The amplify-and-

forward (AF)-based cooperative relay channel model is 

described briefly in Section 2. Then in Section 3, we introduce 

the reweighted 𝑙𝑝  norm constraint LMS and derive the 

expectation of the misalignment vector and provide the 

steady-state analysis of the proposed algorithm. Numerical 

simulations and rigorous analysis are presented in Section 4 

to demonstrate the effectiveness prove the theoretical analysis. 

Finally, the conclusion is given in section 5. 

2. System model and LMS algorithm 

2.1 Cooperative Rely Channel Model 

Consider an amplified model of cooperation relay network 

with a source node T1, a destination node T2, and one relay 

node R. It is assumed that all the terminals are equipped with 

only one antenna and work in the half-duplex mode. When 

node T2 is beyond the communication range of node T1 duo 

to remote distance or shielding affection, then all signals sent 

by the source T1 need to be forwarded to destination T2 by 

relay node. Denote 𝒈 = [𝑔0, 𝑔1, ⋯𝑔𝐿𝑔−1] as the baseband 

channel between T1 and R. And 𝒌 = [𝑘0, 𝑘1, ⋯ 𝑘𝐿𝑘−1] is the 

channel vector between relay node R and destination T2. 

Since T1 and T2 are separated from each other, 𝒈 and 𝒌 are 

considered independent. The taps of all these two channels 

are assumed as zero-mean circularly symmetric complex 

Gaussian random variables, i.e., 𝑔𝑖~𝒞𝒩(0, 𝜎𝑔,𝑖
2 ) , 

𝑘𝑖~𝒞𝒩(0, 𝜎𝑘,𝑖
2 ). Moreover, the source and relay are assumed 

to have average power constraints, which are denoted by P1 

and PR, respectively. 

There are two stages in amplified relay transmission 

system, and it takes two time slots to achieve the cooperative 

multiple access. In the first time slot, the source node T1 sends 

signals 𝒙 and the relay node R receives as 

𝒓 = 𝒈𝒙 + 𝒏𝑟,             (1) 

where 𝒏𝑟 is the additive white Gaussian noise with variance 

σ𝑟
2. 

In the second time slot, the relay node amplifies and 

transmits the received data to the destination node T2, and T2 

receives as 

𝒚(𝑛) = 𝛼𝒌𝒈⏟
𝒉

𝒙 + 𝛼𝒌𝒏𝑟 + 𝒏1⏟      
𝒏
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                  = 𝒉𝒙 + 𝒏,                     (2) 

where 𝒉  (with the length of 𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 ) is the 

cascaded channel that is the convolution between 𝒈 and 𝒌, 

𝒏1 represents the noise at T2 with variance σ1
2, 𝒏 denotes 

the overall noise. α = √𝑃R [𝑃1𝜎𝑔
2 + 𝜎𝑟

2]⁄  and 𝜎𝑔
2 = ∑ 𝜎𝑔,𝑖

2𝐿𝑔−1

𝑖=0
. 

2.2 Standard LMS 

In the AF relay cooperative communication system, the 

unknown cascaded channel coefficients at time instant 𝑛 are 

𝒉 = [ℎ0, ℎ1, ⋯ , ℎ𝐿−1]
𝑻. The system's input data vector from T1 

is expressed as 𝒙 = [𝑥𝑛, 𝑥𝑛−1, ⋯ , 𝑥𝑛−𝐿+1]
𝑇  and it is 

assumed to be independent Gaussian input. As shown in Fig. 

1, we consider sparse adaptive channel estimation in a relay-

based cooperation communication system. 

 

In Fig. 1, the desired output signal 𝒅(𝑛) accord to 𝒚(𝑛), 

denoted as 

𝒅(𝑛) = 𝒉𝑇(𝑛)𝒙(𝑛) + 𝒗(𝑛),           (3) 

where 𝒗(𝑛) is the noise signal. The estimated error 𝒆(𝑛) is 

the instantaneous error between the output signal of the 

unknown system and the output from the adaptive filter, which 

can be written as 

𝒆(𝑛) = 𝒅(𝑛) − 𝒉̂𝑇(𝑛)𝒙(𝑛),            (4) 

where 𝒉̂ = [𝒉̂0, 𝒉̂1, ⋯ 𝒉̂𝐿−1]
𝑇 is defined as an adaptive tap-

weights vector. The noise vector 𝒗(𝑛) follows i.i.d. zero mean 

and 𝛿𝑛
2  variance white Gaussian distribution. It is assumed 

that the adaptive tap-weights vector 𝒉(𝑛), input signal 𝒙(𝑛) 

and additive noise signal 𝒗(𝑛) are mutually independent. 

According to the standard LMS framework, the cost function 

is defined as 𝜉(𝑛) = 0.5|𝒆(𝑛)|2. The recursive equation of the 

filter coefficient vector can be derived as 

 𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) − 𝜇
𝜕𝜉(𝑛)

𝜕𝒉̂(𝑛)
= 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛),  (5) 

where 𝜇  is the step size parameter which satisfies 𝜇 ∈

(0, 1 𝜆𝑚𝑎𝑥⁄ ) and adjusts the convergence rate and the steady 

performance behavior of the LMS algorithm[4].  𝜆𝑚𝑎𝑥 is the 

maximum eigenvalue of 𝑃𝑥, here 𝑃𝑥 = 𝐸[𝒙(𝑛)𝒙
𝑇(𝑛)], which  

denotes the covariance matrix of the input vector 𝒙(𝑛).  

3. The proposed channel estimation algorithm 

This work focuses on fast unknown channel identification of 

the cooperation system via sparse constraint adaptive filter. 

The impulse response of a sparse cooperative system consists 

of few nonzero coefficients, most of the coefficients in the 

channel representation vector of 𝒉(𝑛) in time delay domain 

should be zeroes or small values. In order to improve the 

performance of sparsity adaptive channel estimation, we 

propose a novel sparsity-aware system identification method 

with a new cost function. 

3.1 Reweighted 𝑙𝑝 Norm Penalized LMS 

For the sake of exploiting the sparse structure of cooperative 

relay communication system, we propose an idea of 

introducing reweighted 𝑙𝑝  norm of channel impulse 

response as a sparsity penalty into the cost function of 

traditional LMS algorithm. This method can accelerate and 

enhance the performance of sparse cascade channel 

estimation.  

Motivated by the research findings that non-convex 

penalties might induce better sparsity than the convex penalties 

[18], we apply reweighted 𝑙𝑝 (0 < 𝑝 < 1) norm to measure 

the sparsity of channel vector. 

 ‖𝒉̂(𝑛)‖
𝑝
= (∑ |𝒉̂(𝑛)|

𝑝
𝑖 )

1

𝑝,            (6) 

where ‖∙‖𝑝 stands for the 𝑙𝑝 norm of the channel vector.  

When 0 < 𝑝 < 1  

lim
𝑝→1
‖𝒉̂(𝑛)‖

𝑝
= ‖𝒉̂(𝑛)‖

1
= ∑ |𝒉̂(𝑖)|𝐿

𝑖=1 . 

lim
𝑝→0
‖𝒉̂(𝑛)‖

𝑝
= ‖𝒉̂(𝑛)‖

0
. 

In order to learn the time-varying channel state information 

by using the prior sparsity, we apply a new cost function, which 

combines the instantaneous channel estimation square error 

and the 𝑙𝑝 (0 < 𝑝 < 1) norm penalty term of the coefficient 

vector, defined as  

 𝜉𝑝(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑝‖𝒉̂(𝑛)‖𝑝,           (7) 

+
 x(n)

 v(n)

- +

 

Fig. 1 Channel model and adaptive channel estimation 

algorithm 
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where 𝛾𝑝 can be selected using a positive factor to balance the 

mean square error and adjust the penalty of 𝑙𝑝 norm. 

The gradient of 𝜉𝑝(𝑛) is 

𝜕𝜉𝑝(𝑛)

𝜕𝒉̂(𝑛)
= −𝒆(𝑛)𝒙(𝑛) + 𝛾𝑝

(‖𝒉̂(𝑛)‖
𝑝
)
(1−𝑝)

𝑠𝑔𝑛(𝒉̂(𝑛))

|𝒉̂(𝑛)|
(1−𝑝) .     (8) 

On the right-hand side of equation (8), the second term is the 

gradient of 𝑙𝑝 norm.  

Following the gradient descent algorithm, we use the 

gradient of 𝑙𝑝 norm as the zero attracting term. The reweighted 

𝑙𝑝 norm LMS algorithm updates its coefficients by (9) 

               𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                               −𝜌𝑝
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) ,            (9) 

where 𝜌𝑝 = 𝛼𝜇𝛾𝑝 with 𝛼 (0 < 𝛼 < 1)  is a reweighted 

parameter adopted to adjust zero-point attraction ability of the 

𝑙𝑝 norm penalty. We set parameter 𝜀𝑝 > 0  for providing 

stability and ensuring that a zero value in ℎ̂(𝑛)does not 

prohibit a non-zero estimate strictly [6]. Additionally, 𝜀𝑝 

should be set as a small positive value or smaller than the 

expected nonzero magnitudes of ℎ̂(𝑛). In consequence, the 

reasonably robust channel estimation process tends to be 

dependent on the choice of 𝜀𝑝. 

