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One of my goals is to work towards developing Cognitive Robots, especially with re-

gard to improving the functionalities that facilitate the interaction with human beings and

their surrounding objects. Any cognitive system designated for serving human beings

must be capable of processing the social signals and eventually enable efficient prediction

and planning of appropriate responses.

My main focus during my PhD study is to bridge the gap between the motoric space

and the visual space. The discovery of the mirror neurons ([RC04]) shows that the visual

perception of human motion (visual space) is directly associated to the motor control of

the human body (motor space). This discovery poses a large number of challenges in dif-

ferent fields such as computer vision, robotics and neuroscience. One of the fundamental

challenges is the understanding of the mapping between 2D visual space and 3D motoric

control, and further developing building blocks (primitives) of human motion in the visual

space as well as in the motor space.

First, I present my study on the visual-motoric mapping of human actions. This study

aims at mapping human actions in 2D videos to 3D skeletal representation. Second, I

present an automatic algorithm to decompose motion capture (MoCap) sequences into



synergies along with the times at which they are executed (or “activated”) for each joint.

Third, I proposed to use the Granger Causality as a tool to study the coordinated actions

performed by at least two units. Recent scientific studies suggest that the above “action

mirroring circuit” might be tuned to action coordination rather than single action mirror-

ing. Fourth, I present the extraction of key poses in visual space. These key poses facilitate

the further study of the “action mirroring circuit”. I conclude the dissertation by describ-

ing the future of cognitive robotics study.
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Chapter 1

Introduction

One of my goals is to work towards developing the functionalities that facilitate the inter-

action with human beings and their surrounding objects. Any cognitive system designated

for serving human beings must be capable of processing the visual signals and eventually

enable efficient prediction and planning of appropriate responses.

I have been working on a multi-disciplinary project that involves neuroscientists, robot

engineers, and vision scientists. The project pinpoints the necessity of cognition modules

that establish the protocols for parsing, generating and translating signals among body

movements, visual objects and their linguistic descriptions. I strive to develop the multi-

modal tools for Social Signal Processing, including analyzing human actions in the visual

space and the motoric space, and the coordination in human actions.

Previously, I worked on handwriting image analysis, and I developed a few practical

tools that are reasonably recognized by the community. During this period, I realized the

importance of a cognitive system in the applications where human body motion, such as

hand movement in writing, is involved. Thus, I planned to go deeper in this direction, and

I began to seek the research topics that are closely related to human’s cognitive system and

body motion.

1.1 Cognitive Functions for Human Interaction

My research on the mirroring mechanism for human-robot interaction analysis primarily

aims at creating the sensorimotor representation of human action in visual space. Re-

cently, application-specific action recognition has been widely studied. However, current

computational approaches have been limited in their abilities to represent the unrestricted

full-body motion and to learn the intrinsic features for semantic understanding of human

action.

The study on Mirror Neurons provides the physiological mechanism for action percep-

tion, which states that one recognizes an action because he/she can represent the same ac-
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tion using his own motoric representation. The implementation of such a cognitive system

will shed light on the advancement of the human-centered research and the improvement

of the quality of human life like humanoid, intelligent service robot, and diagnosis and

rehabilitation of motion disorder diseases.

In the visual space, my goal is to develop a computational mechanism for mapping 2D

movements in images to 3D body joint positions. A module for building a 3D skeleton

from video data brings many advantages to computer vision. The skeleton is a natural

abstraction of a human, which is viewpoint invariant and subject invariant. Besides being

useful for human action analysis and recognition, it can be used in many applications in

a number of related areas including computer graphics, visualization, and human-robot

interaction with cognitive robots (e.g., iCub [SMV07]).

In addition, I attempted to extract key poses for effective action recognition for robot-

human interaction. It is well believed that not all poses are created equal, but much of

the previous work largely focused on the recognition algorithms, and ignored to address

the pose extraction sufficiently. I model the key poses as the discontinuities in the second

order derivatives of the latent variables in the reduced visual space which we obtain using

the Gaussian Process Dynamical Models (GPDM). Experiments demonstrate that the key

poses are consistent under different conditions, such as subject variation, video quality,

frame rate, and camera motion, and robust to viewpoint change. This facilitates the hu-

man action analysis and improves the action recognition rate significantly by reducing the

uncharacteristic poses both in the training and the test sets. The results are also helpful in

psychological experiments for action understanding.

In the motoric space, part of my work focuses on decomposing motion capture (Mo-

Cap) sequences into synergies (smooth and short basis functions) along with the times

at which they are “activated” for each joint. The result will advance the humanoid re-

search by providing effective building blocks for robot body movements. Given MoCap

sequences, I proposed an algorithm to automatically learn the synergies as well as the ac-

tivations simultaneously using L1 Minimization, a novel optimization technique that aims

at recovering the exact sparse solution by minimizing the L1 norm (sum of absolute value)

of the variables instead of the traditional sum of squared errors. Human actions by their

nature are sparse both in action space domain and time domain. They are sparse in action

space, because different actions share similar movements on some joints. They are sparse
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in the time domain, because we do not want much overlap of the individual movements

on a single joint. Two recent developed tools from machine learning, namely Orthogo-

nal Matching Pursuit and the Split Bregman Algorithm, enabled us to alternately solve

two large convex minimizations to learn the synergies and the activations simultaneously.

Experiments demonstrate the power of the decomposition as a tool for representing and

classifying human movements in the MoCap sequences. The activations of the synergies

characterize the underlying rhythm in the parts of the bodies, and the weights of the syn-

ergies are effective for action retrieval and recognition. Particularly, the representation

allows us to substantially compress novel MoCap data, which is fundamentally invariant

to the sampling rate. Experiments further suggest that our approach is well suited for

early diagnosis of motion disorder diseases (e.g., Parkinson’s disease), an emerging issue

in public health.

A direct application to the analysis of the motoric data is to study the human coor-

dination. Among cognitive studies on human body movements, social coordination has

gained more attention than others because human beings in any society have complex be-

haviors to coordinate themselves and interact with the real world for defensive, living and

hunting purposes. In fact, recent scientific studies suggest that the “action mirror circuit”,

which maps the action in the visual space to the motoric space, might be tuned to social

coordination rather than single action mirroring. Thus, it is very clear that the knowledge

of social action coordination will be helpful for understanding the functionalities of the

mirroring mechanism of human action, and will eventually result in efficiently estimat-

ing appropriate actions in response or in modifying behaviors online. In the project, we

attempt to establish a theory for studying the influence in a group of coordinated actions

using the concept of Mirror Neurons in neuroscience.

I proposed to use the Granger Causality as a tool to study the coordinated actions per-

formed by at least two units. In the Granger Causality, actions are modeled by autoregres-

sive processes, and the causality is framed in terms of predictability. If one action causes

the other, then knowledge (history) of the first action should help predict future values of

the latter. We successfully applied the Granger Causality to the kinematic data in a cham-

ber orchestra to test the interaction among players and between conductors and players.

As an extremely interesting case of the mirror-like mechanism, the motor systems in musi-

cians support their orchestrated musical execution. We discovered that a good conductor
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drives the orchestra more frequently than an amateur conductor, with a stronger driving

force on average for all players in each piece of music. The above theory can be applied in

other human interaction scenarios, such as sport game and dancing, to study the dynami-

cal network of coordination.

1.2 Organization of the Dissertation

The remaining of this dissertation is organized as follows. Chap. 2 reviews the literatures

in the related problems. Chap. 3 presents the learning approach for mapping 2D actions

to 3D space. Chap. 4 presents the algorithm for learning motion primitives in MoCap

data. Chap. 5 presents the study of coordinated actions. Chap. 6 presents the algorithm

for automatic extraction of key poses in videos. Chap. 7 concludes the dissertation. My

publications from 2004-2010 are listed in Appendix. A, and a brief resume is included in

Appendix. B.
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Chapter 2

Related work

2.1 Chapter Summary

This chapter reviews a number of areas related to human motion analysis. First, I give a

brief introduction to the history of human motion capture. Second, I present the literature

on human pose analysis in visual space. Based on the pose analysis, we can recognize

human actions in videos. Third, I focus on analyzing human motion in the motoric space.

In addition, I discuss the concept of action coordination and present a tool of modeling the

coordination.

2.2 Brief History of Recording and Measuring Human Motion

Ancient philosophers studied animal motion for a long time, which dates back to 2000

years ago. The first known document in biomechanics written by Aristotle [Ari], tried

to discuss the relation between the locomotion and the structure. But the computational

study of human motion did not start until recently. 100 years ago when the “motion pic-

ture” was introduced, some pioneers began to explore the possibility of recording human

motion using photography techniques. For example, Eadweard Muybridge setup a cam-

era system to record different people performing different actions in motion [Muy].

The approach Muybridge used is now called “optical motion capture”, which is a “non-

invasive” approach. Usually multiple cameras are used in a room. Optical motion cap-

ture can be further categorized into “marker-based” and “markerless” approaches. In the

marker-based approaches, multiple markers are sticked in different positions of the subject

body, and are tracked across frames in realtime [VIC]. The markerless approaches usually

use silhouettes [SC08]. Therefore, clean or static background and canvas are favored in the

environment.

Unfortunately, due to the limitation of camera frame rates and image resolution, cur-

rent state-of-the-art of computer vision systems cannot easily achieve high resolution in

temporal and spatial domain at the same time. In addition, imperfect results of the image
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segmentation techniques limit the usability and portability.

In the field of neuroscience, researchers develop different devices for measuring human

motion. However, these devices are not portable for general purposes. One possible trade

off between usability and accuracy is to use the inertial sensors. Recently, high accurate

inertial sensors are used extensively in the field of computer graphics. Speed, gravity, and

acceleration are usually taken into account. For example, MOVEN suit [MOV] is one of

the mature products in the market. Depending on the applications, calibration might not

be compulsory [YJSB09].

It is natural to use the skeleton as the model to control human motion. This model

is usually called the stick-figure model, and it is used in different fields. For example,

we can control a humanoid by specifying rotations of joint angles of a certain stick-figure

model. In computer graphics, different animations are usually done by rendering different

figure-stick models.

Joint rotation is frequently represented as Euler angle in MoCap datasets, which is the

rotation angle with respect to the X, Y, and Z axis, respectively. One typical format, BioVi-

sion Hierarchy (BVH), stores the Euler angle directly in the plain text format. Since Euler

angle has many fundamental flaws, quaternion [Qua] is widely used as an alternative in

computer graphics community. It has many advantages compared to the Euler angle.

2.3 Human Pose Analysis

Human pose analysis in videos and MoCap sequences is very useful for compute vision

and neuroscience studies.

2.3.1 Pose Analysis in Videos

2.3.1.1 Pose Estimation in Videos

Detecting humans in images has received significant attention in the area of computer vi-

sion. The studies on this topic can be categorized into: 1) pedestrian detection for tracking,

2) 2D pose estimation, and 3) 3D pose estimation.

Pedestrian detection is a very challenging task because of the variations in illumination,

shadow, and pose. Many datasets have been collected (e.g., [PSZ08], [DT05a]). Recently,

Schwartz et al. [SKHD09a] used the Partial Least Squares (PLS) method to reduce the
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dimension in the feature space of detection windows and outperformed other algorithms.

Since the method was developed in the context of pedestrians, it is limited to full body

human detection and walking actions.

Estimating arbitrary 2D poses from single images has been a challenging problem for a

long time. Usually body parts detectors are used first to estimate the potential locations of

the limbs, then skeleton models are imposed as constraints in finding the optimal locations

of the limbs. To solve the 2D pose estimation problem, belief propagation and dynamical

programming have been used. Ramanan [Ram06] parsed images to body parts using an

iterative process to tune the performance. Based on Ramanan’s result, Ferrari et al. [FMJZ]

estimated a few upper body poses from the TV series “Buffy”. Felzenszwalb and Hutten-

locher [FH05] developed a part-based approach for object recognition and used it also for

pose estimation. Recently, Sapp et al. [STT10] estimated body poses using cascade models.

These approaches usually try numerous possible scales and rotations to find the optimal

solution.

3D pose estimation directly from 2D images has also been of interest. Closely related to

optical motion capture, multiple camera settings are very useful when the calibration data

is available [SB06]. Algorithms for single uncalibrated cameras were proposed in [ARS09].

However, the explicit mapping functions were not well addressed in these studies. Urta-

sun and Darrell [UD08b] used Gaussian Processes as the regression technique to compute

the mapping, but it is mainly single image based and the action recognition capability was

not discussed.

2.3.1.2 Key Poses in Visual Space

Key pose has been used in action recognition [RA] and gesture recognition [SNI04] in

visual space. Existing methods for pose extraction and temporal segmentation of action

video can be categorized into two classes: 1) dynamics-based approaches and 2) model-

based approaches. Dynamics based approaches, such as Marr’s seminal work [MV82],

try to detect the discontinuity between actions so that the boundaries can be detected.

