1,686 research outputs found

    A semiparametric extension of the stochastic block model for longitudinal networks

    Full text link
    To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals' latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Finally, we demonstrate the performance of our procedure on synthetic experiments, analyse two datasets to illustrate the utility of our approach and comment on competing methods

    Model-based co-clustering for mixed type data

    Get PDF
    International audienceThe importance of clustering for creating groups of observations is well known. The emergence of high-dimensional data sets with a huge number of features leads to co-clustering techniques, and several methods have been developed for simultaneously producing groups of observations and features.By grouping the data set into blocks (the crossing of a row-cluster and a column-cluster), these techniques can sometimes better summarize the data set and its inherent structure. The Latent Block Model (LBM) is a well-known method for performing co-clustering. However, recently, contexts with features of different types (here called mixed type data sets) are becoming more common. The LBM is not directly applicable to this kind of data set. Here a natural extension of the usual LBM to the ``Multiple Latent Block Model" (MLBM) is proposed in order to handle mixed type data sets. Inference is performed using a Stochastic EM-algorithm that embeds a Gibbs sampler, and allows for missing data situations. A model selection criterion is defined to choose the number of row and column clusters. The method is then applied to both simulated and real data sets

    Statistical learning for predictive targeting in online advertising

    Get PDF
    corecore