The procedure of the reweighted 𝑙𝑝 norm LMS algorithm is 

listed in Table 1, where 0𝐿 is a zero vector of size 𝐿. 

 

Reweighted 𝑙1 norm penalty: Another method of exploring 

the sparsity of the wireless communication channel is to use a 

reweighted 𝑙1 norm constraint in the cost function of SAF 

algorithms [12]. The reweighted 𝑙1  norm needs to be 

minimized, which approximates the 𝑙0 pseudo norm better 

than the 𝑙1 norm. The reweighted 𝑙1 norm penalized LMS 

algorithm considers a 𝑙1 norm penalty term to channel impulse 

response vector. The reweighted 𝑙1 norm cost function in [12] 

is derived as  

𝜉1(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾1‖𝒔(𝑛)𝒉̂(𝑛)‖1, 

where 𝛾1  is the weight for adjusting the 𝑙1  norm penalty 

term. And 𝒔(𝑛) acts as a weight element that can be denoted 

as 

[𝒔(𝑛)]𝑖 =
1

𝜀1+|[𝒉̂(𝑛−1)]
𝑖
|
, 𝑖 = 1,2,⋯ , 𝐿. 

where 𝜀1 should be set as a small positive value and [∙]𝑖 is the 

ith entry of the estimated channel coefficient vector. The 

gradient of 𝜉1(𝑛) can be written as 

𝜕𝜉1(𝑛)

𝜕𝒉̂(𝑛)
= −𝒆(𝑛)𝒙(𝑛) + 𝛾1

sgn(𝒉̂(𝑛))

𝜀1+|𝒉̂(𝑛−1)|
. 

The resulting update is 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) − 𝜌1
sgn(𝒉̂(𝑛))

𝜀1+|𝒉̂(𝑛−1)|
, 

where 𝜌1 = 𝜇𝛾1. 

3.2. Computational Complexity 

Computational complexity of the proposed reweighted 

𝑙𝑝  Constraint LMS algorithm and some sparsity-aware LMS 

algorithms are compared in Table 2, in terms of arithmetic 

operations and comparisons. As shown in Table 2, the proposed 

algorithm has lower computation complexity than 𝑙0 -LMS 

[13]. And the amount of computations of the proposed 

algorithm is similar to that of RZA-LMS and the reweighted 

𝑙1 norm penalized LMS.  

 

3.3 Performance Analysis 

In this section, we derive the theoretical steady-state of the 

coefficient misalignment and provide a mean square error 

convergence analysis of the new sparsity adaptive channel 

estimation algorithm. Then a performance upper bounds is 

drawn as a sufficient condition for the precise reweighted 𝑙𝑝 

norm LMS channel estimation.  

Table 1 The proposed reweighted 𝑙𝑝 norm LMS algorithm 

Require: μ > 0, 𝛾 > 0,α > 0, ε𝑝 > 0 , 0 < 𝑝 < 1,  

𝒈 and 𝒌 as zeroes or small random vectors; 

1. Initialize ℎ̂(0) = 0𝐿, 𝑒(0) = 0, 𝑖=1;  

2. while 𝑖< N  

3. Calculate the error through equation (4); 

4. Update the gradient of 𝜉𝑝(𝑛) according to equation (7); 

5. Update the reweighted zero attractor by multiplying α 

α × 𝜇𝛾𝑝 × (‖𝒉̂(𝑛)‖𝑝)
(1−𝑝)

× sgn(𝒉̂(𝑛)/[𝜀𝑝 + |𝒉̂(𝑛)|
(1−𝑝)

]. 

6.  Update the tap-weight vector according to equation (9) 

7.  𝑖 = 𝑖 + 1; 

8.  end while 

 

   

   

 

Table 2 Computational complex of different algorithms 

Algorithm Computational Complexity 

LMS 

RZA-LMS 

l0-LMS 

Reweighted l1-LMS 

Proposed algorithm 

(2L) Add+(2L+1) Multiply 

(4L) Add+(5L+1) Multiply 

(4L) Add+(5L+1) Multiply+(L) Comp 

(4L) Add+(5L+1) Multiply 

(4L) Add+(5L+1) Multiply 
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A. Mean Performance 

Assuming an i.i.d. zero-mean Gaussian input signal 𝒙(𝑛) and 

a zero mean white noise. We define 𝒓(𝑛) = 𝒉̂(𝑛) − 𝒉(𝑛) as 

the filter misalignment vector. The recursion formula of the 

misalignment vector can be written as 

𝒓𝑛+1 = (𝑰 − 𝜇𝒙𝑛𝒙𝑛
𝑇)𝑟𝑛 + 𝜇𝒗𝑛𝒙𝑛 − 𝜌𝑝𝑓(𝒉̂𝑛),      (10) 

where 𝑓(𝒉̂𝑛) is defined as 

𝑓(𝒉̂𝑛) =
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) .            (11) 

Taking expectation, since 𝒗𝑛  is assumed to have a zero 

mean and be independent with input signal 𝒙(𝑛). Assume that 

𝒉(𝑛) is a 𝑑-sparse channel vector, we have 

𝐸[𝒓𝑛+1] = (𝐼 − 𝜇𝑃𝑥)𝐸[𝒓𝑛] − 𝜌𝑝𝐸[𝑓(𝒉̂𝑛)].       (12) 

𝐸[𝑓(𝒉̂𝑛)] = 𝐸[
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) ].          (13) 

−
𝜌𝑝

𝜇𝑃𝑥
𝟏 < 𝐸[𝑟∞] <

𝜌𝑝

𝜇𝑃𝑥
𝟏.           (14) 

Further derivation, we obtain  

−𝐸[𝑟∞] <
𝜌𝑝

𝜇𝑃𝑥
𝟏 ≤

𝜌𝑝( √𝑑
𝑝

)1−𝑝

𝜇𝑃𝑥[𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝)

]
𝟏,      (15) 

where 𝑑 denotes the number of non-zero coefficients, which 

means the sparsity level of cooperative communication 

channel. It can be observed that 𝐸[𝑟∞] is bounded 

between−𝜌𝑝𝟏/(𝜇𝑃𝑥) and 𝜌𝑝𝟏/(𝜇𝑃𝑥) , where 1 is the vector 

with all one entries. This means that the reweighted 𝑙𝑝 norm 

LMS algorithm has a stability condition for the coefficient 

misalignment vector convergence. From (15), we can achieve 

better performance by adjusting parameter 𝜀𝑝 by following 

the change of sparsity 𝑑. 

The mean misalignment vector of the reweighted 𝑙1 norm 

penalized LMS algorithm is bounded as 

−
𝜌1

𝜇𝑃𝑥𝜀𝑟
𝟏 ≤ 𝐸[𝑟∞] ≤

𝜌1

𝜇𝑃𝑥𝜀𝑟
𝟏.        (16) 

when𝜌1 = 𝜌𝑝 , as r  is a very small positive value, so 

𝜌𝑝𝟏/(𝜇𝑃𝑥) < 𝜌1𝟏/(𝜇𝑃𝑥𝜀𝑟) generally. Theoretically, the 

performance of reweighted 𝑙𝑝  norm sparse aware LMS 

algorithm is better than the reweighted 𝑙1  norm penalized 

LMS algorithm. 

B. Mean Square Steady-State Performance of proposed 

algorithm 

The mean square deviation (MSD) bounds of the proposed 

reweighted 𝑙𝑝  norm constraint LMS are derived by the 

following theorem. In order to guarantee convergence, step-

size 𝜇 should satisfy 

0 < 𝜇 <
2

(𝐿+2)𝑃𝑥
.              (17) 

The final mean square deviation of the proposed algorithm is  

𝑆(∞) =
2[1−𝜇𝑃𝑥]𝛾𝑐(∞)+𝛾

2𝜇𝑞(∞)+𝐿𝜇𝑃𝑣𝑃𝑥

𝑃𝑥[2−(𝐿+2)𝜇𝑃𝑥]
,        (18) 

where  𝑐(𝑛) = 𝐸 [𝑟𝑇(𝑛)𝒇 (ℎ̂(𝑛))] , 𝑞(𝑛) = ‖𝒇(ℎ̂(𝑛)‖
2

2
,  𝑐(𝑛) 

and 𝑞(𝑛) are all bounded. The proof of (17) and (18) goes in 

Appendix. 

From (17), we can conclude that the MSD will decrease 

as the channel length 𝐿 increases, which has been proved in 

the simulations. It is shown that the convergence of the 

proposed algorithm can be guaranteed when 𝜇 satisfies (17). 

When 𝑝 closes to zero, steady-state MSD of our proposed 

algorithm will be smaller and then the steady state 

performance will be better than other sparse LMS algorithm.  

4. Simulation results and analysis 

In this section, three experiments are provided to demonstrate 

the estimation performance of sparse adaptive filtering 

algorithms. The reference algorithms simulated for 

comparison with the proposed algorithm include Standard 

LMS [4], ZA-LMS [10], RZA-LMS [11], reweighted 𝑙1norm 

penalized LMS algorithms [12], and 𝑙0 LMS [13]. The cost 

functions and updated equations of the above algorithms are 

listed in Table 3.  