These approaches work well when background subtraction is applied [LN07]. Model-

based approaches are tightly coupled with action recognition algorithms. The space-time

approaches [KSH] and dynamic time warping [LJD09] techniques are frequently adopted.

Pose extraction in the motion capture (MoCap) sequences has also been studied. The
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data from a motion capture suit are time series of three rotation angles each at a number of

joints on the human body. Similar to the vision-based extraction, the methods can also be

grouped to two categories. Jenkins and Mataric [JM02] use the KCS, a heuristic algorithm,

to partition human motion using dynamics. Vecchio et al. [VMP03], Bissacco [Bis05] and

Lu and Ferrier [LF04] assume that human motion is ruled by autoregressive (AR) processes

or state-space models and partitioned the sequences based on different model parameters.

In related work, neuroscientists use velocity, acceleration, and jerk as the measurements

for input motion streams [Zat97].

A closely related topic to pose extraction is video temporal segmentation, which has

been used for shot boundary detection, key frame extraction [TRE], video content analysis

[XG08], and video synopsis [PRAP08]. Such segmentations are helpful for retrieving useful

information from a large collection of videos. However, these techniques do not aim at

extracting human poses. Action synopsis [ACCO05] is related to our work but the joint

locations need to be labeled using a semi-automatic software called Icarus prior to the

analysis.

Motion primitives can be conceived as smooth and nicely behaving functions between

motion discontinuities. The discontinuities are characterized by the changes in acceler-

ation of the muscle signals [ddSB03]. In model based approaches, the discontinuities in

MoCap data are detected as the changes in the model parameters [Bis05].

In visual space, the motion discontinuities have often been used for key pose detec-

tion. Existing methods for pose extraction and temporal segmentation of action videos can

be categorized into two classes: 1) dynamics-based approaches and 2) model-based ap-

proaches. Dynamics based approaches, such as Marr’s seminal work [MV82], try to com-

pute the discontinuities between actions in which the boundaries can be detected. These

approaches are applicable when background subtraction is effective [LN07]. Model-based

approaches are coupled to action recognition algorithms, and space-time approaches are

frequently adopted [KSH].

2.3.2 Pose Analysis in MoCap data

A central problem in the analysis of MoCap data is how to decompose motion sequences

into primitives. The representations of the primitives can be poses or basic atoms of actions

over time.
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2.3.2.1 Human Motion Primitives

Finding motion primitives has been studied in a large body of work. D’Avella et al. [ddSB03]

discovered that the muscles were activated together to perform actions. [CJ06] applied

non-negative matrix factorization to study torque patterns. [SMI07] studied motion using

a dynamical system. None of these models uses shift-invariant primitives.

Li et al. [LFAJ10] recently proposed an unsupervised learning algorithm for automati-

cally decomposing joint movements sequences into shift-invariant basis functions. These

primitives assist the recognition, synthesis, and characterization of human actions.

A decomposition into shift-invariant features has been studied in acoustic signals clas-

sification ([BD06]). Shift invariant sparse coding [RKN07] further improved the perfor-

mance of classification. A major difference between their mathematical formulation and

ours is that we enforce the weights to be positive, and the basis functions of individual

joints to be shifted coherently to realize an instance of an action.

L1 minimization recently gained much attention with the emergence of compressive

sensing [Can06] and has been applied frequently to image denoising [CJLS09], sparse

representation of data [DGJL07], and for solving non-negative sparse-related problems

[DT05b]. Our approach involves solving an L1 norm minimization in many variables. Al-

though in principle, it is possible to solve an L1 minimization problem by formulating it

as a linear programming problem, such an approach is not efficient when many variables

are involved. But recently a number of fast algorithms have been developed for approxi-

mating the optimal solution. For example, Basis Pursuit [CDS01] solves the L1 minimiza-

tion by selecting the best bases. Orthogonal Matching Pursuit (OMP) [TG07] can reliably

recover a signal with K nonzero entries given a reasonable number of random linear mea-

surements of that signal. Alternatively, the Split Bregman Algorithm [GO09], approxi-

mates the optimal solution by iteratively solving efficiently a few simple sub-problems.

2.3.2.2 Temporal Segmentation of Human Motion

A few studies proposed methods for breaking MoCap sequences into small action seg-

ments. Jenkins and Mataric [JM02] used a heuristic algorithm to partition human motion.

Vecchio et al. [VMP03], Bissacco [Bis05] and Lu and Ferrier [LF04] assumed that human

motion is ruled by autoregressive (AR) processes or state-space models and partitioned the
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sequences based on different model parameters. A comparison of partitioning algorithms

in motor space can be found in [Bou08].

2.3.2.3 Applications

The action basis could find direct application in action embodiment [PHRA]. The segments

are useful for action retrieval [DGL09] and action classification [YJSB09], and can be used

for compressing human motion [LM] and [LFAJ10].

2.4 Action Recognition in Videos

There is a large body of work on recognizing actions in visual space ([BGS+05], [GKS02],

[KWC], [SvG], and [SLC04]). 2D features from image sequences, such as optical flow, sil-

houette, and similarities between frames, are computed and mapped directly to semantic

concepts such as walking [AT06], running [EBMM03] and dancing [RSH+05]. Lin et al.

[LJD09] use poses, colors, and flow as features, and align a test video to possible training

sequences.

There exist many algorithms for video abstraction (e.g., [PRAP08]). However, these

techniques do not aim at analyzing human poses. Action synopsis [ACCO05] is related to

our work but the joint locations need to be labeled using a semi-automatic software called

Icarus prior to the analysis.

Action recognition can be categorized into three areas: 1) pose based methods, 2) tra-

jectory based methods, and 3) interest points based methods. I will discuss related work

in the first two categories in this chapter.

2.4.1 Pose Based Action Analysis

Lin et al. [LJD09] use the pose information, color, and the flow as the features, and align a

test video to possible training sequences. Alternatively, 2D features from image sequences

are mapped to the joint space. Urtasun and Darell [UD08a] recently use sparse probabilis-

tic regression to inference the poses from the human silhouettes.

Dimension reduction techniques have been used to analyze human motion both in

motor space ([CGM+], [WFH08]) and in visual space ([Ple03], [EL04], [WWW08]). Studies

10



show closed curves for periodic patterns in reduced spaces, but action recognition in the

reduced signals has not been addressed.

2.4.2 Trajectory based Action Recognition

Action recognition has been intensively studied. We limit our discussion to the algorithms

based on the trajectories of detected interest points. Using the Space-Time Interest Point

[SLC04], Messing et al. [MPK] proposed an algorithm for computing the trajectories of

tracked keypoints. Raptis and Soatto [RS] further improved the descriptor, and Matikainen

et al. [MHS] outperformed other algorithms by considering pairwise relation in space.

None of these approaches uses pose estimators or body joint locations, both of which are

more representative than generic interest points.

2.5 Coordinated Action and its Causality Network

Causality is a well known concept used in reasoning, planning, and knowledge represen-

tation [MT97] in artificial intelligence [Pea00] and cognitive science [Ste08]. Given Mo-

Cap sequences, we can carry out scientific analysis in the related areas including cognitive

science and neuroscience. In these areas, Causality is widely known for its essential sup-

port of reasoning, planning, and knowledge representation [MT97] in artificial intelligence

[Pea00] and cognitive science [Ste08] because a change is possible only through an action

of the causality [Kan87].

A change is possible only through an action of a causation [Kan87]. Thus, causality has

many applications ranging from logic [GLL+04] to humanoid robotics [Sca02]. A quanti-

tative measurement of causality in correlated signals, such as coordinated human actions,

will be very helpful for understanding the underlying connections between signals, and

the messages passing through the connections.

Granger Causality was originally proposed by Granger to understand the influence be-

tween two correlated time series such as stock market indexes [Gra69]. Granger Causality

is based on the modeling of forecasting. In the Granger Causality Test, linear predictors

are used for evaluating the causality quantitatively.

This technique was recently adopted extensively in neuroscience to study brain activi-

ties [SE07]. Granger Causality is regarded as the flow of information from one part of the
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brain to another, which helps determine whether a coincidence is the result of one process

influencing another process [LDB+09].

Modeling of human motion using linear predictors is widely used in computer vision

and machine learning [VMP03, LF04]. Linear predictors are used for approximating hu-

man motions in short time intervals sufficiently. Autoregressive (AR) processes are fre-

quently used to model multi-dimensional trajectories of human body joints recorded by

Motion Capture (MoCap) equipments.

Coordinated human action can be conceived as a result of the Mirror Neurons mech-

anism [FCO05], which maps actions in visual space to motoric space and leads to appro-

priate responses. Therefore, a causality network might be particularly useful for under-

standing the mechanism that facilitates anticipating other’s actions and planning error

corrections in motor control.

Coordinated human action in music performance recently attracted much attention be-

cause action prediction and error correction have already been shown to be a fundamental

aspect of music performance [MRPK09]. Thus, Granger Causality may be ideal for devel-

oping models and techniques for measuring social interaction in a controlled framework

[CVV09].

2.5.1 Autoregressive Model

In signal processing and time series analysis, an autoregressive (AR) model is a random

process which is used to model and predict stochastic signals [Hay]. Related concepts

include Moving average (MA) model, Autoregressive moving average (ARMA) model,

and Linear predictive coding.

Calculation of the AR parameters requires computing the autocorrelation matrix of the

process. This is done using the Yule-Walker equations or spectral methods.

2.5.2 Regression Analysis

Regression is extensively used in time series analysis and dimension reduction.

In general, regression refers to the methods that find the relations between observa-

tions and responses [DS98]. The goal of linear regression is to determine the values of

the parameters for a linear function that best fit a set of observations. The regression is
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called Multivariate Analysis [Cle94] (MVA) when the observations are multidimensional,

and Multiple Regression (MR) when the responses are multidimensional.

In Multivariate Multiple Regression, the responses form a vector function. A common

practice is to consider each response as an independent variable. Multivariate analysis

then is applied to each dimension [DS98]. However, if the responses are correlated, latent

variable methods and non linear methods must be used. Partial Least Squares [Abd07] was

developed to find a linear regression model of the principal components in latent space and

it considers the covariance in the output dimensions as well as the input dimensions.
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Chapter 3

Learning Visual-Motoric Mappings of Actions

3.1 Chapter Summary

The visual descriptions of actions used in current vision algorithms are appearance-based,

and thus viewpoint dependent. Humans, however, can recognize actions under varying

viewpoints, because we use multimodal representations, combining information from the

visual and motor space. Here we develop a 3D representation of actions based on mo-

tor and visual information. We learn the function that maps 2D image positions to 3D

human body joint trajectories using synchronized videos in conjunction with Motion Cap-

ture (MoCap) data. Using this function, we then map video data from a single viewpoint

to 3D motion descriptions, on which we perform action recognition.

As image data we use the positions of the hand, which are localized using color and

motion in a Conditional Random Field (CRF) based segmentation, and the elbow loca-

tions, which are acquired using particle filtering. The function that maps 2D data to 3D

is approximated using the Partial Least Squares (PLS) method. For every joint, the PLS

model is trained to predict the 3D locations of the joint in future frames using its 2D mo-

tion history. We collected two dataset of 8 and 10 cooking actions repeatedly performed

8-10 times by 4 subjects, respectively. Synthetic and real experiments showed that our ap-

proach can robustly map 2D to 3D data, and the recognition accuracy on the 3D action

data in comparison to the 2D data is improved by 17% and outperforms a state-of-the-art

motion descriptor by 7.3% on our dataset.

This chapter is based on the paper submitted to the IEEE Conference on Computer

Vision and Pattern Recognition 2011 and the paper submitted to the IEEE Conference on

Robotics and Automation 2011. Please refer to [1, 2] in the Appendix A for details.
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3.2 Introduction

3.2.1 Motivation

Humans have an amazing capability in visually recognizing other humans’ actions [Joh73]

despite the large variability in visual appearance due to differences in subject’s style and

viewpoint. Evidence from neurophysiological studies on the so-called “mirror neurons”

points to mechanisms of multimodal representations of actions in humans. It is considered

that the “action mirroring” [RC04] mechanism enables an agent to understand the actions

of others in terms of his/her own motor representations, and thus this mechanism is at the

core for the very basic yet essential capability of primates to perform imitation. Therefore,

it necessitates a visual module that parses, maps, and reproduces human actions from

videos to their own 3D skeletal representation.

