6,165 research outputs found

    Sparse causality network retrieval from short time series

    Get PDF
    We investigate how efficiently a known underlying sparse causality structure of a simulated multivariate linear process can be retrieved from the analysis of time series of short lengths. Causality is quantified from conditional transfer entropy and the network is constructed by retaining only the statistically validated contributions. We compare results from three methodologies: two commonly used regularization methods, Glasso and ridge, and a newly introduced technique, LoGo, based on the combination of information filtering network and graphical modelling. For these three methodologies we explore the regions of time series lengths and model-parameters where a significant fraction of true causality links is retrieved. We conclude that when time series are short, with their lengths shorter than the number of variables, sparse models are better suited to uncover true causality links with LoGo retrieving the true causality network more accurately than Glasso and ridge

    Cognitive Robots for Social Interactions

    Get PDF
    One of my goals is to work towards developing Cognitive Robots, especially with regard to improving the functionalities that facilitate the interaction with human beings and their surrounding objects. Any cognitive system designated for serving human beings must be capable of processing the social signals and eventually enable efficient prediction and planning of appropriate responses. My main focus during my PhD study is to bridge the gap between the motoric space and the visual space. The discovery of the mirror neurons ([RC04]) shows that the visual perception of human motion (visual space) is directly associated to the motor control of the human body (motor space). This discovery poses a large number of challenges in different fields such as computer vision, robotics and neuroscience. One of the fundamental challenges is the understanding of the mapping between 2D visual space and 3D motoric control, and further developing building blocks (primitives) of human motion in the visual space as well as in the motor space. First, I present my study on the visual-motoric mapping of human actions. This study aims at mapping human actions in 2D videos to 3D skeletal representation. Second, I present an automatic algorithm to decompose motion capture (MoCap) sequences into synergies along with the times at which they are executed (or "activated") for each joint. Third, I proposed to use the Granger Causality as a tool to study the coordinated actions performed by at least two units. Recent scientific studies suggest that the above "action mirroring circuit" might be tuned to action coordination rather than single action mirroring. Fourth, I present the extraction of key poses in visual space. These key poses facilitate the further study of the "action mirroring circuit". I conclude the dissertation by describing the future of cognitive robotics study

    Off-Policy Evaluation of Probabilistic Identity Data in Lookalike Modeling

    Full text link
    We evaluate the impact of probabilistically-constructed digital identity data collected from Sep. to Dec. 2017 (approx.), in the context of Lookalike-targeted campaigns. The backbone of this study is a large set of probabilistically-constructed "identities", represented as small bags of cookies and mobile ad identifiers with associated metadata, that are likely all owned by the same underlying user. The identity data allows to generate "identity-based", rather than "identifier-based", user models, giving a fuller picture of the interests of the users underlying the identifiers. We employ off-policy techniques to evaluate the potential of identity-powered lookalike models without incurring the risk of allowing untested models to direct large amounts of ad spend or the large cost of performing A/B tests. We add to historical work on off-policy evaluation by noting a significant type of "finite-sample bias" that occurs for studies combining modestly-sized datasets and evaluation metrics involving rare events (e.g., conversions). We illustrate this bias using a simulation study that later informs the handling of inverse propensity weights in our analyses on real data. We demonstrate significant lift in identity-powered lookalikes versus an identity-ignorant baseline: on average ~70% lift in conversion rate. This rises to factors of ~(4-32)x for identifiers having little data themselves, but that can be inferred to belong to users with substantial data to aggregate across identifiers. This implies that identity-powered user modeling is especially important in the context of identifiers having very short lifespans (i.e., frequently churned cookies). Our work motivates and informs the use of probabilistically-constructed identities in marketing. It also deepens the canon of examples in which off-policy learning has been employed to evaluate the complex systems of the internet economy.Comment: Accepted by WSDM 201

    A computational study on altered theta-gamma coupling during learning and phase coding

    Get PDF
    There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus
    • …
    corecore