   
Experiment 1, we assume that the channel vectors of 

cooperative relay system have the same length 𝐿𝑔 = 𝐿𝑘 = 16 

and hence the length of convolution channel vectors is 

𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 = 31. In case 1, two large coefficients of 𝒈 

and 𝒌 are uniformly distributed and all the others are exactly 

zero, making the system have a sparsity level of 2 31⁄ . Four 

random tap-weights of 𝒈 and 𝒌 are nonzero in case 2.  

The values of several large coefficients are chosen from 

Gaussian distribution with a zero mean and a unit variance. 

Table 3 Various LMS algorithms 

Algorithm Cost function    Update equation 

LMS          𝜉(𝑛) =
1

2
|𝒆(𝑛)|2  𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

ZA-LMS 𝜉𝑍𝐴(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑍𝐴‖𝒉̂(𝑛)‖ 𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                        −𝜌𝑍𝐴sgn[𝒉̂(𝑛)] 

RZA-LMS 𝜉𝑅𝑍𝐴(𝑛) =
1

2
|𝒆(𝑛)|2 

             +𝛾𝑅𝑍𝐴∑log (1 + 𝒉̂(𝑛))

𝐿

𝐼=1

 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

    −𝜌𝑅𝑍𝐴
sgn[𝒉̂(𝑛)]

1 + 𝜀𝑅𝑍𝐴|𝒉̂(𝑛)|
 

𝑙0-LMS 

 

Proposed 

algorithm 

𝜉0(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾0‖𝒉̂(𝑛)‖0 

 

𝜉𝑝(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑝‖𝒉̂(𝑛)‖𝑝 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

       −𝜌0βsgn[𝒉̂(𝑛)]𝑒
−𝛽|𝒉̂(𝑛)| 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                    −𝜌𝑝

(‖𝒉̂(𝑛)‖
𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝 + |𝒉̂(𝑛)|
(1−𝑝)
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The parameters of reweighted 𝑙𝑝  norm LMS channel 

estimation algorithm and reweighted 𝑙1  norm LMS 

algorithm are set to 𝜌𝑝 = 𝜌1 = 5 × 10
−4   and 𝜀𝑝 = 𝜀1 =

1.2. In the ZA-LMS algorithm and RZA-LMS algorithm, the 

parameters are set as 𝜌𝑍𝐴 = 𝜌𝑅𝑍𝐴 = 5 × 10
−4  and 𝜀𝑅𝑍𝐴 =

10. We set step size parameter 𝜇 = 0.02 for all algorithms 

in this paper. We test the performance of the proposed 

algorithm under the low Signal-to-Noise Ratio (SNR) 10dB 

and high SNR 20dB respectively. The average estimation of 

the mean square error (MSE) between the actual and 

estimated channel state information are shown in Fig. 2 and 

Fig. 3.  

 

The estimated channel impulse response MSE results for 

sparsity case 1 are shown in Fig. 2 (a)~ (b) and for sparsity case 

2 are shown in Fig. 3 (a) ~ (b). According to Figs. 2~3, when 

the sparsity of the channel increases, the convergence 

performance of the sparsity-aware parameter estimation 

algorithms degrades accordingly. By examining the 

convergence lines, we can conclude that, in general, the 

reweighted 𝑙𝑝 norm penalized LMS has a better performance 

than all the other algorithms. However, in the case of SNR = 10 

dB, the 𝑙0  norm constraint sparse filtering algorithm has a 

similar performance to the 𝑙𝑝 norm penalized LMS, we can 

conclude that the 𝑙0 norm penalized LMS may has a better 

performance at low SNR. 

 

Experiment 2, the channel vectors have the same 

length  𝐿𝑔 = 𝐿𝑘 = 32  and hence the length of convolution 

channel vectors is 𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 = 63 . There are three 

different cases with different sparsity levels. In the first case, 

only two taps in 𝒈 and 𝒌 channel coefficients are nonzero. In 

the second case, four random coefficients of 𝒈  and 𝒌 

 

a 

 

b 

Fig. 2 Example 1, Case 1: Comparison of convergence 

rate for six different algorithms (𝐿 = 31, 𝑑 = 2). 

(a) SNR=10 dB, (b) SNR=20 dB 

 

 

a 

 

b 

Fig. 3 Example 1, Case 2: Comparison of convergence 

rate for six different algorithms (𝐿 = 31, 𝑑 = 4). 

(a) SNR=10 dB, (b) SNR=20 dB 
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channel impulse response are nonzero. In the third case, sixteen 

random channel tap-weights of the 𝒈 and 𝒌 are nonzero. In 

these three cases, all the positions of the nonzero taps in the 

channel coefficients vector are chosen randomly, the values of 

all the nonzero taps follow i.i.d Gaussian distribution. SNR of 

the unknown system is set to 10 dB and 20 dB, other parameters 

are chosen as 𝜇 = 0.02 , 𝜌𝑍𝐴 = 𝜌𝑅𝑍𝐴 = 5 × 10
−4 , 𝜀𝑅𝑍𝐴 =

10, 𝜌𝑝 = 𝜌1 = 5 × 10
−4, and 𝜀𝑝 = 𝜀1 = 1.2.  

 

As we can see from the curves in Fig. 4 ~Fig.6, the 

reweighted 𝑙𝑝 norm penalized LMS algorithm performs better 

and has a faster convergence rate comparing with other 

algorithms at low SNR. Under the same sparsity, the 

convergence performance in Fig.4 and Fig.5 are better than that 

in Fig.2 and Fig.3. It is evidence that the performance of 

channel estimation will be better with longer channel length 

under the same sparsity condition. The reason behind is that the 

system has a higher sparsity level in this experiment. Here we 

define the system sparsity level as 𝑑/𝐿. 

 

Experiment 3, we study the convergence of the proposed 

algorithm based on three different cases: various sparsity 𝑑, 

changing 𝑝  value and different channel lengths. The 

simulation results are evaluated in Fig. 7~Fig. 9. 

In case 1, we set the sparsity level 𝑑 as 2/4/8/16 and 𝐿𝑔 =

𝐿𝑘 = 32 . The positions of the nonzero taps of the channel 

coefficients are chosen randomly. When 𝑑 has high values, 

the channel will have more non-zero coefficients and the 

system will be less sparse. In case 2, we set 

to 𝑝=0.4/0.5/0.7/0.9, 𝑑 = 2, 𝐿𝑔 = 𝐿𝑘 = 32, for the 𝑙𝑝  norm 

penalized method. In case 3, the channel length 𝐿𝑔 = 𝐿𝑘 =

16/32/64, 𝑑 = 2. 

 

 

a 

0 50 100 150 200 250 300 350 400

Number of Iterations
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b 

Fig. 4 Example 2, Case 1: Comparison of convergence 

rate for six different algorithms (𝐿 = 63,𝑑 = 2).  

(a) SNR=10 dB, (b) SNR=20 dB 

 

 

a 

 

b 

Fig. 5 Example 2, Case 2: Comparison of convergence rate 

for six different algorithms (𝐿 = 63, 𝑑 = 4). 

(a) SNR=10 dB, (b) SNR=20 dB 
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Fig. 7 shows the curves of convergence of the reweighted 𝑙𝑝 

norm penalized LMS and reweighted 𝑙1 norm penalized LMS 

algorithms when the CIR sparsity level is varying. The 

performance of the two sparse aware LMS algorithms 

decreases with the increasing sparsity level of the channel, 

which is due to the fact that the value of 𝐸[𝑟∞] in (15) is 

increasing. The reweighted 𝑙𝑝 norm penalized LMS algorithm 

achieved a better estimation performance than the reweighted 

𝑙1 norm penalized LMS algorithm. However, the performance 

of the reweighted 𝑙1  norm penalized LMS algorithm has a 

trend to outperform the reweighted 𝑙𝑝 norm penalized LMS 

algorithm at large sparsity levels. 

 

 

Fig. 8 shows that the estimation performance of the 

reweighted 𝑙𝑝 norm penalized LMS algorithm will decrease 

when the 𝑝 value increases, and the results indicates that the 

estimation has a good performance when 𝑝 = 0.5 . Fig. 9 

shows that if the channel length continues to increase the 

estimated performance will decrease, which can be prove by 

the steady state bounds in (18). 

 

 

a 

 

b 

 Fig. 6 Example 2, Case 3: Comparison of convergence 
rate for six different algorithms (𝐿 = 63, 𝑑 = 16). 

 (a) SNR=10 dB, (b) SNR=20 dB 

 

 
 Fig. 7 tracking and convergence for two algorithms 

with different sparsity. 
 

 
Fig. 8. Learning curves of Reweighted 𝑙𝑝 LMS with 

different p values (𝑑 = 2, 𝐿 = 63). 

 

 

Fig. 9. Learning curves of Reweighted 𝑙𝑝 LMS with 

different channel lengths. (d=2) 
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5. CONCLUSIONS 

A novel sparse adaptive channel estimation algorithm has been 

proposed in this paper for the time-variant cooperative 

communication systems. Cost function of the proposed method 

has been constructed by using reweighted 𝑙𝑝  norm sparse 

penalties. Simulation results show that the proposed algorithm 

achieves a better convergence speed and a better steady-state 

behavior in comparison with other sparse aware LMS 

algorithms as well as the conventional LMS algorithm. We 

have derived the theoretical steady-state of coefficient 

misalignment vector and a performance upper bound. The 

theoretical analysis proves that the performance of the 

reweighted 𝑙𝑝 norm penalized LMS algorithm is better than 

the performance of the reweighted 𝑙1  norm penalized LMS 

algorithm. 
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Appendix 

The steady state mean square derivation between the 

original CSI and the estimated CSI will be deduced and the 

condition of 𝜇 to guarantee convergence will be derived. 