State of the art vision algorithms focus on visual processing only, and use appearance-

based approaches to represent actions. Clearly, these approaches have their limitations for

generalizing to different viewing conditions. On the other hand, some studies analyze 3D

data from motion capture suit, but do not consider vision. The challenging mapping prob-

lem from vision to action space has not been sufficiently addressed, and it is still unknown

what action and vision representations exactly are associated with each other in primates.

A few studies have discussed the association of visual data with action processes and pro-

posed learning approaches to link the two modalities [MSN+06, AGC10]. In this study we

propose a computational mechanism for mapping 2D movements in images to 3D body

joint positions. We express this mapping by a set of functions, which we approximate

using linear methods (Fig.3.1).

A module for building a 3D skeleton from video data brings many advantages to com-

puter vision. The skeleton is a natural abstraction of a human, which is viewpoint invariant

and subject invariant. Besides being useful for human action analysis and recognition, it

can be used in many applications in a number of related areas including computer graph-

ics, visualization, and human-robot interaction with cognitive robots (e.g., iCub [SMV07]).
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Figure 3.1: We aim to study the mapping fi(·) from body joint history Xi (i = 1..4) in
videos (red curve) to its 3D position (green: lower arm, blue: upper arm, purple: torso,
orange: head).

3.2.2 Motion based Visual-Motoric Maps

We attempt to obtain the 3D movement of humans as this leads to invariance. Thus we

are faced with the challenging problem of mapping 2D motion in images to 3D motion in

space. Certainly, it is theoretically impossible to establish a one-to-one mapping between

image points in a single view and their corresponding 3D points, because of the loss of the

third dimension due to the projective transformation. Therefore, we will use the motion

trajectories from video sequences to alleviate this problem.

We will map image points at joint locations, which we estimate using visual processes,

to 3D joint locations obtained from MoCap data. The parameters of the mapping are

computed from training data using regression. As the 3D representation is in a human-

centered coordinate system, it is intrinsically viewpoint invariant. However, the learned

2D to 3D mapping depends on the viewpoint.

In order to use the proposed approach for general video interpretation, we will need to

first determine the viewpoint from which the video is taken. Although we do not address

this issue in this chapter, establishing the viewpoint from uncalibrated video may be done

by detecting the orientation of human poses by the face and the shoulder alignment) with
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respect to the camera. In our experiments, we used the frontal parallel viewpoint.

3.2.3 Our Approach in a Nutshell

We learn a mapping of the endpoints of human body limbs in 2D videos to 3D skeletons.

The mapping is represented using a linear approximation. Learning of the parameters of

the mapping is formulated as a time series problem, specifically, a multivariate multiple

regression problem.

Our image representations are the 2D locations of the face, the elbows, and the hands.

We first use a state of the art pose estimator to identify the hand locations and initialize a

color model for the hand segmentation, which allows the approach to localize the hands in

multiple frames in the videos. We also run an efficient face detector. Using the estimated

locations of the face and the hands, a particle filter is then used to detect the elbows.

As 3D representation, we compute the 3D positions of the limbs, which are obtained

from the MoCap data. Then we use the statistical linear method called Partial Least Squares

(PLS) to compute the weights of the mapping.

3.2.3.1 The UMD-Sushi Dataset: A Pilot Dataset

As our experimental platform, we chose cooking actions. Our created a small UMD-Sushi

dataset for a pilot study. It consists of eight different actions in sushi making, including

“Cutting”, “Peeling”, “Pickup”, “Pressing” “Placing”, “Scooping”, “Turning”, and “Trans-

ferring”. The actions were captured using the MOVEN motion suit at 100 frames per sec-

ond (fps) and a high definition camera at 30 fps simultaneously.

The MoCap and video sequences were both resampled to 50 fps. Each action sequence

consists of at least 10 repetitions of the same action. The MoCap coordinate system is

the same as the conventional World Coordinate System (WCS), where the z coordinate

increases vertically upward, and the coordinate system is left-handed.

Fig. 3.2 shows the same actions performed by different subjects in the visual domain.

One can see there is reasonable intra-class variation for the same action type.
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Figure 3.2: Two cooking actions in our UMD-Sushi dataset, Scooping (a) and Turning (b),
performed by three different subjects in visual space.

3.2.3.2 Yet Another Cooking Dataset (YACD)

To estimate the mapping we need to detect accurately the body poses for a number of

actions, and we need to have the MoCap data. The datasets currently available publicly

(e.g., [lTFHB+, TBB]) do not satisfy these two requirements at the same time. Therefore,

we captured our own pilot recording, which will be made available in public domain.

We recorded ten actions during cooking performed by four subjects. The actions are

“Cleaning”, “Cutting”, “Flipping”, “Peeling”, “Picking”, “Pressing”, “Placing”, “Sprin-

kling”, “Stirring”, and “Turning”. The actions were captured using jointly the MOVEN

motion suit [MOV], which was worn under natural clothes (Fig. 3.3), at 100 frames per

second (fps) and a high definition camera at 30 fps. The videos feature half-body motions.
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Similar to the UMD-Sushi dataset, The MoCap and video sequences were both resam-

pled to 50 fps. Each action sequence consists of 8-10 repetitions of the same action. The Mo-

Cap coordinate system is the same as the right-handed World Coordinate System (WCS),

with the z coordinate increasing vertically upward.

S1 S2 S3 S4

Figure 3.3: Examples of our dataset. The actions were captured using jointly the MOVEN
motion suit [MOV], which was worn under natural clothes by the subjects S1 to S4, and a
HD camera.

3.2.3.3 The Difference between Two Dataset

A significant difference between these two datasets is the viewpoint. The UMD-Sushi

dataset primarily focus on the hand actions, and the colors of the motion capture suit can

be easily detected. Therefore, it serves as a pilot dataset.

The YACD is a more formal dataset. Advanced computer vision algorithms are re-

quired to compute the human poses and to further localize hand positions. It is a more

challenging dataset, thus, it is useful for demonstrating the effectiveness of the algorithm

in real applications.

3.2.4 Our Contributions

1. We proposed a representation for the visual-motoric mapping of actions as a tool for

recognition, using a linear approximation from image points to 3D poses.

2. Experiments on real and synthetic data demonstrate that our method improves ac-

tion recognition against state of the art 2D visual representations by 7.3%.

3. We recorded an upper body cooking dataset using both MoCap suit and a HD cam-

era, which complements current datasets.

The rest of the chapter is organized as follows. Sec. 3.3 presents the mapping algorithm.
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Sec. 3.4 demonstrates the usefulness of our algorithm on synthetic and real data, and Sec.

3.5 concludes the chapter.
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Figure 3.4: Our hand detector was initialized by a pose estimator (a). Then we used the
trained color model and the optical flow (b) to localize the hands in the subsequent frames
(c). Magnitude of the flow is color coded, and hand regions were coded in yellow.

3.3 The Visual-Motoric Mapping

To estimate the visual-motoric mapping, we extract body joint information in videos and

compute 3D data of humans in the MoCap data, respectively. A MoCap sequence is the

time series of three rotation angles each at a number of joints on the human body. In our

approach, we used linear regression to approximate the mapping.

3.3.1 Accurate Localization of the Body Parts

Our goal is to accurately extract the body poses in video. Ideally, one can run a pose esti-

mator on every frame. However, current pose estimators do not consider the smoothness

of the poses over time. This is a limitation due to the quantization in scale and orientation

used in estimating the pose. Furthermore, it is inefficient. To address these issues, we run

a pose estimator [STT10] only once every 30 frames in videos, and detect the body joints

in between. We describe the procedure in the following sections.
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3.3.1.1 Hand Detector

Our hand detector is based on color and motion. The color model is automatically trained

using the results of the pose estimator in [STT10] (Fig. 3.4a). For flow estimation, the

implementation in [BM10] was adopted (Fig. 3.4b). Then, a Conditional Random Fields

(CRF) model was adopted to localize the hand regions in the subsequent frames (Fig. 3.4c).

3.3.1.2 Brief Introduction to Conditional Random Fields (CRF)

We begin by providing the basic notations and background that are used to describe the

CRF model in this chapter. Consider a discrete random variable X defined over the pixel

lattice of the input image I = {1, · · · , N} with a neighborhood system E . Each pixel, i in

the lattice can then be viewed as a random variable xi ∈ X that takes a value from the

set of m possible labels L = {l1, · · · , lm}. E is a set of edges that connects the neighboring

pixels or xi within a clique, c. The set of all cliques is denoted as C. We denote xc as the

set of random variables that are conditionally dependent on each other within each c; and

x as a possible labeling (assignment) over I taken over the superset L = LN . L therefore

represents the space of all possible segmentations that can be applied on I . The goal of

the CRF is to choose the labeling that satisfies certain constraints with highest probability.

The probability of any labeling x is denoted by P (x) and the constraints are modeled

as potential functions φ. By the Hammersley-Clifford theorem, the posterior distribution

P (x|I) where I is the set of observable data computed from I , is a Gibbs distribution:

P (x|I) = 1

Z
exp

(
−
∑
c∈C

φ(xc)

)
(3.1)

where Z is the partitioning function, φ(xc) are the potentials defined over all xi within the

clique c, conditioned on data I. Taking the negative log of (3.1) yields the Gibbs energy

function:

E(x) = − logP (x|I)− logZ =
∑
c∈C

φ(xc) (3.2)

Inference of the CRF involves minimizing Eq. 3.2 which gives us the maximum a pos-

teriori (MAP) labeling, x∗:
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x∗ = argmin
x∈L

E(x) (3.3)

and is the desired segmentation of image I . For the purpose of segmentation, Eq. 3.2

consists of potentials defined over unary and pairwise cliques:

E(x) =
∑
i∈I

φi(xi) +
∑

(i,j)∈E

φij(xi,xj) (3.4)

The unary potentials, φi, encode the likelihood that a label, L is assigned to pixel i,

which is computed from a learned distribution for the constraints that we are seeking.

The pairwise potentials, φij , encode consistency within segments and favor similarly la-

beled pixels within a clique and penalize the energy function when dissimilar labels appear

within c.

3.3.1.3 Unary potential functions

We encode two unary potential functions into Eq. 3.4:

φi(xi) = θcolφcol(xi) + θflowφflow(xi) (3.5)

where θcol and θflow are the weighting parameters for the color, φcol, and optical flow, φflow,

respectively. φcol is obtained from a Gaussian Mixture (GMM) color model, learned from

training data over the CIELab color space. φflow is a unary prior that encodes the motion

of hand and tool. Using it for segmentation favors moving regions. φflow is obtained from

a bimodal GMM of optical flow learned from the training data. We use the implemen-

tation by Brox and Malik [BM10] to compute the flow. By combining the color and flow

potentials, we induce a strong prior on hand-like regions that are moving.

The weighting parameters θcol and θflow can be further adjusted to favor the final seg-

mentation either towards the color model (to get more hand-like regions) or the flow model

(to get regions with higher flow). To obtain a segmentation that favors the hand color

model, we set θcol > θflow such that the posterior likelihood computed from the hand

color GMM is greatly increased. This means that pixels with color closer to the hand color

will be labeled as hand, even if the flow in that region is small. Conversely, in order to

obtain a segmentation that favors regions of high flow, we set θflow > θcol to favor the flow
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model.

3.3.1.4 Pairwise potential functions

In order to enforce consistent labels within segments, the pairwise potentials are defined

as:

φij(xi, xj) =


0 if xi = xj

f(xi, xj) otherwise
(3.6)

where f(xi, xj) is an edge based contrast function defined over the image gradient, color

and flow difference:

f(xi, xj) = π exp(−β ‖xi − xj‖2) (3.7)

where β = (2 ∗
〈
(xi − xj)2

〉
)−1 and 〈·〉 represents taking the mean. π is a constant pa-

rameter that is different for the gradient, color and flow features. Eq. 3.7 favors color and

flow constancy within regions of similar color or flow by penalizing less the potentials

when similar labels are assigned within a clique. This formulation had been widely used

in several state of the art color segmentation algorithms ([BJ01, RKB04]) with impressive

results.

First we have to obtain the potentials inE(x). Then given a test image, we apply Eq. 3.3

to compute the hand and flow segments, which are used to localize the tools in the hands.

The following sections elaborate these processes in detail.

3.3.1.5 Segmenting Hands and Flow

The system must initially be trained to obtain the GMM color and flow models. This is

done by either randomly sampling 5 frames from the training sequence (each of length

100 frames) where binary labels of the color classes (hand and non-hand regions) and flow

classes (large flow and small flow) are manually assigned (Fig. 3.5), or use a pose estimator

to initialize the hand regions.

