2,159 research outputs found

    Implementation of numerically stable hidden Markov model

    Full text link
    A Hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. HMM is an extremely flexible tool and has been successfully applied to a wide variety of stochastic modeling tasks. One of the first applications of HMM is speech recognition. Later they came to be known for their applicability in handwriting recognition, part-of-speech tagging and bio-informatics. In this thesis, we will explain the mathematics involved in HMMs and how to efficiently perform HMM computations using dynamic programming (DP) which makes it easy to implement HMM. We will also address the practical issues associated with the use of HMM like numerical scaling of conditional probabilities to model long sequences and smoothing of poor probability estimates caused by sparse training data

    Memory-Based Learning: Using Similarity for Smoothing

    Full text link
    This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.Comment: 8 pages, uses aclap.sty, To appear in Proc. ACL/EACL 9

    Use of Weighted Finite State Transducers in Part of Speech Tagging

    Full text link
    This paper addresses issues in part of speech disambiguation using finite-state transducers and presents two main contributions to the field. One of them is the use of finite-state machines for part of speech tagging. Linguistic and statistical information is represented in terms of weights on transitions in weighted finite-state transducers. Another contribution is the successful combination of techniques -- linguistic and statistical -- for word disambiguation, compounded with the notion of word classes.Comment: uses psfig, ipamac

    Learning to Resolve Natural Language Ambiguities: A Unified Approach

    Full text link
    We analyze a few of the commonly used statistics based and machine learning algorithms for natural language disambiguation tasks and observe that they can be re-cast as learning linear separators in the feature space. Each of the methods makes a priori assumptions, which it employs, given the data, when searching for its hypothesis. Nevertheless, as we show, it searches a space that is as rich as the space of all linear separators. We use this to build an argument for a data driven approach which merely searches for a good linear separator in the feature space, without further assumptions on the domain or a specific problem. We present such an approach - a sparse network of linear separators, utilizing the Winnow learning algorithm - and show how to use it in a variety of ambiguity resolution problems. The learning approach presented is attribute-efficient and, therefore, appropriate for domains having very large number of attributes. In particular, we present an extensive experimental comparison of our approach with other methods on several well studied lexical disambiguation tasks such as context-sensitive spelling correction, prepositional phrase attachment and part of speech tagging. In all cases we show that our approach either outperforms other methods tried for these tasks or performs comparably to the best

    Language Models

    Get PDF
    Contains fulltext : 227630.pdf (preprint version ) (Open Access

    Similarity-Based Models of Word Cooccurrence Probabilities

    Full text link
    In many applications of natural language processing (NLP) it is necessary to determine the likelihood of a given word combination. For example, a speech recognizer may need to determine which of the two word combinations ``eat a peach'' and ``eat a beach'' is more likely. Statistical NLP methods determine the likelihood of a word combination from its frequency in a training corpus. However, the nature of language is such that many word combinations are infrequent and do not occur in any given corpus. In this work we propose a method for estimating the probability of such previously unseen word combinations using available information on ``most similar'' words. We describe probabilistic word association models based on distributional word similarity, and apply them to two tasks, language modeling and pseudo-word disambiguation. In the language modeling task, a similarity-based model is used to improve probability estimates for unseen bigrams in a back-off language model. The similarity-based method yields a 20% perplexity improvement in the prediction of unseen bigrams and statistically significant reductions in speech-recognition error. We also compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate high-frequency configurations. The similarity-based methods perform up to 40% better on this particular task.Comment: 26 pages, 5 figure
    • …
    corecore