We define 𝑫(𝑛) is the variance of  𝒓(𝑛).  

𝑫(𝑛) = 𝐸[𝒓(𝑛)𝒓𝑇(𝑛)].
             

（19） 

Now, multiplying both sides of (10) with their respective 

transposes, the update equation can be expressed as 

𝑫(𝑛 + 1) = [1 − 2𝜇𝑃𝑥 + 2𝜇
2𝑃𝑥

2] ∙ 𝑺(𝑛) 
                         +𝜇2𝜎𝑃𝑥

2𝑡𝑟[𝑺(𝑛)]𝑰 

 +[1 − 𝜇𝑃𝑥]𝜌𝐸[𝒓(𝑛)𝒇(ℎ̂
𝑇(𝑛))]          (20) 

                       +[1 − 𝜇𝑃𝑥]𝜌𝐸[𝒇(ℎ̂
𝑇(𝑛)𝒓(𝑛))]  

 +𝜌2𝐸[𝒇(ℎ̂(𝑛))𝒇(ℎ̂𝑇(𝑛))]+𝜇2𝑃𝑣𝑃𝑥𝑰. 

Let 𝑆(𝑛) = 𝑡𝑟[𝑫(𝑛)], take the trace on both side of (20) 

𝑆(𝑛 + 1) = [1 − 2𝜇𝑃𝑥 + (𝐿 + 2)𝜇
2𝑃𝑥

2] ∙ 𝑆(𝑛) 
 +2[1 − 𝜇𝑃𝑥]𝜌𝑐(𝑛)               (21) 

+𝜌2𝑞(𝑛) + 𝐿𝜇2𝑃𝑣𝑃𝑥, 

where  𝑐(𝑛) = 𝐸 [𝑟𝑇(𝑛)𝒇 (ℎ̂(𝑛))] , 𝑞(𝑛) = ‖𝒇(ℎ̂(𝑛)‖
2

2
, 

𝑐(𝑛) and 𝑞(𝑛) are all bounded and thus we can prove the 

condition of convergence as 
|1 − 2𝜇𝑃𝑥 + (L + 2)𝜇

2𝑃𝑥| < 1. 

Thereby we have： 

0 < 𝜇 <
2

(𝐿+2)𝑃𝑥
. 

The final mean square deviation of reweighted lp-norm 

penalty LMS is  

𝑆(∞) =
2[1−𝜇𝑃𝑥]𝛾𝑐(∞)+𝛾

2𝜇𝑞(∞)+𝐿𝜇𝑃𝑣𝑃𝑥

𝑃𝑥[2−(𝐿+2)𝜇𝑃𝑥]
.       (21) 
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Abstract: This paper studies the issue of sparsity adaptive channel reconstruction in time-varying cooperative 

communication networks through the amplify-and-forward transmission scheme. A new sparsity adaptive system 

identification method is proposed, namely reweighted 𝒍𝒑 norm (𝟎 < 𝒑 < 𝟏) penalized least mean square（LMS）algorithm. 

The main idea of the algorithm is to add a 𝒍𝒑 norm penalty of sparsity into the cost function of the LMS algorithm. By doing 

so, the weight factor becomes a balance parameter of the associated 𝒍𝒑  norm adaptive sparse system identification. 

Subsequently, the steady state of the coefficient misalignment vector is derived theoretically, with a performance upper 

bounds provided which serve as a sufficient condition for the LMS channel estimation of the precise reweighted 𝒍𝒑 norm. 

With the upper bounds, we prove that the 𝒍𝒑  (𝟎 < 𝒑 < 𝟏  ) norm sparsity inducing cost function is superior to the 

reweighted 𝒍𝟏 norm. An optimal selection of 𝒑 for the 𝒍𝒑 norm problem is studied to recover various 𝒅 sparse channel 

vectors. Several experiments verify that the simulation results agree well with the theoretical analysis, and thus 

demonstrate that the proposed algorithm has a better convergence speed and better steady state behavior than other LMS 

algorithms.   

1. Introduction 

Cooperative communication has been widely studied recently 

in wireless networks because of its significant performance in 

enhancing the transmission capacity and exploiting spatial 

diversity to against the influence of path loss and channel 

fading [1]. In cooperative communication systems, the accurate 

channel impulse response (CIR) is needed for equalization, 

coherent signal detection, and so on, and it can also improve 

the communication quality of service in 5G wireless 

communication systems, especially for the dynamically 

changing channel and its sparsity. Therefore, the issue of 

accurately estimate the channel state information in dynamic 

cooperative relay channel systems becomes significant and 

challenging. 

In cooperative communication systems, the multipath tap-

weights are spread widely in time with only a few significant 

components, and the impulse response of multipath wireless  

channel contains only a small fraction of nonzero coefficients,  

which means the cooperative channel has sparse structure. As 

such, the cooperative relay multipath wireless channel is the  

cooperative relay multipath wireless channel is characterized  

 

as a fast time-varying and sparse feature. By utilizing and 

exploiting the inherent sparsity of cooperative channel 

impulse response, the channel estimation performance can be 

improved. Currently, there has been a growing interest in 

sparse channel estimation, and advanced channel estimation 

algorithms have been developed such as compressed sensing 

(CS) algorithms and sparse adaptive filtering (SAF) 

algorithms [2–6] and so forth.  

Sparse channel estimation methods mainly include: 

optimization methods, thresholding methods and greedy 

methods. Classic algorithms include basis pursuit (BP) 

algorithm, orthogonal matching pursuit (OMP) method and 

iterative thresholding algorithms [7-9]. Unfortunately, these 

algorithms are not applicable for sparse channel estimation in 

fast time-varying environments. In [3], the sparsity adaptive 

expectation maximization (SAEM) used expectation 

maximization algorithm (EM) and Kalman filter which can 

utilize channel sparsity well and trace the true support set of 

time-varying channel [3]. However, SAEM has high 

computational complexity. 

Accordingly, the LMS-based sparse adaptive filtering or 
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recursive least squares (RLS) algorithms are developed 

attribute to their simplicity in application [10–13]. In addition, 

a class of novel sparse adaptive algorithms has emerged based 

on regularized LMS algorithms, where the sparsity penalty 

induced strategy is used by exerting various sparsity penalty 

terms into the instantaneous error of a traditional adaptive 

filtering algorithm. The sparsity constraint can be 𝑙1 norm 

[10], reweighted 𝑙1  norm [12], 𝑙0  norm [13], and non-

convex sparsity penalty. These algorithms have good 

performance on faster convergence rate and smaller mean 

square error (MSE) comparing with the traditional adaptive 

filtering method, such as zero-point attraction Least Mean 

Square algorithm (ZA-LMS) [10], reweighted zero attracting 

LMS (RZA-LMS) [11] and so on. ZA-LMS uses a 𝑙1 norm 

penalty in the cost function of the traditional LMS algorithm, 

where 𝑙1 norm acts as a zero-point attracted term to modify 

the parameter vector update equation. RZA-LMS introduces 

the log-sum penalty and its performance is similar to the 𝑙0 

norm algorithm. Y. Gu proposed the 𝑙0  norm Constraint 

LMS Algorithm [13], by exerting the 𝑙0 norm penalty into 

the cost function of the LMS algorithm. The 𝑙0 norm, a more 

accurate measure of sparsity, is defined as the number of non-

zero elements in the unknown system vector. Similarly, as 

proposed in [14], ZA-RLS-I and ZA-RLS-II added 𝑙1 norm 

penalty and approximated 𝑙1norm of the parameter vector 

penalty term instead of an adaptively weighted 𝑙2  norm 

penalty to cost function of the RLS algorithm. The ZA-RLS 

algorithms achieve better performance than the other LS 

algorithms, however, their MSEs are not as good as sparse 

LMS algorithms. 

Recently, the non-convex methods have received 

tremendous attentions in solving the problem of sparse 

recovery [15-18]. Furthermore, some studies have presented 

that the non-convex penalties might induce better sparsity than 

the convex penalties. In addition, the local and global 

optimality of 𝑙𝑝   minimization for sparse recovery can be 

guaranteed even under weaker conditions in comparison with 

the convex 𝑙1 minimization when the penalty approaches the 

𝑙𝑝 norm [17]. In this work, we study the fast identification of 

sparse cascaded channel by using the framework of an adaptive 

filter. In order to explore the sparse features of the cooperative 

relay communication system, we propose a new sparse aware 

LMS algorithm for relay channel reconstruction. The 

expectation of the misalignment vector is derived and discussed 

under different algorithm parameters and system sparsity. 

Simulation studies are conducted to verify the high robustness, 

low computational cost and easy implementation of the 

proposed algorithm. 

This paper is organized as follows. The amplify-and-

forward (AF)-based cooperative relay channel model is 

described briefly in Section 2. Then in Section 3, we introduce 

the reweighted 𝑙𝑝  norm constraint LMS and derive the 

expectation of the misalignment vector and provide the 

steady-state analysis of the proposed algorithm. Numerical 

simulations and rigorous analysis are presented in Section 4 

to demonstrate the effectiveness prove the theoretical 

analysis. Finally, the conclusion is given in section 5. 