This training process is equivalent to the service robot being shown typical examples

of hands and flow training data during a short period of teaching the robot. Since the
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Figure 3.5: Training the GMM color and flow model. “+ves” and “-ves” denote the man-
ually labeled positive and negative regions for the color (top) and flow (bottom) images.
Figure courtesy of Ching Lik Teo.
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Figure 3.6: Segmenting hands and flow from a test image sequence. Labels with numbers
correspond to the description. (1) Compute the optical flow. (2) Compute the unary and
pairwise potentials. (3) Perform inference to get the best labels to obtain the hand and flow
segmentation in (4). Figure courtesy of Ching Lik Teo.

class labels are typically invariant across many testing scenes (e.g. hand color and hand

actions are unlikely to change drastically), it is expected that training will only be necessary

during the initial stages of the service robot’s life or when large changes to its environment

or actions occur (e.g. from typical hand movements to large body movements).

During the testing phase, a sequence of test image frames are presented to the algo-

rithm which computes Sh and Sf in the following steps as illustrated in Fig. 3.6:

1. Compute the optical flow F using the implementation of [BM10] between the previ-

ous and current image frames.

2. Compute the unary and pairwise potentials from Eqs. 3.5 and 3.6.

3. Obtain two energy functions E(x) for the hands and flow by adjusting the unary

potentials weights θcol and θflow in Eq. 3.4. This is done by setting θcol > θflow to

favor the hand regions in the first case and θflow > θcol to favor the high flow regions

in the second case. Since we still want consistent labels within the segments, the

pairwise potentials φij are the same in both cases.

4. Perform α-expansion optimization on both energy functions using Eq. 3.3 to obtain

Sh and Sf .
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3.3.1.6 Elbow Tracker

We used particle filtering to estimate the elbow positions, based on the hand and face

detection results.

The Viola-Jones face detector was first used to estimate the faces. We used the offset

between the face and the shoulder given by the pose estimator in Sec. 3.3.1.1 to compute

the shoulder positions, and then together with hand positions we used a particle filter on

each limb to estimate the positions of the elbows over time.

In particle filtering, we randomly generate 300 hypothesis for the pose positions, and

keep k = 10 in each stage. For each guess, we measure the similarity by the difference in

color distribution between the current and the previous regions of the upper arm and the

lower arm, respectively.

Fig. 3.7 shows the results for our 2D pose localization on four different actions per-

formed by four subjects. The torso was detected using Calvin body detector1. Poses in

consecutive frames were correctly estimated. Please refer to Fig. 3.1 and 3.4 for the coding

of the colors.

3.3.2 Learning the Mapping between 2D video and 3D MoCap Trajectories

Without loss of generality, we assume that the videos and the MoCap data were synchro-

nized. Denote the locations of the two endpoints of a body part in 2D over time at n time

instances as:

s = [p1, p2, ..., pt, ..., pn] (3.8)

and the corresponding points trajectories in 3D as:

S = [P1, P2, ..., Pt, ..., Pn] (3.9)

where pi and Pi are column vectors. Due to the projective transformation, a one-to-one

mapping between pi and Pi is theoretically impossible. Therefore, a practically feasible

approach is to predict the next position Pt+1, given the history of pt, pt−1 ... , pt−m+1 ,

where m is the window size. This approach is segmentation-free, tractable, and can be

1http://www.vision.ee.ethz.ch/~calvin/calvin_upperbody_detector/
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Figure 3.7: The results of the continuous pose localization. Four actions performed by four
subjects were shown. Please refer to Fig. 3.1 and 3.4 for the coding of the colors.

implemented by many existing learning algorithms.

By concatenating the coordinates of the histories of pi’s and Pi’s respectively, we create

two matrices X and Y , where X is n × 4m and Y is n × 6. Therefore, the problem can be

formulated as follows:

Y = f(X) (3.10)

where the unknown function f(·) is the mapping between the data points in the train-

ing set. This mapping is a multi-input-multi-output system, and can be approximated by

linear equations in practice. In the chapter, we used Partial Least Squares (PLS) regression

[Abd07] to estimate the function f(·).
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3.3.3 Partial Least Squares in a Nutshell

Partial Least Squares regression is one of the statistical methods that handle Multivariate

Multiple Linear Regression. Instead of finding linear coefficients between the responses

and independent observations directly, it first projects the input variables and the obser-

vations to a reduced space using Principal Component Analysis (PCA), and then uses

linear regression models to fit the parameters in the reduced space. Therefore, it attempts

to use the major components of the observations to explain the major components of the

responses. This method is particularly suited here when the matrix of observations is mul-

ticollinear. Fig. 3.8 illustrates this idea.

Figure 3.8: Illustrating the Partial Least Squares algorithm. Instead of modeling the lin-
ear relationship between the responses (output) and the observations (input) directly, it
attempts to model the linear relationship between their principal components.

We briefly describe the procedure of PLS here. Given the number of the principal com-

ponents p, PLS decomposes the zero-mean n × 4m matrix X and zero-mean n × 6 matrix

Y in Eq. 3.10 into:
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X = TP T + E (3.11)

Y = UqT + e (3.12)

where T and U are n× p matrices, P is a 2m× p matrix, and the q is a 6× p matrix. The

n× 2m matrix E and the n× 6 matrix e are the residuals.

The PLS method then uses the nonlinear iterative partial least squares (NIPALS) algo-

rithm to construct a set of weight vectors W = {w1, w2, ..., wp} such that

[cov(ti, ui)]
2 = max

|w|=1
[cov(Xwi, Y )]2 (3.13)

where ti is the ith column of matrix T , ui is the ith column of matrix U , and cov(·) is the

covariance. Please refer to [Abd07] and [SKHD09a] for details.

3.4 Experiments

The following four experiments demonstrate the usefulness of our approach.

First, we present a toy example that gives the intuition of the approach. Second, we

show that the approach can effectively reconstruct the 3D poses using synthetic data, and

it is robust to viewpoint changes. Third, we use real data from the UMD-Sushi and the

YACD dataset to train and test the mapping module. We showed that PLS is superior to

multiple linear regression on each response because it considers the covariance in the input

and the output together. Finally, we demonstrate that the 3D reconstruction leads to better

action recognition rates.

Learning the mapping amounts to computing the weights in Eq. 3.13 from the training

data. We set the window size to 5 in all the experiments, and set the number of the principal

components in the PLS method to 3.

3.4.1 Toy Example

We first present a toy example to demonstrate the intuition behind the proposed approach.

The goal of this example is to recover the 3D coordinates from the 2D trajectories on a pro-

jection plane. In this example, four non-parametric nonlinear 3D curves were generated.
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Then they were projected to a 2D plane using orthographic projection.

To make this example interesting, we used “CVPR”, the four capital letters of this con-

ference to generate the (x, y) coordinates of Ci (i = 1, ..., 4) (shown as blue curves in the

first row in Fig. 3.9), each of which is 1 pixel wide. The z coordinates of Ci were generated

using the following parametric formula (blue curves in the second row in Fig. 3.9):

z = 50× sin(log
√
x+ log

√
y) (3.14)

Figure 3.9: A toy example. We generated the (x, y) coordinates based on the letters “CVPR”
(top, blue curves), and used Eq. 3.14 to generate the z coordinates (bottom, blue curves).
The reconstructions in red overlap significantly with the blue curves.

We projected Ci (i = 1, ..., 4) to a 2D plane using orthographic projection. Here, we

chose the viewpoint = (45◦, 45◦, 45◦) as Azimuth, Elevation, and Roll of the WCS. The

3D trajectories were rotated and projected to the xy plane in the new space as the 2D

projections.

To learn the mapping, we randomly selected 33% of the data points for training. Then,

all the projection points were used to estimate the 3D positions for testing.

The red curves in Fig. 3.9 show the reconstruction in the original xy plane and the

corresponding z coordinate, respectively. Referring to the figure, one can see that the blue

curves and the red curves overlap significantly demonstrating that the reconstructions ap-
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proximate the original 3D curves very well. The average reconstruction error is 0.84 units

per data point. This example shows that the proposed approach is able to reconstruct

different types of curves because the Ci(x, y, z) (i = 1, ..., 4) are nonlinear.

3.4.2 Synthetic Example

The goal of the synthetic example is to show that the learned mapping is effective. Each

MoCap sequence contains a few instances of the same action, and we projected the 3D

positions of the body joints in the MoCap sequences to arbitrary 2D planes, generating

synthetic 2D curves.

In this experiment, all the actions of subjects S1 and S2 were used for training and all

the actions of other subjects for testing. To simplify the discussion, orthographic projection

was used in this example, and the “Left Wrist” (LW) and the “Right Wrist” (RW) were used

for demonstration.

Fig. 3.10 shows four examples of the original 3D trajectory and its reconstruction for

the RW in the actions “Peeling” and “Pouring”, when the viewpoint = (45◦, 45◦, 45◦). The

start and the end poses of the right arm in these actions are also shown on top.

Comparing the same action performed by different subjects (blue curves in each col-

umn in Fig. 3.10), one can see the intra-class variance in 3D. Our mapping algorithm

robustly handles the variance by modeling the process, and our reconstruction in the WCS

(red curves) approximates the original trajectories (blue curves) reasonably well.

To statistically analyze the robustness of the module to change of camera viewpoint,

we iterated all possible Azimuth and Elevation angles, while keeping the Roll zero. Then,

for each viewpoint the average error was obtained by averaging the mean accumulated

errors of each joint over all time frames.

Fig. 3.11a illustrates the average error in a color diagram. It shows that the expected

error of each joint in each frame ranges from 2cm to 2.6cm for different viewpoints. Par-

ticularly, the error map has some local minima, which may indicate that the actions in our

YACD dataset are best approximated and understood in 3D from these viewpoints. For

instance, the viewpoint near 45◦ in elevation and 0◦ in azimuth has the best fitting results,

which corresponds to the normal watching angle in commercial cooking shows.

Furthermore, we would like to demonstrate that our approach is robust when the test

viewpoint is different from the training viewpoint. Given a viewpoint for training, we
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changed the test viewpoint to a slightly different angle, and use the trained model to pre-

dict the 3D data.

Fig. 3.11b shows the error for change in viewpoint between −10◦ to 10◦. The error

is the average from a number of viewpoints. The result suggests that the reconstruction

is accurate when there is small change of viewpoint, and degrades reasonably when the

change becomes large.

This synthetic experiment demonstrates that the PLS can recover the 3D position from

arbitrary projections accurately, and its performance is robust to reasonable changes in

viewpoint between the training and testing samples.

3.4.3 3D Reconstruction on Real Data: A Pilot Study

We carried out a pilot study in this section on the UMD-Sushi dataset. In this pilot study,

the body joints can be easily tracked. Therefore, the 3D reconstruction can be analyzed

more intuitively.

We first detect the trajectories of four body joints, namely “Left Wrist”, “Left Elbow”,

“Right Wrist”, and “Right Elbow”, in videos, and use the results to demonstrate the use-

fulness of the mapping from 2D to 3D.

Fig. 3.12 shows the trajectories (yellow curves) of the right wrist for six different actions

in our UMD-Sushi dataset. Three instances performed by the same subject were visualized.

One can see in Fig. 3.12 that the 2D positions of the joints in the different actions may

be similar, but their trajectories are different. This suggests that using motion history is

sufficient to distinguish the actions and estimate the 3D positions.

In this example, all actions of four body joints from two subjects were used for training

and the remaining subject’s data for testing.

First, we low-pass filtered the trajectories in 2D to reduce noise, and selected the “ac-

tive” trajectories with the range of trajectories larger than a threshold. Then, we applied

the proposed algorithm to the active trajectories in 2D and in 3D for each body joint.

Fig. 3.13 illustrates the result. The blue curves denote the original 3D curves in the WCS

and the red curves denote the reconstructed results using the 2D trajectories on unknown

(but fixed) camera coordinate system (Bottom, Fig. 3.13). Two instances in the visual

domain and in the motoric domain are shown (Top, Fig. 3.13). The blue skeleton denotes

the original MoCap data, and the red skeleton denotes the reconstructed 3D positions.
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Subject S1 S2 S3 S4

PLS (cm/f) 8.28 9.48 11.62 11.69
MR (cm/f) 8.61 10.68 12.51 12.96

Table 3.1: Performance comparison between the Partial Least Square (PLS) and the Multi-
variate Regression (MR). The performance was measured by the averaged standard devi-
ation for each subject.

3.4.4 3D Reconstruction on the YACD Dataset

Real data from the camera and the MoCap suit were used in this experiment. We first

localized the upper body parts using the method described in Sec. 3.3.1, and then mapped

the 2D trajectories from to 3D.

In the following examples, we performed manually a temporal segmentation on the

YACD, and normalized the data in each action segment to 50 frames.

3.4.4.1 Computing Body Parts in Videos

Our efficient pose localization can detect poses effectively in videos. Fig. 3.14 shows 16

examples of our pose estimation on the YACD dataset. The first frame of each action

instance and the corresponding trajectory of the RW are shown. Referring to figure, one

can see that the viewpoint of subject S4 is slight different from those of other subjects,

because we intentionally changed the angle during recording, to evaluate the robustness

of the approach.

