13,235 research outputs found

    Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization

    Get PDF
    Due to their simplicity and excellent performance, parallel asynchronous variants of stochastic gradient descent have become popular methods to solve a wide range of large-scale optimization problems on multi-core architectures. Yet, despite their practical success, support for nonsmooth objectives is still lacking, making them unsuitable for many problems of interest in machine learning, such as the Lasso, group Lasso or empirical risk minimization with convex constraints. In this work, we propose and analyze ProxASAGA, a fully asynchronous sparse method inspired by SAGA, a variance reduced incremental gradient algorithm. The proposed method is easy to implement and significantly outperforms the state of the art on several nonsmooth, large-scale problems. We prove that our method achieves a theoretical linear speedup with respect to the sequential version under assumptions on the sparsity of gradients and block-separability of the proximal term. Empirical benchmarks on a multi-core architecture illustrate practical speedups of up to 12x on a 20-core machine.Comment: Appears in Advances in Neural Information Processing Systems 30 (NIPS 2017), 28 page

    Fast Nonsmooth Regularized Risk Minimization with Continuation

    Full text link
    In regularized risk minimization, the associated optimization problem becomes particularly difficult when both the loss and regularizer are nonsmooth. Existing approaches either have slow or unclear convergence properties, are restricted to limited problem subclasses, or require careful setting of a smoothing parameter. In this paper, we propose a continuation algorithm that is applicable to a large class of nonsmooth regularized risk minimization problems, can be flexibly used with a number of existing solvers for the underlying smoothed subproblem, and with convergence results on the whole algorithm rather than just one of its subproblems. In particular, when accelerated solvers are used, the proposed algorithm achieves the fastest known rates of O(1/T2)O(1/T^2) on strongly convex problems, and O(1/T)O(1/T) on general convex problems. Experiments on nonsmooth classification and regression tasks demonstrate that the proposed algorithm outperforms the state-of-the-art.Comment: AAAI-201

    Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure

    Get PDF
    Stochastic optimization algorithms with variance reduction have proven successful for minimizing large finite sums of functions. Unfortunately, these techniques are unable to deal with stochastic perturbations of input data, induced for example by data augmentation. In such cases, the objective is no longer a finite sum, and the main candidate for optimization is the stochastic gradient descent method (SGD). In this paper, we introduce a variance reduction approach for these settings when the objective is composite and strongly convex. The convergence rate outperforms SGD with a typically much smaller constant factor, which depends on the variance of gradient estimates only due to perturbations on a single example.Comment: Advances in Neural Information Processing Systems (NIPS), Dec 2017, Long Beach, CA, United State
    • …
    corecore