2. System model and LMS algorithm 

2.1 Cooperative Rely Channel Model 

Consider an amplified model of cooperation relay network 

with a source node T1, a destination node T2, and one relay 

node R. It is assumed that all the terminals are equipped with 

only one antenna and work in the half-duplex mode. When 

node T2 is beyond the communication range of node T1 duo 

to remote distance or shielding affection, then all signals sent 

by the source T1 need to be forwarded to destination T2 by 

relay node. Denote 𝒈 = [𝑔0, 𝑔1, ⋯ 𝑔𝐿𝑔−1] as the baseband 

channel between T1 and R. And 𝒌 = [𝑘0, 𝑘1, ⋯ 𝑘𝐿𝑘−1] is the 

channel vector between relay node R and destination T2. 

Since T1 and T2 are separated from each other, 𝒈 and 𝒌 are 

considered independent. The taps of all these two channels 

are assumed as zero-mean circularly symmetric complex 

Gaussian random variables, i.e., 𝑔𝑖~𝒞𝒩(0, 𝜎𝑔,𝑖
2 ) , 

𝑘𝑖~𝒞𝒩(0, 𝜎𝑘,𝑖
2 ). Moreover, the source and relay are assumed 

to have average power constraints, which are denoted by P1 

and PR, respectively. 

There are two stages in amplified relay transmission 

system, and it takes two time slots to achieve the cooperative 

multiple access. In the first time slot, the source node T1 sends 

signals 𝒙 and the relay node R receives as 

𝒓 = 𝒈𝒙 + 𝒏𝑟,             (1) 

where 𝒏𝑟 is the additive white Gaussian noise with variance 

σ𝑟
2. 

In the second time slot, the relay node amplifies and 

transmits the received data to the destination node T2, and T2 

receives as 

𝒚(𝑛) = 𝛼𝒌𝒈⏟
𝒉

𝒙 + 𝛼𝒌𝒏𝑟 + 𝒏1⏟      
𝒏
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                  = 𝒉𝒙 + 𝒏,                     (2) 

where 𝒉  (with the length of 𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 ) is the 

cascaded channel that is the convolution between 𝒈 and 𝒌, 

𝒏1 represents the noise at T2 with variance σ1
2, 𝒏 denotes 

the overall noise. α = √𝑃R [𝑃1𝜎𝑔
2 + 𝜎𝑟

2]⁄  and 𝜎𝑔
2 = ∑ 𝜎𝑔,𝑖

2𝐿𝑔−1

𝑖=0 . 

2.2 Standard LMS 

In the AF relay cooperative communication system, the 

unknown cascaded channel coefficients at time instant 𝑛 are 

𝒉 = [ℎ0, ℎ1,⋯ , ℎ𝐿−1]
𝑻. The system's input data vector from T1 

is expressed as 𝒙 = [𝑥𝑛 , 𝑥𝑛−1, ⋯ , 𝑥𝑛−𝐿+1]
𝑇  and it is 

assumed to be independent Gaussian input. As shown in Fig. 

1, we consider sparse adaptive channel estimation in a relay-

based cooperation communication system. 

 

In Fig. 1, the desired output signal 𝒅(𝑛) accord to 𝒚(𝑛), 

denoted as 

𝒅(𝑛) = 𝒉𝑇(𝑛)𝒙(𝑛) + 𝒗(𝑛),           (3) 

where 𝒗(𝑛) is the noise signal. The estimated error 𝒆(𝑛) is 

the instantaneous error between the output signal of the 

unknown system and the output from the adaptive filter, which 

can be written as 

𝒆(𝑛) = 𝒅(𝑛) − 𝒉̂𝑇(𝑛)𝒙(𝑛),            (4) 

where 𝒉̂ = [𝒉̂0, 𝒉̂1, ⋯ 𝒉̂𝐿−1]
𝑇 is defined as an adaptive tap-

weights vector. The noise vector 𝒗(𝑛) follows i.i.d. zero mean 

and 𝛿𝑛
2  variance white Gaussian distribution. It is assumed 

that the adaptive tap-weights vector 𝒉(𝑛), input signal  𝒙(𝑛) 

and additive noise signal 𝒗(𝑛) are mutually independent. 

According to the standard LMS framework, the cost function 

is defined as 𝜉(𝑛) = 0.5|𝒆(𝑛)|2. The recursive equation of the 

filter coefficient vector can be derived as 

 𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) − 𝜇
𝜕𝜉(𝑛)

𝜕𝒉̂(𝑛)
= 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛),  (5) 

where 𝜇  is the step size parameter which satisfies 𝜇 ∈

(0, 1 𝜆𝑚𝑎𝑥⁄ ) and adjusts the convergence rate and the steady 

performance behavior of the LMS algorithm[4].  𝜆𝑚𝑎𝑥 is the 

maximum eigenvalue of 𝑃𝑥, here 𝑃𝑥 = 𝐸[𝒙(𝑛)𝒙
𝑇(𝑛)], which  

denotes the covariance matrix of the input vector 𝒙(𝑛).  

3. The proposed channel estimation algorithm 

This work focuses on fast unknown channel identification of 

the cooperation system via sparse constraint adaptive filter. 

The impulse response of a sparse cooperative system consists 

of few nonzero coefficients, most of the coefficients in the 

channel representation vector of 𝒉(𝑛) in time delay domain 

should be zeroes or small values. In order to improve the 

performance of sparsity adaptive channel estimation, we 

propose a novel sparsity-aware system identification method 

with a new cost function. 

3.1 Reweighted 𝑙𝑝 Norm Penalized LMS 

For the sake of exploiting the sparse structure of cooperative 

relay communication system, we propose an idea of 

introducing reweighted 𝑙𝑝  norm of channel impulse 

response as a sparsity penalty into the cost function of 

traditional LMS algorithm. This method can accelerate and 

enhance the performance of sparse cascade channel 

estimation.  

Motivated by the research findings that non-convex 

penalties might induce better sparsity than the convex penalties 

[18], we apply reweighted 𝑙𝑝 (0 < 𝑝 < 1) norm to measure 

the sparsity of channel vector. 

 ‖𝒉̂(𝑛)‖
𝑝
= (∑ |𝒉̂(𝑛)|

𝑝
𝑖 )

1

𝑝,            (6) 

where ‖∙‖𝑝 stands for the 𝑙𝑝  norm of the channel vector.  

When 0 < 𝑝 < 1  

lim
𝑝→1
‖𝒉̂(𝑛)‖

𝑝
= ‖𝒉̂(𝑛)‖

1
= ∑ |𝒉̂(𝑖)|𝐿

𝑖=1 . 

lim
𝑝→0
‖𝒉̂(𝑛)‖

𝑝
= ‖𝒉̂(𝑛)‖

0
. 

In order to learn the time-varying channel state information 

by using the prior sparsity, we apply a new cost function, which 

combines the instantaneous channel estimation square error 

and the 𝑙𝑝  (0 < 𝑝 < 1) norm penalty term of the coefficient 

vector, defined as  

 𝜉𝑝(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑝‖𝒉̂(𝑛)‖𝑝,           (7) 

+
 x(n)

 v(n)

- +

 

Fig. 1 Channel model and adaptive channel estimation 

algorithm 
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where 𝛾𝑝 can be selected using a positive factor to balance the 

mean square error and adjust the penalty of 𝑙𝑝 norm. 

The gradient of 𝜉𝑝(𝑛) is 

𝜕𝜉𝑝(𝑛)

𝜕𝒉̂(𝑛)
= −𝒆(𝑛)𝒙(𝑛) + 𝛾𝑝

(‖𝒉̂(𝑛)‖
𝑝
)
(1−𝑝)

𝑠𝑔𝑛(𝒉̂(𝑛))

|𝒉̂(𝑛)|
(1−𝑝) .     (8) 

On the right-hand side of equation (8), the second term is the 

gradient of 𝑙𝑝 norm.  

Following the gradient descent algorithm, we use the 

gradient of 𝑙𝑝 norm as the zero attracting term. The reweighted 

𝑙𝑝 norm LMS algorithm updates its coefficients by (9) 

               𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                               −𝜌𝑝
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) ,            (9) 

where 𝜌𝑝 = 𝛼𝜇𝛾𝑝 with 𝛼 (0 < 𝛼 < 1)  is a reweighted 

parameter adopted to adjust zero-point attraction ability of the 

𝑙𝑝 norm penalty. We set parameter 𝜀𝑝 > 0  for providing 

stability and ensuring that a zero value in ℎ̂(𝑛)does not 

prohibit a non-zero estimate strictly [6]. Additionally, 𝜀𝑝 

should be set as a small positive value or smaller than the 

expected nonzero magnitudes of ℎ̂(𝑛). In consequence, the 

reasonably robust channel estimation process tends to be 

dependent on the choice of 𝜀𝑝. 

The procedure of the reweighted 𝑙𝑝 norm LMS algorithm is 

listed in Table 1, where 0𝐿 is a zero vector of size 𝐿. 