Fig. 3.14 demonstrates that the 2D visual processing is robust across subjects. The

smooth trajectories of body joints further enable the processing using time series tech-

niques.

3.4.4.2 Learning the Mapping from Videos to MoCap

All actions of subjects S1 and S2 were used for training and all four subjects’ data were

used for testing.

First, we low-pass filtered the trajectories in 2D to reduce noise. Then, we applied the

proposed algorithm to the smoothed trajectories in 2D and in 3D for each body joint.

Table 3.1 shows the performance measured by the standard deviation of error between

the reconstruction and the ground truth (MoCap data). Compared to Fig. 3.11, the ex-

periments on real data have higher errors than the synthetic data on average. The ap-
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proximations on novel subject data (S3 and S4 in Table 3.1) also have reasonably larger

error (10%-15%) compared to the training set. In addition, S4 has a marginally larger error

compared to S3 because of the slight viewpoint change.

We further compared the PLS method to Multivariate Regression (MR). As can be seen

from the table the average error of PLS is smaller. This is because PLS considers a linear

relationship between the covariances instead of the original data. Therefore, it models the

process better.

Because of the loss of the third dimension due to the projective transformation, and

errors in the 2D pose localization, the reconstruction cannot be perfect. We show how the

mapping facilitates action recognition next.

3.4.5 3D Action Recognition

We demonstrate that the 3D mapping facilitates action recognition in the following exper-

iments. Two different schemes of partitioning the data were used for training and testing,

and the performance was compared against a 2D action recognition algorithm based on

trajectories.

In the first scheme, we partition the YACD dataset by subjects. All ten actions per-

formed by a randomly chosen subject were used for training, and the rest for testing. In

the second scheme, four randomly chosen actions performed by all subjects were used for

training and the remaining six actions from all subjects were used for testing.

3.4.5.1 Partition the YACD by Subjects

In this scheme, one subject, Si (i = 1..4i), was randomly chosen for training the mapping,

and all the actions of the remaining three subjects were used in a test set TSi.

As a baseline, the algorithm in [MPK] was used. A 5-fold cross validation on each TSi

was performed. Fig. 3.15a shows the averaged confusion matrix.

We then chose two classifiers, Naive Bayes (NB) and BayesNet (BN), and performed a

5-fold cross validation on each TSi using the original 2D trajectories and the reconstructed

3D trajectories, respectively. The averaged confusion matrices are shown in Fig. 3.16.

The recognition rate of NB on the 2D trajectories is smaller than the baseline because

we only considered the 2D joints as opposed to a large number of tracked keypoints. How-

ever, our 3D representation outperformed the base line descriptor 7.3% because we directly
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modeled underlying motion process. One can also see that the reconstructed 3D data are

preferable because they facilitated both classifiers and increased the average accuracy from

60% to 77% (NB), and 74% to 82% (BN), respectively.

This experiment demonstrates that the mapping recovers the 3D locations of seen ac-

tions performed by novel subjects, and further improves the action recognition accuracy.

3.4.5.2 Partition the YACD by Actions

The evaluation procedure was similar to the one in Sec. 3.4.5.1 except that we partitioned

the actions instead of the subjects. Four actions performed by all subjects were randomly

chosen for training the mapping module, and the other six actions were used for testing.

To evaluate the performance, we ran the above procedure 20 times, and averaged the

accuracy for each action. Fig. 3.15b plots the results of the two classifiers on 2D and

3D inputs, respectively. Clearly, the info in the recovered 3rd dimension improved the

performance of both classifiers. For instance, the increase was significant for the actions

“Cutting” and “Flipping” where the 2D information may not be sufficient. On average, we

obtained 4.8% (NB) and 11% (NB) improvement using the 3D reconstruction, respectively.

This experiment suggested that we can use the 3D information of the seen actions to

predict novel actions.

3.5 Chapter Conclusion

We have presented a visual motoric mapping for action representation, which we obtained

using a statistical learning method called Partial Least Squares. The method involves de-

tecting the body joints, and then mapping the 2D joint trajectories in visual space to 3D

motion in motoric space. Two dataset consisting of eighteen cooking actions performed by

four subjects in a kitchen environment were collected. Experiments on synthetic and real

data showed that our method robustly represents human actions.
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Figure 3.10: Synthetic 3D pose reconstruction of “Right Wrist” (RW) in “Peeling” and
“Pouring” on the YACD dataset. Blue curves: the original 3D curves in WCS. Red curves:
the reconstructed results with the 3D rotation angle (45◦, 45◦, 45◦). The start pose (blue)
and the end pose (pink) of the right arm in an instance are also shown on top. The dashed
arrow denotes the motion.
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(a) (b)

Figure 3.11: Robustness test on synthetic data. The 3D trajectories of two joints {RW, LW}
were projected to 2D planes using orthographic projection. (a) The reconstruction accuracy
for viewpoints (Azimuth and Elevation). (b) For each pair of Azimuth and Elevation, we
changed the testing angle between −10◦ to 10◦. The error is the average from the number
of viewpoints.
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(a) Peeling (b) Pickup

(c) Pressing (d) Scooping

(e) Transferring (f) Turning

Figure 3.12: Computing 2D joint trajectories from videos. We showed the trajectories of
three instances per action for six different actions.
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Figure 3.13: Illustrating the proposed approach using real data. Bottom: the blue curves
denote the original 3D curves in the WCS and the red curves denote the reconstructed
results using the 2D trajectories in unknown (but fixed) camera coordinate system. Top:
two instances in the visual domain and the motoric domain are shown. Blue skeleton: the
original MoCap data; Red skeleton: the reconstructed 3D positions.
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Figure 3.14: Results for pose localization. For each instance the first frame and the 2D joint
trajectory of the “Right Wrist” (RW) in the videos are shown. The yellow arrows denote
the motion direction. The viewpoint of subject S4 is slightly different from others.
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(a) (b)

Figure 3.15: (a) Confusion matrix of the baseline [MPK] (Naive Bayes) on our dataset. (b)
Accuracy of Naive Bayes (NB) and BayesNet (BN) applied to the 2D trajectories and the
3D reconstruction.
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Figure 3.16: Confusion matrices of Naive Bayes (NB) and BayesNet (BN) applied to the 2D
trajectories and the 3D reconstruction.
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Chapter 4

Learning Shift-Invariant Sparse Representation of Actions

4.1 Chapter Summary

A central problem in the analysis of motion capture (MoCap) data is how to decompose

motion sequences into primitives. Ideally, a description in terms of primitives should fa-

cilitate the recognition, synthesis, and characterization of actions. We propose an unsu-

pervised learning algorithm for automatically decomposing joint movements in human

motion capture (MoCap) sequences into shift-invariant basis functions. Our formulation

models the time series data of joint movements in actions as a sparse linear combination of

short basis functions (snippets), which are executed (or “activated”) at different positions

in time. Given a set of MoCap sequences of different actions, our algorithm finds the de-

composition of MoCap sequences in terms of basis functions and their activations in time.

Using the tools of L1 minimization, the procedure alternately solves two large convex min-

imizations: Given the basis functions, a variant of Orthogonal Matching Pursuit solves for

the activations, and given the activations, the Split Bregman Algorithm solves for the basis

functions. Experiments demonstrate the power of the decomposition in a number of ap-

plications, including action recognition, retrieval, MoCap data compression, and as a tool

for classification in the diagnosis of Parkinson (a motion disorder disease).

This chapter is based on the paper appeared in the IEEE Conference on Computer

Vision and Pattern Recognition 2010. Please refer to [7] in Appendix A for details.
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4.2 Introduction

Interpreting human behavior is a newly emerging area that has attracted increasing at-

tention in computer vision. One of the intellectual challenges in modeling human motion

is to come up with formalisms for describing and recognizing human actions in motion

capture (MoCap) sequences. Fundamentally, the primitives should assist the recognition,

synthesis, and characterization of human actions. From this perspective, the formalism of

the primitives is essential to action representation.

Human actions by their nature are sparse both in action space domain and time do-

main. They are sparse in action space, because different actions share similar movements

on some joints, and also different joints share similar movements. They are sparse in the

time domain, because we do not want much overlap of the individual movements on a sin-

gle joint. These observations make the concept of shift-invariant sparse representation as

the primitives of human actions very attractive, where shift invariant means that the out-

put does not depend explicitly on time, e.g., the same action can have multiple realizations

at different times.

Let us get into more detail. We are given many MoCap sequences. The data from a

motion capture suit are time series of three rotation angles each at a number of joints on the

human body. Each of these sequences consists of a number of instances of different actions

(where an instance of an action could be a step of a “running” sequence, or a single “kick”,

or “jump”). Our goal is to obtain from these action sequences a set of basis functions that

could be used for approximating the entire set of the actions.

Our basis functions are chosen to be smooth functions and about the length of an in-

stance of an action (Fig. 4.1). This enables us to achieve a useful underlying representation

of different actions. The joint movements in an instance of an action are approximated

by a sparse linear combination of basis functions (“Action Unit” in Fig. 4.1). To achieve

a meaningful behavioral interpretation the weights are defined to be positive. Multiple

instances of the same joint movement are realized by executing (or “activating”) the linear

combination of basis functions at different instances of time, but with different strength

(“Activation” in Fig. 4.1). That is, all basis functions involved in the representation of a

single joint are activated simultaneously. But different joints are activated separately.

Our action representation then is the weights of the basis functions along with their
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Figure 4.1: Modeling human motion in MoCap sequences using shift-invariant sparse rep-
resentation. The short basis functions are sparsely selected and linearly combined to create
action units for individual joints. The units may be shifted to different locations where
multiple instances of the movement are realized. The time shift is modeled by the convo-
lution (denoted by ?).

activations. Once these shift-invariant basis functions are learned, we can approximate any

novel action sequence using a weighted combination of a number of these basis functions.

In our learning procedure, we solve for both the basis functions of the actions and the

times when these functions are “activated”. Solving them together would amount to a

complicated non-convex optimization with a large number of variables. However, the op-

timization problem is convex in either the basis functions or the activations. Our method

thus solves alternately for the two set of parameters. Recently developed L1 minimization

techniques allow us to solve these two problems effectively. Given a set of basis functions,

a variant of Orthogonal Matching Pursuit [TG07] is used to obtain the activations by solv-

ing a non-negative L1 minimization problem with a large number of variables. Given the

activations, the Split Bregman Algorithm [GO09] is used to solve an L1 regularized liner

least square problem.

The characteristics of our decomposition approach are:

1. Our unsupervised algorithm learns a high-level sparse representation (the primi-
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tives) of action which allows recognizing actions in MoCap sequences effectively.

2. The shift-invariant modeling naturally handles the MoCap sequence composed of

multiple instances of different actions.

3. The sparse activations explicitly express the coordination among different joints.

The rest of the chapter is organized as follows. Sec. 4.3 presents the algorithm for learn-

ing the basis functions. Sec. 4.4 summarizes an algorithm used for normalizing the length

of MoCap sequences. Sec. 4.5 demonstrates the usefulness of our action representation on

four applications, and Sec. 4.6 concludes the chapter.

4.3 Shift-Invariant Sparse Modeling of Actions

A MoCap sequence consists of the time series of three rotation angles each at a number

of joints on the human body. In our approach, we approximate each time series by sparse

linear combinations of shift-invariant sparse features.

For simplicity, we start our journey from the following example. A body joint rotation s

(1d time series) consists of the movements of multiple instances of the same action. Given

N short basis functions bi (i = 1, 2, ...N ) which have the length about an instance of an

action, we would like to approximate s as follows:

s ≈
∑
i

a ? wibi, (4.1)

where a is the sparse activation for s, and ? is the convolution operator (Fig. 4.1). The

variables a and wi are non-negative. Eq. 4.1 is equivalent to

s ≈
∑
i

wia ? bi

=
∑

ai ? bi, (4.2)

where ai = wia. This means we can model the shift of each individual basis function

separately, with the additional constraint that all the activations ai (i = 1, 2, ...N ) must

have non-zero values at the same time when used for approximating s.

In the following formulation, we first discuss a solution for Eq. 4.2 in Sec. 4.3.1 and

4.3.2. The additional constraint is enforced when we solve the activations in Sec 4.3.3.1.
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4.3.1 Problem Formulation

Given a set of M 1d signals sj , j = 1, 2, ...M , each of which is of length l and represents a

time series of a joint movement, we want to approximate all sj as the convolution between

the activations and the basis functions, i.e.,

sj =
∑
i

aji ? bi + nj , (4.3)

where aji (j = 1, 2, ...M , i = 1, 2, ...N ) are the sparse non-negative activations for the ith

basis function in the jth signal, and nj is the noise.

