27,930 research outputs found

    Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis

    Full text link
    Spectral Clustering (SC) is a widely used data clustering method which first learns a low-dimensional embedding UU of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on U⊤U^\top to get the final clustering result. The Sparse Spectral Clustering (SSC) method extends SC with a sparse regularization on UU⊤UU^\top by using the block diagonal structure prior of UU⊤UU^\top in the ideal case. However, encouraging UU⊤UU^\top to be sparse leads to a heavily nonconvex problem which is challenging to solve and the work (Lu, Yan, and Lin 2016) proposes a convex relaxation in the pursuit of this aim indirectly. However, the convex relaxation generally leads to a loose approximation and the quality of the solution is not clear. This work instead considers to solve the nonconvex formulation of SSC which directly encourages UU⊤UU^\top to be sparse. We propose an efficient Alternating Direction Method of Multipliers (ADMM) to solve the nonconvex SSC and provide the convergence guarantee. In particular, we prove that the sequences generated by ADMM always exist a limit point and any limit point is a stationary point. Our analysis does not impose any assumptions on the iterates and thus is practical. Our proposed ADMM for nonconvex problems allows the stepsize to be increasing but upper bounded, and this makes it very efficient in practice. Experimental analysis on several real data sets verifies the effectiveness of our method.Comment: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 201

    Sparse Subspace Clustering: Algorithm, Theory, and Applications

    Full text link
    In many real-world problems, we are dealing with collections of high-dimensional data, such as images, videos, text and web documents, DNA microarray data, and more. Often, high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories the data belongs to. In this paper, we propose and study an algorithm, called Sparse Subspace Clustering (SSC), to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of subspaces and the distribution of data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm can be solved efficiently and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal with data nuisances, such as noise, sparse outlying entries, and missing entries, directly by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Convex Clustering via Optimal Mass Transport

    Full text link
    We consider approximating distributions within the framework of optimal mass transport and specialize to the problem of clustering data sets. Distances between distributions are measured in the Wasserstein metric. The main problem we consider is that of approximating sample distributions by ones with sparse support. This provides a new viewpoint to clustering. We propose different relaxations of a cardinality function which penalizes the size of the support set. We establish that a certain relaxation provides the tightest convex lower approximation to the cardinality penalty. We compare the performance of alternative relaxations on a numerical study on clustering.Comment: 12 pages, 12 figure

    Successive Convex Approximation Algorithms for Sparse Signal Estimation with Nonconvex Regularizations

    Full text link
    In this paper, we propose a successive convex approximation framework for sparse optimization where the nonsmooth regularization function in the objective function is nonconvex and it can be written as the difference of two convex functions. The proposed framework is based on a nontrivial combination of the majorization-minimization framework and the successive convex approximation framework proposed in literature for a convex regularization function. The proposed framework has several attractive features, namely, i) flexibility, as different choices of the approximate function lead to different type of algorithms; ii) fast convergence, as the problem structure can be better exploited by a proper choice of the approximate function and the stepsize is calculated by the line search; iii) low complexity, as the approximate function is convex and the line search scheme is carried out over a differentiable function; iv) guaranteed convergence to a stationary point. We demonstrate these features by two example applications in subspace learning, namely, the network anomaly detection problem and the sparse subspace clustering problem. Customizing the proposed framework by adopting the best-response type approximation, we obtain soft-thresholding with exact line search algorithms for which all elements of the unknown parameter are updated in parallel according to closed-form expressions. The attractive features of the proposed algorithms are illustrated numerically.Comment: submitted to IEEE Journal of Selected Topics in Signal Processing, special issue in Robust Subspace Learnin
    • …
    corecore