 

Reweighted 𝑙1 norm penalty: Another method of exploring 

the sparsity of the wireless communication channel is to use a 

reweighted 𝑙1 norm constraint in the cost function of SAF 

algorithms [12]. The reweighted 𝑙1  norm needs to be 

minimized, which approximates the 𝑙0 pseudo norm better 

than the 𝑙1 norm. The reweighted 𝑙1 norm penalized LMS 

algorithm considers a 𝑙1 norm penalty term to channel impulse 

response vector. The reweighted 𝑙1 norm cost function in [12] 

is derived as  

𝜉1(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾1‖𝒔(𝑛)𝒉̂(𝑛)‖1, 

where 𝛾1  is the weight for adjusting the 𝑙1  norm penalty 

term. And 𝒔(𝑛) acts as a weight element that can be denoted 

as 

[𝒔(𝑛)]𝑖 =
1

𝜀1+|[𝒉̂(𝑛−1)]
𝑖
|
, 𝑖 = 1,2,⋯ , 𝐿. 

where 𝜀1 should be set as a small positive value and [∙]𝑖 is the 

ith entry of the estimated channel coefficient vector. The 

gradient of 𝜉1(𝑛) can be written as 

𝜕𝜉1(𝑛)

𝜕𝒉̂(𝑛)
= −𝒆(𝑛)𝒙(𝑛) + 𝛾1

sgn(𝒉̂(𝑛))

𝜀1+|𝒉̂(𝑛−1)|
. 

The resulting update is 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) − 𝜌1
sgn(𝒉̂(𝑛))

𝜀1+|𝒉̂(𝑛−1)|
, 

where 𝜌1 = 𝜇𝛾1. 

3.2. Computational Complexity 

Computational complexity of the proposed reweighted 

𝑙𝑝  Constraint LMS algorithm and some sparsity-aware LMS 

algorithms are compared in Table 2, in terms of arithmetic 

operations and comparisons. As shown in Table 2, the proposed 

algorithm has lower computation complexity than 𝑙0 -LMS 

[13]. And the amount of computations of the proposed 

algorithm is similar to that of RZA-LMS and the reweighted 

𝑙1 norm penalized LMS.  

 

3.3 Performance Analysis 

In this section, we derive the theoretical steady-state of the 

coefficient misalignment and provide a mean square error 

convergence analysis of the new sparsity adaptive channel 

estimation algorithm. Then a performance upper bounds is 

drawn as a sufficient condition for the precise reweighted 𝑙𝑝 

norm LMS channel estimation.  

Table 1 The proposed reweighted 𝑙𝑝 norm LMS algorithm 

Require: μ > 0, 𝛾 > 0,α > 0, ε𝑝 > 0 , 0 < 𝑝 < 1,  

𝒈 and 𝒌 as zeroes or small random vectors; 

1. Initialize ℎ̂(0) = 0𝐿, 𝑒(0) = 0, 𝑖=1;  

2. while 𝑖< N  

3. Calculate the error through equation (4); 

4. Update the gradient of 𝜉𝑝(𝑛) according to equation (7); 

5. Update the reweighted zero attractor by multiplying α 

α × 𝜇𝛾𝑝 × (‖𝒉̂(𝑛)‖𝑝)
(1−𝑝)

× sgn(𝒉̂(𝑛)/[𝜀𝑝 + |𝒉̂(𝑛)|
(1−𝑝)

]. 

6.  Update the tap-weight vector according to equation (9) 

7.  𝑖 = 𝑖 + 1; 

8.  end while 

 

   

   

 

Table 2 Computational complex of different algorithms 

Algorithm Computational Complexity 

LMS 

RZA-LMS 

l0-LMS 

Reweighted l1-LMS 

Proposed algorithm 

(2L) Add+(2L+1) Multiply 

(4L) Add+(5L+1) Multiply 

(4L) Add+(5L+1) Multiply+(L) Comp 

(4L) Add+(5L+1) Multiply 

(4L) Add+(5L+1) Multiply 
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A. Mean Performance 

Assuming an i.i.d. zero-mean Gaussian input signal 𝒙(𝑛) and 

a zero mean white noise. We define 𝒓(𝑛) = 𝒉̂(𝑛) − 𝒉(𝑛) as 

the filter misalignment vector. The recursion formula of the 

misalignment vector can be written as 

𝒓𝑛+1 = (𝑰 − 𝜇𝒙𝑛𝒙𝑛
𝑇)𝑟𝑛 + 𝜇𝒗𝑛𝒙𝑛 − 𝜌𝑝𝑓(𝒉̂𝑛),      (10) 

where 𝑓(𝒉̂𝑛) is defined as 

𝑓(𝒉̂𝑛) =
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) .            (11) 

Taking expectation, since 𝒗𝑛  is assumed to have a zero 

mean and be independent with input signal 𝒙(𝑛). Assume that 

𝒉(𝑛) is a 𝑑-sparse channel vector, we have 

𝐸[𝒓𝑛+1] = (𝐼 − 𝜇𝑃𝑥)𝐸[𝒓𝑛] − 𝜌𝑝𝐸[𝑓(𝒉̂𝑛)].       (12) 

𝐸[𝑓(𝒉̂𝑛)] = 𝐸[
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝) ].          (13) 

−
𝜌𝑝

𝜇𝑃𝑥
𝟏 < 𝐸[𝑟∞] <

𝜌𝑝

𝜇𝑃𝑥
𝟏.           (14) 

Further derivation, we obtain  

−𝐸[𝑟∞] <
𝜌𝑝

𝜇𝑃𝑥
𝟏 ≤

𝜌𝑝( √𝑑
𝑝

)1−𝑝

𝜇𝑃𝑥[𝜀𝑝+|𝒉̂(𝑛)|
(1−𝑝)

]
𝟏,      (15) 

where 𝑑 denotes the number of non-zero coefficients, which 

means the sparsity level of cooperative communication 

channel. It can be observed that 𝐸[𝑟∞] is bounded 

between−𝜌𝑝𝟏/(𝜇𝑃𝑥)  and 𝜌𝑝𝟏/(𝜇𝑃𝑥), where 1 is the vector 

with all one entries. This means that the reweighted 𝑙𝑝 norm 

LMS algorithm has a stability condition for the coefficient 

misalignment vector convergence. From (15), we can achieve 

better performance by adjusting parameter 𝜀𝑝 by following 

the change of sparsity 𝑑. 

The mean misalignment vector of the reweighted 𝑙1 norm 

penalized LMS algorithm is bounded as 

−
𝜌1

𝜇𝑃𝑥𝜀𝑟
𝟏 ≤ 𝐸[𝑟∞] ≤

𝜌1

𝜇𝑃𝑥𝜀𝑟
𝟏.        (16) 

when𝜌1 = 𝜌𝑝 , as r  is a very small positive value, so 

𝜌𝑝𝟏/(𝜇𝑃𝑥) < 𝜌1𝟏/(𝜇𝑃𝑥𝜀𝑟) generally. Theoretically, the 

performance of reweighted 𝑙𝑝  norm sparse aware LMS 

algorithm is better than the reweighted 𝑙1  norm penalized 

LMS algorithm. 

B. Mean Square Steady-State Performance of proposed 

algorithm 

The mean square deviation (MSD) bounds of the proposed 

reweighted 𝑙𝑝  norm constraint LMS are derived by the 

following theorem. In order to guarantee convergence, step-

size 𝜇 should satisfy 

0 < 𝜇 <
2

(𝐿+2)𝑃𝑥
.              (17) 

The final mean square deviation of the proposed algorithm is  

𝑆(∞) =
2[1−𝜇𝑃𝑥]𝛾𝑐(∞)+𝛾

2𝜇𝑞(∞)+𝐿𝜇𝑃𝑣𝑃𝑥

𝑃𝑥[2−(𝐿+2)𝜇𝑃𝑥]
,        (18) 

where  𝑐(𝑛) = 𝐸 [𝑟𝑇(𝑛)𝒇 (ℎ̂(𝑛))] , 𝑞(𝑛) = ‖𝒇(ℎ̂(𝑛)‖
2

2
,  𝑐(𝑛) 

and 𝑞(𝑛) are all bounded. The proof of (17) and (18) goes in 

Appendix. 

From (17), we can conclude that the MSD will decrease 

as the channel length 𝐿 increases, which has been proved in 

the simulations. It is shown that the convergence of the 

proposed algorithm can be guaranteed when 𝜇 satisfies (17). 

When 𝑝 closes to zero, steady-state MSD of our proposed 

algorithm will be smaller and then the steady state 

performance will be better than other sparse LMS algorithm.  

4. Simulation results and analysis 

In this section, three experiments are provided to demonstrate 

the estimation performance of sparse adaptive filtering 

algorithms. The reference algorithms simulated for 

comparison with the proposed algorithm include Standard 

LMS [4], ZA-LMS [10], RZA-LMS [11], reweighted 𝑙1norm 

penalized LMS algorithms [12], and 𝑙0 LMS [13]. The cost 

functions and updated equations of the above algorithms are 

listed in Table 3.  

   
Experiment 1, we assume that the channel vectors of 

cooperative relay system have the same length 𝐿𝑔 = 𝐿𝑘 = 16 

and hence the length of convolution channel vectors is 

𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 = 31. In case 1, two large coefficients of 𝒈 

and 𝒌 are uniformly distributed and all the others are exactly 

zero, making the system have a sparsity level of 2 31⁄ . Four 

random tap-weights of 𝒈 and 𝒌 are nonzero in case 2.  