We enforce that the activations are sparse, and the basis functions are sparse in the

Fourier domain. Therefore, the modeling poses the following L1 regularized optimization

problem:

min
(aji ,bj)

∑
j

|sj −
∑
i

aji ? bj |2 + µ1
∑
i,j

|aji |1 + µ2
∑
i

|F b̂i|1, (4.4)

where | · |p is the Lp norm of the vector, F is the Fourier transform matrix, and b̂i are the

zero-padded bi which are of length l.

Solving the activations and the basis functions together would amount to a non-convex

optimization with a large number of variables. In Sec. 4.3.2, we re-formulate the problem

in the frequency domain.

4.3.2 Formulating the Problem in Frequency Domain

We show that the optimization problem is convex in either the basis functions or the ac-

tivations. Therefore, a coordinate descent algorithm is used to alternately solve two large

convex L1 regularized problems.

The convolution in time domain is equivalent to the dot product in frequency domain.

Therefore, Eq. 4.3 is equivalent to:

Sj ≈
∑
i

Aji · B̂i (4.5)

where · is the pairwise multiplication operation, Aji = Faji , and B̂i = F b̂i, respectively.
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Denoting X as the square matrix whose diagonal is X , we have:

Aji · B̂i = Aji B̂i = B̂iA
j
i (4.6)

Therefore, Eq. 4.5 is equivalent to

Sj ≈
[
B̂1 . . . B̂N

]
Aj1
...

AjN



=
[
B̂1 . . . B̂N

]
F

. . .

F



aj1
...

ajN


= Baj , (4.7)

where aj = [aj1; ...; a
j
N ]

T , and

B =
[
B̂1 . . . B̂N

]
F

. . .

F

 .

Similarly, Eq. 4.5 can be rewritten as:

Sj ≈
[
Aj1 . . . AjN

]
B̂1

...

B̂N



=
[
Aj1 . . . AjN

]
F

. . .

F



b̂1
...

b̂N



=
[
Aj1 . . . AjN

]
Fl

. . .

Fl



b1
...

bN


= AjFb, (4.8)
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where Aj = [Aj1, ..., A
j
N ], b = [b1; ...; bN ]

T , the matrix Fl as the first l columns of the F ,

and

F =


Fl

. . .

Fl

 .
Let S, A, a and b denote the concatenations of all possible Sj , Aj , aj and bi in the

column form. Eq. 4.4 is convex in either a or b, so we solve it alternately as two convex

optimization problems.

Given the basis functions b in time domain, from Eq. 4.4 we obtain:

min
a
|S − Ba|2 + µ1|a|1 (4.9)

Eq. 4.9 is the sum of M independent subproblems, all of which are convex. We can ap-

proximate them separately.

Given the activations a, from Eq. 4.4 we obtain:

min
b
|S −AFb|2 + µ2|Fb|1 (4.10)

Both Eq. 4.9 and 4.10 are convex. Therefore, the objective function Eq. 4.4 is always

non-increasing using the updates. Eq. 4.9 is solved using the Orthogonal Matching Pur-

suit, and Eq. 4.10 is solved using the Split Bregman iterative algorithm. To avoid trivial

results, we normalize the basis function in amplitude in each iteration.

4.3.3 Solving the Problem using L1 Minimization

4.3.3.1 OMP for Solving the Activations

We use a variant of the Orthogonal Matching Pursuit (OMP) to solve Eq. 4.9. The variant

amounts to implementing Orthogonal Matching Pursuit in a batch mode.

Orthogonal Matching Pursuit is a greedy algorithm. It progressively picks the new

basis which minimizes the residual. The major advantages of this algorithm are its ease of

implementation and its speed. This approach can easily be extended to related problems,

such as finding non-negative bases [DT05b].

In our modeling, a single body joint movement is a sparse combination of the basis

51



functions, with the weights non-negative and the additional constraint that the activations

must be coherent. This is solved as follows: Given the movement (1d time series) of a

joint, we progressively pick the new basis at the locations found in the previous steps,

and minimize the residual of all the time series. We enforce the solution to be positive

by checking which basis to choose and checking the weights found in the least-squares

minimization.

During the optimization, a sparse subset of basis functions is automatically selected. In

our implementation, we allow a maximum of 4 basis functions at a single activation at one

joint, with the total number of basis functions being 15. This makes it easier to compare

the weights of the same joint in action retrieval and classification.

4.3.3.2 Split Bregman Algorithm for Solving the Bases

As defined in the literature, the Split Bregman Iterative Algorithm is applied to the follow-

ing problem

min
u
J(u) +H(u), (4.11)

with u ∈ Rn, J(u) is the L1 norm of a function of u and is continuous but not differentiable

function, and H(u) is the L2 norm of a function of u and is continuous differentiable. In

our case, J(u) = |Fb|1 and H(u) is the L2 norm of the approximation error.

By introducing |d− φu|2 and E(u, d) = |d|1 +H(u), we rewrite Eq. 4.11 as

min
(u,d)

E(u, d) + λ/2|d− φu|2. (4.12)

The solution is given by iteratively updating the following three equations:

uk+1 ← argmin
u
H(u) + λ/2|dk − φu− pk|2 (4.13)

dk+1 ← argmin
d
|d|1 + λ/2|d− φuk+1 − pk|2 (4.14)

pk+1 ← pk + φuk+1 − dk+1

This “splits” Eq. 4.12 into the subproblems. Eq. 4.13 is a 2nd order continuous differ-

ential function that can be solved efficiently. Eq. 4.14 is solved by shrinkage operation1.

1shinkage(x, y) = sgn(x)max(|x| − y, 0).
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By the alternately update in the Split Bregman Algorithm, we obtain the optimal sparse

solution for Eq. 4.10.

4.4 Preprocessing: Normalization for Handing Actions with Various Speeds

It is important to handle action sequences of different speeds. For this we use our action

segmentation algorithm2. This algorithm breaks an action sequence into action segments.

We then compute the average length of the action segments and use it to normalize the

sequence.

Our goal is to find the discontinuities in the 3rd order derivative of the time series.

Motivation for this approach comes from the work of d’Avella et al. [ddSB03], who found

that the change of the muscle force indicates the time of action change, and the change of

muscle force is proportional to the 3rd order derivative of the time series.

Our algorithm partitions a MoCap sequences by minimizing the sum of the pairwise

distances of the envelope extrema of the different joints. In this algorithm, we use the

quaternion representation for rotation.

The quaternion series of a certain joint is a 4D vector

X(t) = [x1(t), x2(t), x3(t), x4(t)]
T (4.15)

The jerk of X(t) is computed as

J(t) = |d
3(X(t))

dt3
|2 (4.16)

To minimize the error in computing the derivative, we smooth the data using a low pass

filter.

To measure the jerk better, we compute the jerk envelope

Env(t) = |Hilbert(J(t))|2 (4.17)

for every joint, where Hilbert(·) is the Hilbert transform. This is a standard approach for

computing the signal envelope [Bra99]. Then we process Hilbert(·) using as a low pass

2Please refer to Chap. 6 for detailed analysis of the temporal segmentation of human actions.
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Figure 4.2: Estimating the average action speed by measuring the action discontinuities. A
sequence “walking to running” from the University of Bonn dataset [MRC+07] is shown.
The poses corresponding to the discontinuities are displayed as mannequin. The trajecto-
ries of the head, the left elbow, and the right ankle are drawn in red.

filter a Butterworth filter, and compute the envelope’s extrema of the filtered Env(t) for

every joint.

Fig. 4.2 gives an example of the speed-varying action “walking to running” from the

University of Bonn dataset [MRC+07]. Here, we show the jerk envelopes of the joints

“Hip”, “Knee”, and “Ankle” of both legs, respectively. The envelopes are color coded and

normalized in magnitude. The breaking poses (mannequins) can be selected by finding

the optimal “alignment” of the envelope extrema of the different joints (the purple dash

lines in Fig. 4.2).

The alignment can be solved as an optimization problem using the envelope extrema

of all joints. It is applied until the average pairwise distances is larger than a threshold ε.

4.5 Experiments

The following four experiments demonstrate the usefulness of our representation: First,

we present the basis functions learned from our own dataset in Sec. 4.5.2. Second, we

show that our basis functions are well suited for approximating novel actions. This allows

54



us to substantially compress novel MoCap data (Sec. 4.5.3). Third, the experiments in Sec.

4.5.4 demonstrate that using only the magnitude of the activations, action retrieval and

classification can be solved effectively. Finally, we show that the activations and the fitting

error alone are very useful for motion related disease diagnosis, thus demonstrating the

intuitive nature of the description (Sec. 4.5.5).

We used three datasets, our own, the Univ. Bonn dataset, and the CMU MoCap dataset

[Lab]. Our own dataset consists of 55 different actions, which were captured with the

MOVEN motion capture suit [MOV] at 100 fps. Each action sequence consists of at least 6

repetitions of the same action. Fig. 4.3 shows some of the actions in our dataset.

The convergence speed primarily depends on OMP and Bregamn algorithm. OMP

is a greedy algorithm that takes linear time, and Bregman is proved to be very efficient

for many problems that are difficult by other means [GO09]. Thus, our algorithm is very

efficient. It takes only 10-15 iterations before convergence (≈5 mins in Matlab for our

dataset).

4.5.1 Parameters

µ1 and µ2 in Eq. 4.4 determine the balance between the fidelity of the object function and

the sparsity of the variables in the optimization. In all the experiments, they were both

set to 1
2 . λ in the Split Bregman Algorithm (Eq. 4.12) is the parameter for penalizing the

auxiliary variable. It was set to 1000 in our experiments. The length of the basis function

was set to the frame rate of our MoCap suit (100). In our experiments, the normaliza-

tion speeds up the convergence of the algorithm, therefore, MoCap sequences were also

approximately normalized to 100 samples per action instance.

The initialization of Eq. 4.4 is randomly generated. This optimization is a large non-

convex problem, and a common practice is to have a random guess at the beginning.

4.5.2 Learning the Basis Functions

Fig.4.3 visualizes 17 out of the 55 actions in our dataset. First, we applied our normaliza-

tion algorithm. As found by visual inspection the discontinuities in the action sequences

estimated by this algorithm correspond to the intuitive poses separating actions.

After normalization, the action decomposition algorithm is applied to the action se-

quences. Fig 4.5a shows the fifteen basis functions learned by the algorithm. Each column
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is a color-coded basis function. In our modeling, individual joints are described by four ba-

sis functions, from the above set of fifteen learned basis functions. Fig 4.5b shows the basis

functions used by the individual joints. We can see that different joints may share the same

basis functions. Please note that the combination of the basis functions that composes joint

movements. Different joints may have different combinations for an action, therefore, it is

better to plot the functions individually.

Despite these very small numbers, the approximation is very good. The first column in

Table 4.1 shows that the error residual in the approximation was very small. The residual

was measured by the total fitting error divided by the number of frames and the number of

joints in the dataset. On average, our representation approximates the training sequences

with only 2.36 degree per joint in every frame.

The result shows that the primitives are effective and compact representations of the

actions in the datasets.

Table 4.1: Average fitting error for different MoCap sequences using the basis functions
learned in Sec. 4.5.2.

Seq Training Walking,Bonn Running, Bonn
Error 2.36◦ 3.18◦ 3.56◦

4.5.3 Motion Approximation and Compression

We use the basis functions to approximate novel actions. This further leads to effective

compression of MoCap data. In this experiment, the novel sequences were first normal-

ized, and Eq. 4.9 is then used to compute the activations and approximate the sequences.

An averaging filter is used to handle the possible discontinuities between actions.

A useful representation of action should have the generalization capability of express-

ing unseen actions. First, we used the basis function learned from our dataset to approx-

imate two sets of the sequences in the Bonn dataset, which were captured by an optical

motion capture suit by different subjects. We then measured the fitting error. As shown in

the 2nd and 3nd columns in Table 4.1, they are very small.

Comparing lossy compression results objectively is very difficult. As pointed out by

[Ari06], the fitting error may not be a good predictor of visual quality. Therefore, the sub-

jective judgments were used. Fig. 4.4b visualizes the approximation using two “salsa”

dances in the CMU dataset. We can see that the poses of reconstructed movement (Fig.
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4.4b) approximate those in the original sequences (Fig. 4.4b) very well. This side by side

comparison shows that the shift-invariant decomposition effectively handles the compli-

cated novel actions.

Another advantage of our decomposition approach is that it leads to high compres-

sion rate. To effectively compress MoCap sequences composed of arbitrary actions is very

useful both for storage and for visualization, but it is also a challenging problem. In our

approaches, a joint movement that has 100 data samples can be described by only four

coefficients. Thus, we achieved approximately 25 : 1 compression rate by default3. Table

4.2 compares the compression rate of some algorithms on CMU dataset.