The values of several large coefficients are chosen from 

Gaussian distribution with a zero mean and a unit variance. 

Table 3 Various LMS algorithms 

Algorithm Cost function    Update equation 

LMS          𝜉(𝑛) =
1

2
|𝒆(𝑛)|2  𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

ZA-LMS 𝜉𝑍𝐴(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑍𝐴‖𝒉̂(𝑛)‖ 𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                        −𝜌𝑍𝐴sgn[𝒉̂(𝑛)] 

RZA-LMS 𝜉𝑅𝑍𝐴(𝑛) =
1

2
|𝒆(𝑛)|2 

             +𝛾𝑅𝑍𝐴∑log (1 + 𝒉̂(𝑛))

𝐿

𝐼=1

 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

    −𝜌𝑅𝑍𝐴
sgn[𝒉̂(𝑛)]

1 + 𝜀𝑅𝑍𝐴|𝒉̂(𝑛)|
 

𝑙0-LMS 

 

Proposed 

algorithm 

𝜉0(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾0‖𝒉̂(𝑛)‖0 

 

𝜉𝑝(𝑛) =
1

2
|𝒆(𝑛)|2 + 𝛾𝑝‖𝒉̂(𝑛)‖𝑝 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

       −𝜌0βsgn[𝒉̂(𝑛)]𝑒
−𝛽|𝒉̂(𝑛)| 

𝒉̂(𝑛 + 1) = 𝒉̂(𝑛) + 𝜇𝒆(𝑛)𝒙(𝑛) 

                    −𝜌𝑝
(‖𝒉̂(𝑛)‖

𝑝
)
(1−𝑝)

sgn(𝒉̂(𝑛))

𝜀𝑝 + |𝒉̂(𝑛)|
(1−𝑝)  
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The parameters of reweighted 𝑙𝑝  norm LMS channel 

estimation algorithm and reweighted 𝑙1  norm LMS 

algorithm are set to 𝜌𝑝 = 𝜌1 = 5 × 10
−4   and 𝜀𝑝 = 𝜀1 =

1.2. In the ZA-LMS algorithm and RZA-LMS algorithm, the 

parameters are set as 𝜌𝑍𝐴 = 𝜌𝑅𝑍𝐴 = 5 × 10
−4 and 𝜀𝑅𝑍𝐴 =

10. We set step size parameter 𝜇 = 0.02 for all algorithms 

in this paper. We test the performance of the proposed 

algorithm under the low Signal-to-Noise Ratio (SNR) 10dB 

and high SNR 20dB respectively. The average estimation of 

the mean square error (MSE) between the actual and 

estimated channel state information are shown in Fig. 2 and 

Fig. 3.  

 

The estimated channel impulse response MSE results for 

sparsity case 1 are shown in Fig. 2 (a)~ (b) and for sparsity case 

2 are shown in Fig. 3 (a) ~ (b). According to Figs. 2~3, when 

the sparsity of the channel increases, the convergence 

performance of the sparsity-aware parameter estimation 

algorithms degrades accordingly. By examining the 

convergence lines, we can conclude that, in general, the 

reweighted 𝑙𝑝 norm penalized LMS has a better performance 

than all the other algorithms. However, in the case of SNR = 10 

dB, the 𝑙0  norm constraint sparse filtering algorithm has a 

similar performance to the 𝑙𝑝 norm penalized LMS, we can 

conclude that the 𝑙0  norm penalized LMS may has a better 

performance at low SNR. 

 

Experiment 2, the channel vectors have the same 

length  𝐿𝑔 = 𝐿𝑘 = 32  and hence the length of convolution 

channel vectors is 𝐿 = 𝐿𝑔 + 𝐿𝑘 − 1 = 63 . There are three 

different cases with different sparsity levels. In the first case, 

only two taps in 𝒈 and 𝒌 channel coefficients are nonzero. In 

the second case, four random coefficients of 𝒈  and 𝒌 

 

a 

 

b 

Fig. 2 Example 1, Case 1: Comparison of convergence 

rate for six different algorithms (𝐿 = 31, 𝑑 = 2). 

(a) SNR=10 dB, (b) SNR=20 dB 

 

 

a 

 

b 

Fig. 3 Example 1, Case 2: Comparison of convergence 

rate for six different algorithms (𝐿 = 31, 𝑑 = 4). 

(a) SNR=10 dB, (b) SNR=20 dB 
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channel impulse response are nonzero. In the third case, sixteen 

random channel tap-weights of the 𝒈 and 𝒌 are nonzero. In 

these three cases, all the positions of the nonzero taps in the 

channel coefficients vector are chosen randomly, the values of 

all the nonzero taps follow i.i.d Gaussian distribution. SNR of 

the unknown system is set to 10 dB and 20 dB, other parameters 

are chosen as 𝜇 = 0.02 , 𝜌𝑍𝐴 = 𝜌𝑅𝑍𝐴 = 5 × 10
−4 , 𝜀𝑅𝑍𝐴 =

10, 𝜌𝑝 = 𝜌1 = 5 × 10
−4, and 𝜀𝑝 = 𝜀1 = 1.2.  

 

As we can see from the curves in Fig. 4 ~Fig.6, the 

reweighted 𝑙𝑝 norm penalized LMS algorithm performs better 

and has a faster convergence rate comparing with other 

algorithms at low SNR. Under the same sparsity, the 

convergence performance in Fig.4 and Fig.5 are better than that 

in Fig.2 and Fig.3. It is evidence that the performance of 

channel estimation will be better with longer channel length 

under the same sparsity condition. The reason behind is that the 

system has a higher sparsity level in this experiment. Here we 

define the system sparsity level as 𝑑/𝐿. 

 

Experiment 3, we study the convergence of the proposed 

algorithm based on three different cases: various sparsity 𝑑, 

changing 𝑝  value and different channel lengths. The 

simulation results are evaluated in Fig. 7~Fig. 9. 

In case 1, we set the sparsity level 𝑑 as 2/4/8/16 and 𝐿𝑔 =

𝐿𝑘 = 32 . The positions of the nonzero taps of the channel 

coefficients are chosen randomly. When 𝑑 has high values, 

the channel will have more non-zero coefficients and the 

system will be less sparse. In case 2, we set 

to 𝑝=0.4/0.5/0.7/0.9, 𝑑 = 2, 𝐿𝑔 = 𝐿𝑘 = 32, for the 𝑙𝑝  norm 

penalized method. In case 3, the channel length 𝐿𝑔 = 𝐿𝑘 =

16/32/64, 𝑑 = 2. 

 

 

a 
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b 

Fig. 4 Example 2, Case 1: Comparison of convergence 

rate for six different algorithms (𝐿 = 63,𝑑 = 2).  

(a) SNR=10 dB, (b) SNR=20 dB 

 

 

a 

 

b 

Fig. 5 Example 2, Case 2: Comparison of convergence rate 

for six different algorithms (𝐿 = 63, 𝑑 = 4). 

(a) SNR=10 dB, (b) SNR=20 dB 
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Fig. 7 shows the curves of convergence of the reweighted 𝑙𝑝 

norm penalized LMS and reweighted 𝑙1 norm penalized LMS 

algorithms when the CIR sparsity level is varying. The 

performance of the two sparse aware LMS algorithms 

decreases with the increasing sparsity level of the channel, 

which is due to the fact that the value of 𝐸[𝑟∞] in (15) is 

increasing. The reweighted 𝑙𝑝 norm penalized LMS algorithm 

achieved a better estimation performance than the reweighted 

𝑙1 norm penalized LMS algorithm. However, the performance 

of the reweighted 𝑙1  norm penalized LMS algorithm has a 

trend to outperform the reweighted 𝑙𝑝 norm penalized LMS 

algorithm at large sparsity levels. 

 

 

Fig. 8 shows that the estimation performance of the 

reweighted 𝑙𝑝 norm penalized LMS algorithm will decrease 

when the 𝑝 value increases, and the results indicates that the 

estimation has a good performance when 𝑝 = 0.5 . Fig. 9 

shows that if the channel length continues to increase the 

estimated performance will decrease, which can be prove by 

the steady state bounds in (18). 

 

 

a 

 

b 

 Fig. 6 Example 2, Case 3: Comparison of convergence 
rate for six different algorithms (𝐿 = 63, 𝑑 = 16). 

 (a) SNR=10 dB, (b) SNR=20 dB 

 

 
 Fig. 7 tracking and convergence for two algorithms 

with different sparsity. 
 

 
Fig. 8. Learning curves of Reweighted 𝑙𝑝 LMS with 

different p values (𝑑 = 2, 𝐿 = 63). 

 

 

Fig. 9. Learning curves of Reweighted 𝑙𝑝 LMS with 

different channel lengths. (d=2) 
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5. CONCLUSIONS 

A novel sparse adaptive channel estimation algorithm has been 

proposed in this paper for the time-variant cooperative 

communication systems. Cost function of the proposed method 

has been constructed by using reweighted 𝑙𝑝  norm sparse 

penalties. Simulation results show that the proposed algorithm 

achieves a better convergence speed and a better steady-state 

behavior in comparison with other sparse aware LMS 

algorithms as well as the conventional LMS algorithm. We 

have derived the theoretical steady-state of coefficient 

misalignment vector and a performance upper bound. The 

theoretical analysis proves that the performance of the 

reweighted 𝑙𝑝 norm penalized LMS algorithm is better than 

the performance of the reweighted 𝑙1  norm penalized LMS 

algorithm. 

Acknowledgment 

The work was supported by the National Natural Science 

Foundation of China under Grant 61501530, Henan 

Educational Committee under Grant 16A510012, Henan 

science and technology planning project under Grant 

182102210522. 

References 

[1] Laneman, J.N., Tse, D.N.C., Wornell, G.W.: 'Cooper-

ative diversity in wireless networks: Efficient protocols 

and outage behavior', IEEE Transactions on Information 

Theory, 2004, 50, (12), pp. 3062-80. 

[2] Zhang, A., Yang, S., Gui, G.: 'Sparse Channel 

Estimation for MIMO-OFDM Two-Way Relay 

Network with Compressed Sensing', International 

Journal of Antennas and Propagation, 2013, 2013, (8), 

pp. 72-81. 

[3] Zhang, A., Yang, S., Li, J., et al.: 'Sparsity Adaptive 

Expectation Maximization Algorithm for Estimating 

Channels in MIMO Cooperation systems', KSII 

Transactions on Internet and Information Systems, 

2016, 10, (8), pp. 3498-3511.  

[4] Widrow, B., Stearns, S.D.: 'Adaptive Signal Processing', 

New Jersey: Prentice Hall, 1985. 

[5] Jian, J., Gu, Y., Mei, S.: 'Adaptive Algorithm for Sparse 

System Identification: Zero-attracting LMS ', Journal of 

Tsinghua University, 2010, 50, (10), pp. 1656-1659. 

[6] Candes, E. J., Wakin, M. B., Boyd, S. P.: 'Enhancing 

sparsity by reweighted l1 minimization ', Journal of 

Fourier Analysis and Applications, 2008, 14, (5), pp. 

877–905.  

[7] Tropp, J. A.: 'Greed is good: Algorithmic results for 

sparse approximation ', IEEE Trans. Information 

Theory, 2004, 50, (10), pp. 2231–2242. 

[8] Tropp, J. A., Gilbert, A. C., 'Signal recovery from 

random measurements via orthogonal matching pursuit', 

IEEE Trans. Information Theory, 2007, 53, (12), pp. 

4655–4666. 

[9] Blumensath, T., Davies, M. E.: 'Normalized iterative 

hard thresholding: Guaranteed stability and 

performance', IEEE J. Selected Topics Signal 

Processing, 2010, 4, (2), pp. 298–309. 

[10] Jin, J., Gu, Y., Mei, S.: 'New adaptive algorithm for 

sparse system identification: Zero-Attracting LMS', 

Journal of Tsinghua University Science and 

Technology, 2010, 50, (9), pp.1312-1315. 

[11] Chen, Y., Gu, Y., Hero, A. O.: 'Sparse LMS for system 

identification', IEEE ICASSP, Taiwan, Apr 2009. pp. 

3125-3128. 

[12] Taheri, O., Vorobyov, S.A.: 'Reweighted l1 norm 

penalized LMS for sparse channel estimation and its 

analysis', Signal Processing, 2014, 104, (6), pp.70-79. 

[13] Su, G., Jin, J., Gu, Y. et al.: 'Performance Analysis of 

0l  Norm Constraint Least Mean Square Algorithm', 

IEEE Transactions on Signal Processing, 2012, 60, (5), 

pp.2223-2235.  

[14] Hong, X., Gao, J., Chen, S., 'Zero-Attracting Recursive 

Least Squares Algorithms', IEEE Transactions on 

Vehicular Technology, 2017, 66, (1), pp. 213-221. 

[15] Selesnick, I.: 'Sparse Regularization via Convex 

Analysis', IEEE Transactions on Signal Processing, 

2017, 65, (17), pp.4481-4494.  

[16] Shen, X., Gu, Y.: 'Nonconvex Sparse Logistic 

Regression with Weakly Convex Regularization', IEEE 

Transaction on Signal Processing, 2018, 66, (12), 

pp.3199-3211.  

[17] Aliyu, M. L., Alkassim, M. A., Salman, M. S.: 'A p norm 

variable step-size LMS algorithm for sparse system 

identification ', Signal Image & Video Processing, 2015, 

9, (7), pp.1559-1565.  

[18] Chen, L., Gu, Y.: 'Local and Global Optimality of LP-

Minimization for Sparse Recovery', IEEE International 

Conference on Acoustics, Speech and Signal Processing 

Auto-generated PDF by ReView IET Communications

COM-2018-6186.docx MainDocument IET Review Copy Only 20



(ICASSP), South Brisbane, August 2015, pp. 3596-

3600. 

Appendix 

The steady state mean square derivation between the 

original CSI and the estimated CSI will be deduced and the 

condition of 𝜇 to guarantee convergence will be derived. 

We define 𝑫(𝑛) is the variance of  𝒓(𝑛).  

𝑫(𝑛) = 𝐸[𝒓(𝑛)𝒓𝑇(𝑛)].
             

（19） 

Now, multiplying both sides of (10) with their respective 

transposes, the update equation can be expressed as 

𝑫(𝑛 + 1) = [1 − 2𝜇𝑃𝑥 + 2𝜇
2𝑃𝑥

2] ∙ 𝑺(𝑛) 
                         +𝜇2𝜎𝑃𝑥

2𝑡𝑟[𝑺(𝑛)]𝑰 

 +[1 − 𝜇𝑃𝑥]𝜌𝐸[𝒓(𝑛)𝒇(ℎ̂
𝑇(𝑛))]          (20) 

                       +[1 − 𝜇𝑃𝑥]𝜌𝐸[𝒇(ℎ̂
𝑇(𝑛)𝒓(𝑛))]  

 +𝜌2𝐸[𝒇(ℎ̂(𝑛))𝒇(ℎ̂𝑇(𝑛))]+𝜇2𝑃𝑣𝑃𝑥𝑰. 

Let 𝑆(𝑛) = 𝑡𝑟[𝑫(𝑛)], take the trace on both side of (20) 

𝑆(𝑛 + 1) = [1 − 2𝜇𝑃𝑥 + (𝐿 + 2)𝜇
2𝑃𝑥

2] ∙ 𝑆(𝑛) 
 +2[1 − 𝜇𝑃𝑥]𝜌𝑐(𝑛)               (21) 

+𝜌2𝑞(𝑛) + 𝐿𝜇2𝑃𝑣𝑃𝑥, 

where  𝑐(𝑛) = 𝐸 [𝑟𝑇(𝑛)𝒇 (ℎ̂(𝑛))] , 𝑞(𝑛) = ‖𝒇(ℎ̂(𝑛)‖
2

2
, 

𝑐(𝑛) and 𝑞(𝑛) are all bounded and thus we can prove the 

condition of convergence as 

|1 − 2𝜇𝑃𝑥 + (L + 2)𝜇
2𝑃𝑥| < 1. 

Thereby we have： 

0 < 𝜇 <
2

(𝐿+2)𝑃𝑥
. 

The final mean square deviation of reweighted lp-norm 

penalty LMS is  

𝑆(∞) =
2[1−𝜇𝑃𝑥]𝛾𝑐(∞)+𝛾

2𝜇𝑞(∞)+𝐿𝜇𝑃𝑣𝑃𝑥

𝑃𝑥[2−(𝐿+2)𝜇𝑃𝑥]
.       (21) 
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Authors' Response to Reviewer 1 

#1 Submitted by: Reviewer 1  

1.When comparing this version with the previous one, almost all figures have new 

performance curves. For example, for the Fig. 2, all the simulation setups are the 

same but the algorithm has approximately 10^-3 MSE for 100 iterations at 10 dB 

SNR and 10^-4 MSE for 100 iterations for 20 dB SNR for the previous version of the 

paper, however for the current version, they are approx. 7x10^-4 MSE for 230 

iteration at 10 dB SNR and 2x10^-4 MSE for 200 iterations at 20 dB SNR. Is there 

anything different in the algorithm between two versions. 

We greatly thank the reviewer for this comment. We have selected new parameters for 

a better performance in the present manuscript, i.e., 𝜌 = 5 × 10−4 and 𝜇 = 0.02 in 

version 2 instead of 𝜌 = 3 × 10−4 and 𝜇 = 0.05 in version 1. 

2. It can be seen from Fig.3 and 5, when the sparsity, d, has high values (in here it 

is 4), the proposed algorithm has no significant error performance. How could you 

explain this? 

We greatly thank the reviewer for this comment. In this paper, the sparsity 𝑑 denotes 

the number of non-zero coefficients. When 𝑑 has high values, the channel will have 

more non-zero coefficients and the system will be less sparse. In this regard, the 

proposed algorithm has no significant performance. 

3. Still have typos and grammatical issues. i.e., h_i will be k_i in Section 2, page 6. 

We greatly thank the reviewer for the valuable comment to make our research more 

solid and convincing. We have corrected the typos, which are highlighted in blue color 

in the revised manuscript. 
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The questions raised by the reviewer have been answered. 

We greatly thank the reviewer for the helpful suggestions. 
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