Table 4.2: Comparison of different MoCap data compression algorithms. (*): the compres-
sion rate without quantizing the weights. (**): the compression rate with weight quantiza-
tion. The ratios of the other algorithms are copied from [Ari06]

Algorithm Ours Arikan Wavelet Zip
Ratio 19:1(*) 37:1(**) 30:1 6:1 1.4:1

We archived competitive compression rate compared to the state-of-the art algorithm.

More importantly, the primitive-based compression is fundamentally invariant to the frame

rate. A major difference between the our approach and previous approaches is that we ex-

plicitly model the human actions. Therefore, the change in frame rate only changes the

number of samples in the basis functions, but not the activation positions in time.

4.5.4 Action Retrieval and Classification

In the following experiments, we demonstrate the usefulness of our description for action

classification and retrieval. First, our preprocessing algorithm breaks the action sequences

into action segments. Each segment is treated as one complete action. Then, we decompose

every single action using Eq. 4.9 allowing for only 1 activation. Finally, action retrieval and

classification can be solved effectively using only the magnitude of the activations as the

weights.

We considered it more helpful to provide the intuition of the usefulness of the rep-

resentation using simple Euclidean distance and a neireast neighborhood classifier. This

demonstrates how much the representation contributes to the retrieval and classification,

3For complicated actions, we may use more activations to approximate the time series, based on the nor-
malization ratio. In addition, a small amount of overhead is required (e.g., storing the scaling factor and the
basis functions).
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without tuning parameters in a sophisticated classifier. Therefore, we chose to compare

our representation to decomposition methods.

4.5.4.1 Segment-based Action Retrieval

We compared our algorithm with the Sparse Principal Component Analysis [DGJL07] al-

gorithm and the Principal Component Analysis algorithm. For both algorithms the seg-

ments are normalized to have the same length.

Retrieval is evaluated on our dataset using the so-called Bullseye test [LJ07]. 6 seg-

ments per action sequence were selected4. A leave-one-out trial was performed for every

segment. The retrieval rate is ratios of the correct hits in top 12 candidates for all trials.

The performance of the three algorithms is shown in Table 4.3. Our algorithms achieved

higher accuracy (86.07%) in the Bullseye test. This indicates that the repeated action seg-

ments in an action sequence have similar representation. The result demonstrates that our

decomposition algorithm has the power of finding the similar movements.

Table 4.3: Performance comparison (Bullseye) of action retrieval on the segments of our
dataset. Three algorithms, namely Sparse PCA, PCA and our algorithm, were used in the
comparison. The segments were normalized for Sparse PCA and PCA.

Algorithm Ours Sparse PCA PCA
Accuracy 86.07% 82.64% 78.87%

4.5.4.2 Segment-based Action Classification

We classify actions performed by different subjects. Four actions (“walking”, “marching”,

“running”, and “salsa”) from the CMU dataset, were used in the experiment.

We compared our algorithm with the Sparse Principal Component Analysis algorithm

and the Principal Component Analysis algorithm. To demonstrate the usefulness of the

weights, we chose a very simple k-nearest neighborhood (kNN, k = 3) classifier. For

each partitioning algorithm, we randomly selected 50% of the estimated segments in each

action category as the training samples, and used the remaining as the test samples. Figs.

4.6a-c show the confusion matrices of the classification using the coefficients obtained by

our algorithm, the Sparse PCA and the PCA algorithm.

4For action sequences which had a larger number of segments, we randomly selected 6 segments
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Results show that our representation gives the best classification performance. This

demonstrate that our shift-invariant representation models the nature of the human action,

and the sparse linear decomposition facilitates the performance of classification.

4.5.5 Motion Disorder Diagnosis

The activations are a natural measurement for describing body coordination. If the activa-

tions for different joints are not well aligned, the subject might have a problem in control-

ling her/his motions. Another measure is the approximation error.

We demonstrate the applicability of the basis functions in modeling the Parkinson mo-

tion disorder, which is characterized by degenerative muscle movements. The primary

symptoms are the results of decreased coordination caused by insufficient control. This

problem is highly difficult because the correct modeling for the coordination among dif-

ferent body parts is challenging.

In this experiment, we captured the MoCap data for four patients diagnosed with the

PD disease and four healthy controls (Table. 4.4). Fig. 4.7 shows the scenario when the

experiments were performed. Subjects were asked to perform a number of actions repeat-

edly.

For this application, we learned the basis functions and the activations for each subject

individually. Three common actions, “Finger To Nose”, “Catching a Tennis Ball”, and

“Bread Cutting”, were recorded. Figs. 4.8a-c show the plot of the activation alignment

score and the average approximation error. The alignment score between two sequences is

the zero-mean standard deviation of the differences between corresponding elements. The

activation alignment score is defined as the largest value of the pairwise alignment scores.

Fig. 4.8d shows the chart for classifying the patients. As can be seen the two measure-

ments are sufficient to separate controls from patients. Referring to 4.8a-c, the data points

are well separated.

The diagnosis shows that the activations in our decomposition approach characterize

the underlying rhythm in the parts of the bodies. This suggests that our approach is well

suited for further understanding the principles of coordinated actions.
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Table 4.4: Parkinson disease patients’ age information. The disease level is measured by
the Hoehn and Yahr scale which ranges from 1-5 (shown in parentheses).

Controls Patients
4 healthy subjects 63(2.5), 63(2.5), 60(2.5), 60(3)

4.6 Chapter Conclusion

This chapter presented an algorithm for finding basic primitives to represent human mo-

tion data. Body movements in MoCap sequences are decomposed into the shift-invariant

basis functions and their activations. The decomposition is solved by alternately updating

two large convex problems using L1 minimization techniques. Experiments show that the

compact representation is effective for motion approximation, MoCap data compression,

action retrieval, and classification with application to disease diagnosis.
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Figure 4.3: 17 out of the 55 actions in our data set. The rendering is as follows: poses cor-
responding to the discontinuities are displayed as mannequins; the transitions in between
are illustrated by wire-frames; the trajectories of some joints are drawn in red.

(a) (b)

Figure 4.4: Side by side comparison between original motion frames (a) and reconstructed
motion (b) using the estimated basis functions, demonstrated on two “salsa” sequences
from the CMU dataset [Lab].
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Figure 4.5: The basis functions learned by the algorithm (a) and their usage for individual
joints (b) (denoted by the blue diamonds)

Figure 4.6: Action classification. Four actions, “walking”, “marching”, “running”, and
“salsa” from the CMU dataset, were used in the experiment. A very simple k-nearest
neighborhood (kNN, k = 3) classifier was chosen. (a)-(c) show the confusion matrices of
the classifier using the weights of the proposed algorithm, the Sparse PCA algorith, and
the PCA, respectively. For each algorithm, 50% of the estimated segments in each action
category were randomly selected as the training samples and the remaining as the test
samples.
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Figure 4.7: Collecting Parkinson Disease data. Courtesy of Leonardo Max Batista
Claudino.

Figure 4.8: Parkinson disease diagnosis by measuring the alignment and the average ap-
proximation error. From left to right, the results for “Finger To Nose”, “Catching a Tennis
Ball”, “Bread Cutting”, and the diagnosis chart, respectively. In a)-c), blue triangles denote
the healthy controls, and red squares denote the patients. d) suggests a chart for diagnosis.
P: patient. H: healthy control.
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Chapter 5

An Application of Granger Causality to Coordinated Actions

Analysis in Orchestra

5.1 Chapter Summary

Causal knowledge is a concept well known in artificial intelligence and developmental

learning. In many commonsense reasoning tasks, it is studied in a setting where the causes

and the effects are discrete events. In this chapter we use the concept of causality to evalu-

ate coordination of continuous human actions. The “coordination of actions” refers to the

degree of synchrony or complementarity between actions performed by different individ-

uals. We propose to use the Granger Causality for measuring causal interactions between

human actions. In our approach, actions are modeled as autoregressive processes, and

Granger Causality is framed in terms of predictability. The underlying idea is that if one

action causes the other, then knowledge (history) of the first action should help predict

future values of the latter. We carried out experiments using data of the trajectories of

the instruments of eight orchestra musicians and the batons of two conductors. Our data

demonstrates the existence of a dynamical network of causal interactions among players

and conductors. The modulation of the network is in relation to the degree of direction

that the conductor is able to express to the musicians. The study suggests that the concept

of causality allows us to quantitatively study the coordination of actions, and also that the

same idea may be applied to other human action scenarios.

This chapter is based on the paper accepted by the IEEE Conference on Developmental

Learning 2010. I did not submit the final version of the paper because the co-authors would

like to revise it and submit to a prestigious neuroscience journal.
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5.2 Introduction

Causality, defined as “the relation between a cause and its effect, or between regularly cor-

related events or phenomena” by Merriam-Webster Dictionary, is one of the fundamental

mechanisms in many commonsense reasoning tasks. The analysis of causality is also very

helpful for modeling the functionalities of cognitive systems, especially with regards to

efficient estimation of appropriate responses of causes and modification of an agent’s be-

havior online.

The common conception is that causes always precede effects. Typically, causes and

effects are regarded as discrete events. Therefore, most of the previous work in artifi-

cial intelligence and development was concerned with the causal links between discrete

events. However, causality also exhibits itself in continuous signals.

In this chapter, we focus on causality in coordinated human actions. Coordination is

one of the prerequisites for social interactions among intelligent agents. In fact, all ani-

mal species grouping for defensive, reproductive or hunting needs have evolved complex

communicative behaviors to obtain coordinated actions [Fri08]. Recent studies further

suggested that the “action mirroring circuit” might be tuned to action coordination rather

than single action perception [FCO05].

The causality network plays an important role in supporting the coordination of ac-

tions [SHK09]. The coordination, at the individual level, can be modeled conceptually as

a computation transforming visual information into motor control parameters. In such a

context, movement kinematics of one individual must have statistical causal relation with

the kinematics generated by another individual. Thus, the understanding of this under-

lying causality network will facilitate the research of many developmental learning prob-

lems, such as cognitive robotics, multiagent systems, and human-computer interaction.

Despite the progress in the study of causality, quantitative measurements of a dynami-

cal causality network for coordinated signals remain elusive. The reason is that the formal

analysis of causality networks requires an effective definition of causality between pair-

wise signals. For example, if we merely record the kinematics of two actions behaving

randomly, we would always find some correlated parameters (i.e., velocity). However,

correlation does not necessarily imply causation. Therefore, a tool for formally studying

the causality network of coordinated signals is necessary.
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Originally from econometrics and neuroscience, Granger Causality [Gra69] is a statisti-

cal concept that provides a computationally feasible way for quantitatively describing the

pairwise causal influence. Granger’s proposal is that if a time-series y causes (or has an in-

fluence on) x, then knowledge of y should help predict future values of x. Thus, causality

is framed in terms of predictability.

In our study, we examined the causality network of the coordinated musicians in a

chamber orchestra using the kinematic data of their instruments. An orchestra is an in-

teresting case because movement coordination is the main concern of the musicians and a

successful communication is a pivotal feature for which they train for years.

A chamber orchestra is divided into multiple sections (e.g., “Violin I” and “Violin II”

in our study). Theoretically, players in the same orchestra section should have the same

motion. However, each player might play slightly different according to his/her style

and understanding. Our aim is to verify whether complex coordinated behaviors may be

influenced by the causal interaction expressed by individuals.

We recorded the trajectories of the endpoints of the instruments used by eight violin

players and two conductors (Fig. 5.1a). The players played fifteen pieces with a profes-

sional and an amateur conductor. In this experiment, our goal was to find out whether the

expertise of the conductor is related to his/her influence on the musicians’ performance,

and if this in turn has an influence on the communication among the musicians.

Our results demonstrate the existence of a dynamical network of causal interactions

among the players and the conductors. The strength of causal influence is related to the

degree of influence that the conductor is able to express to the musicians. Thus, our study

suggests that we may quantitatively express the causality of coordinate actions.

This chapter is organized as follows. First, we present the concept of Granger Causality

as a statistical inference of the causal interaction between pairwise coordinated signals.

Then, we show experiments and discuss the causality network. Finally, we review the

literatures related to causality, coordination, and human motion modeling, and conclude

the chapter.
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Figure 5.1: Illustrating the recording scenario and the kinematic data. (a) The subjects
in our experiments. Eight string players (grouped into “Violin I” and “Violin II”) were
conducted by two conductors, respectively; (b) The locations of the endpoints of the music
instruments; (c) The kinematic data of a conductor and a player in the first three seconds of
the first movement of Mozart’s Symphony No.40. The time series in red, green, and blue
represent the trajectories of the markers in X , Y , and Z dimension, respectively.

5.3 A Brief Introduction to Granger Causality

The Granger Causality Test is a technique for determining whether one time series is use-

ful in forecasting another. First, we discuss how to model time series using Autoregressive

(AR) Processes. Then, we describe the idea of Granger Causality, which uses linear pre-

dictors.

5.3.1 Preliminary: Forecasting Time Series using Autoregressive Processes

Granger Causality is based on the residual in forecasting time series using linear predic-

tors. An autoregressive model or process is a stochastic process. An AR(k) process, where
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k is the order of the model, has the following form:

y(t) =
k∑
i=1

a(i)y(t− i) + e(t), (5.1)

where a(i), i = 1...k, are the coefficients for the lagged observations, and e is the estimation

residual.

Two criteria are widely used for selecting the optimal order of a linear predictor in Eq.

5.1: Akaike’s Final Prediction Error (AIC) criterion and Schwarz’s Bayesian Criterion (BIC)

[BJ90]. Lutkepohl [Lut07] compared these and other order selection criteria in a simulation

study and found that BIC chose the correct model order most often and led, on the average,

to the smallest mean-squared prediction error of the linear models.

In many real world tasks, the time series is multi-dimensional. Human motion, for

instance, is characterized by a number of continuous signals, such as a 3d trajectory of

an instrument’s endpoint in our study. Certainly we could consider each dimension as a

1d time series and use Eq.5.1 to model the data. However, these 1d time series could be

highly correlated (e.g., they might accelerate at the same time). Therefore, it is better to

jointly model them.

The Vector Autoregressive model [NS01] is a natural extension of the traditional AR

model. This predictor models a vector series as follows:

Y (t) =

k∑
i=1

A(i)Y (t− i) + E(t), (5.2)

where Y (t) is the d (dimensions) by 1 vector, E is the d by 1 residual vector, and A(i),

i = 1...k, is the d by d coefficient matrices, which can be learned using maximal likelihood

estimation or the Bayesian prior (Bayesian Vector Autoregressive Process) [LP09].

5.3.2 Granger Causality Test

Given two time series X1 and X2, we may either model them separately using two indi-

vidual AR processes (denoted as L1), or jointly model them in one AR process (denoted as

L2).
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If X1 and X2 are modeled separately, we have:

X1(t) =
k∑
i=1

A1(i)X1(t− i) + E1(t) (5.3)

X2(t) =

k∑
i=1

A2(i)X2(t− i) + E2(t), (5.4)

where A1 and A2 are the coefficients for the lagged observations, and E1 and E2 are the

residuals.

Alternatively, we can use a more complicated model L2 to jointly model these two

signals as follows:

X1(t) =

k∑
i=1

B11(i)X1(t− i) +
k∑
i=1

B12(i)X2(t− i) + E1(t) (5.5)

X2(t) =

k∑
i=1

B21(i)X1(t− i) +
k∑
i=1

B22(i)X2(t− i) + E2(t), (5.6)

where B11, B12, B21 and B22 are the coefficients for the lagged observations, and E1 and

E2 are the residuals.

The Granger Causality Test focuses on the improvement of the residual. Denote

ei =
∑

Ei(t)
2 (5.7)

ei =
∑

Ei(t)
2 (5.8)

for i=1,2. Since L2 involves more parameters than L1 and has more degrees of freedom,

necessarily L2 improves the performance of prediction (ei < ei). However, the improve-

ment could be due to the knowledge (history values in the time series) of the other signal,

or it could be simply due to the increase of the degree of freedom in the model. Therefore,

F -Test is used to validate this hypothesis.

F -Test is a classical approach to compare statistical models for data fitting, and further

to identify the model that best fits the population from which the data was sampled.

Denote

F2→1 =

e1−e1
p2−p1
e1

n−p2
=
e1 − e1
e1

n− p2
p2 − p1

, (5.9)
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and

F1→2 =

e2−e2
p2−p1
e2

n−p2
=
e2 − e2
e2

n− p2
p2 − p1

, (5.10)

where p1 and p2 are the degrees of freedom in L1 and L2, respectively, and n is the total

number of observations in the input signal. In our study, p1 = 2kd2 and p2 = 4kd2.

In the F -Test, F2→1 and F1→2 are assumed to have F -distribution with (p2− p1, n− p2)

and (p2 − p1, n − p1) degrees of freedom, respectively. F2→1 (F1→2) denotes the improve-

ment of predicting X1 (X2) using the information from the history of X2 (X1). There is no

simple arithmetic relationship between F2→1 and F1→2. We consider F2→1 as the “causal

influence” that X2 passes to X1, and similarly we call F2→1 the cause from X2 to X1.

The Granger Causality Test claims that X1 “Granger causes” X2 if and only if

F1→2 > F2→1. (5.11)

For the orchestra performance considered here, we may interpret this result as the causal

influence from X1 to X2 being larger than the one from X2 to X1 such that X1 “drives” X2.

5.3.3 Statistical Analysis of Granger Causality

In many real world scenarios, signals are non-linear, and linear models are regarded as lo-

cal approximations of the non-linear signals. Thus, the time series is divided into multiple

windows, and linear analysis is carried out in each window.

To analyze the overall causal influence between two non-linear time series, we com-

pute the Granger Causality for each window, and use kernel density estimation [Par62]

to summarize the causal influences between the signals. Kernel density estimation is a

non-parametric method for estimating the probability density function of a random vari-

able. Isotropic kernels are frequently used if no domain-specific prior is given [DHS00].

This provides a more robust measurement of the expected value of the variable in many

studies.

5.4 Experiments

In this section, we present our experiments and suggest how Granger Causality can be

used for studying coordinated human actions. We demonstrate a causality network that is
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modulated by the influences among coordinated actions of the members of an orchestra.

This network can be conceived as a conversation between several individuals.

First, we present the data acquisition and preprocessing procedures. Second, we show

the results of the experiments. Specifically, we show that a professional conductor has

a greater influence than an amateur on average, and influences the orchestra more fre-

quently. Furthermore, we show that the musicians in the same orchestra section tend to

be less reliant on the influence of peers when the influence from the conductor is greater.

Finally, we compare our results to the non-causal data obtained by scrambling the causal

data, and demonstrate the significance of the above results.

Figure 5.2: The percentage of the time when the conductor leads the players. This figure
shows that the professional conductor consistently leads the players more frequently than
the amateur conductor.

5.4.1 Data Acquisition and Preprocessing

5.4.1.1 Data Acquisition

We recorded the absolute positions of the endpoints of the music instruments. Data acqui-

sition was performed using a Qualisys system consisting of three cameras recording the
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Figure 5.3: The error bar of Fc→i, which denotes the causal influence strength from the
conductor to the players. This figure shows that the professional conductor’s influence is
consistently stronger than the amateur.

positions of the markers on players’ bows and conductors’ batons at 240Hz. Fig. 5.1b il-

lustrates the positions of the instrument endpoints in the environment and Fig. 5.1c shows

two fragments of the recordings.

5.4.1.2 Data Preprocessing

We used the spline method [Deb78] to handle missing data in the 3d trajectories and low-

passed the signal for artifact removal. The data was then divided into overlapping win-

dows. Two consecutive windows have 1
3 overlap . The window size is set to 2 seconds to

incorporate a reasonable amount of information.

We select the order of the AR processes as follows. First, we computed the AR model

order in each window using the BIC criterion. Then, we used kernel density estimation to

compute the expected value of the order and set k = 8.

The AR model assumes that the input time series is stationary, which means the eigen-

vector of the model must be inside the unit circle [Hay]. If this does not hold, one com-
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mon practice is to differentiate the signal because the derivative may provide better results

practically. In our experiment, we found that the second order derivative of the 3d motion

series satisfies this assumption. Essentially, we used the acceleration of the kinematic data

as the input.

The use of higher order derivatives may seem to make the system more sensitive to

noise. In our experiment, we found that the acceleration is reasonably accurate, and we

use a Gaussian filter to remove the noise.

The usefulness of the acceleration further shows the importance of the causality in the

physical interaction. This may be very important to understanding how a human being

cause or change the behavior of others by modifying their planned actions.

5.4.1.3 Creating Non-Causal Data for Comparison

In order to test the statistical significance of our estimates, we need to verify the Granger

Causality result against the null hypothesis of non-causal relations. In other words, the

Granger Causality Test may indicate causal interactions between two random actions that

do not have any causality, therefore, the causal relationship is valid only when the value is

larger than a statistical threshold obtained from non-causal data.

Intuitively, the movements of two players at different times should have no causal in-

teraction statistically. Therefore, we randomized the windows for each musician to create

the non-causal data for comparison in our experiments.

5.4.2 Experimental Results

In the experiments, we numerically quantified how the musicians accommodate their per-

formance according to the causal information passed by other musicians in a causality net-

work. The idea is that different conductors exhibit different influences towards musicians.

This difference, in turn, also affects the causal influences among players.

First, we computed the causality flow between the conductors and the players. Then,

we computed the average influence of causality within the same orchestra sections un-

der the direction of different conductors. Finally, we compared the above results to the

outcomes from the non-causal data, and to demonstrate that the results in the previous

experiments are significantly meaningful.
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5.4.2.1 Experiment 1: The Causality between the Conductors and the Players

This experiment shows that the professional conductor influenced the orchestra more fre-

quently than the amateur conductor, with a stronger average causal interaction.

Denote

Di(m) =


1, if Fc→i(m) > Fi→c(m)

0, otherwise
(5.12)

where Fc→i(m) denotes the causality from the conductor to the ith player in the mth win-

dow. Fig. 5.2 shows that the percentage of the time (i.e., the expected value ofDi(m)) when

the conductor leads the players for the fifteen pieces of music and the eight players.

This experiment shows that the professional conductor has a higher percentage than

the amateur conductor in 95.8% of the cases. Interestingly, Fig. 5.2 also shows that in

some pieces the amateur conductor has less than 50% “leading time” for some players

(e.g., Player 1 in the 5th piece), which means the players actually “lead” the conductor.

We further show that the professional conductor has a stronger influence than the am-

ateur conductor on average. We computed the average causality flow from the conductor

to the players for each piece of music (Fig. 5.3). The error bar visualizes that in 77.51% of

the time the professional conductor has a stronger causal influence than the amateur.

The analysis demonstrates that a successful coordination is due to the effective causal

information passing between individuals. The causality, on one hand, helps the agent

understand the peer’s intentions based on contextual information. On the other hand, it

enables efficient prediction, anticipation and planning of appropriate actions in response.

5.4.2.2 Experiment 2: The Causality within the Players

This experiment demonstrates that the players in the same orchestra section (i.e., “Violin

I” and “Violin II”) have different behaviors in terms of causal interactions when they play

under the direction of two conductors (Fig. 5.4).

We represent the level of coordination for each player using the maximal value of the

causal interactions from his/her peers in the mth window as follows:

Fi(m) = max
j
Fj→i(m), (5.13)
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where i and j are the players in the same orchestra section.

Denote F(m) as the expected value of Fi(m) for all the players in the same orchestra

section. It can be regarded as the average “in-group” influence in the mth time window.

Figure 5.4: The average influence and its standard deviation of the causality among the
players in the same orchestra section. (a) The players in the “Violin I”; (b) The players in
the “Violin II” (The 9th-15th piece of music are not shown due to many missing samples).

Figure 5.5: The percentage of the time when the conductor leads the players in the non-
causal data.

Fig. 5.4 shows the average in-group influence in these two orchestra sections for each

piece of music. Under the direction of the professional conductor (whose influence is

larger) players have less influence on each players. The “Violin I” and the “Violin II”

have weaker average in-group causal interaction with the professional conductor than the

amateur, with 6.18% and 6.04% relatively on average, respectively.

This experiment demonstrates that a dynamical causality network supports the coor-

dination of the musicians. Each player has to follow the fundamental direction of the
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conductor and accommodate his/her performance of the peers. If the conductor is unable

to convey enough causality, the players adjust their internal communication by increasing

the necessary causal interactions among themselves.

Figure 5.6: The error bar of Fc→i, which denotes the causal influence from the conductor
to the ith player, in the non-causal data.

5.4.2.3 Comparison using the Non-Causal data

We repeated the above experiments using non-causal data obtained by randomizing the

trajectory windows. The same procedures in the previous experiments were used to test

the statistical significance of the results.

Figs. 5.5 and 5.6 show the results for the non-causal data. Compared to Experiment 1,

the percentage of leading time (Fig. 5.5) is approximately close to 50% for both conduc-

tors, and the average influence (Fig. 5.6) is 3.04 (37.1% smaller than Fig. 5.3). These figures

demonstrate that there is no significant difference between the two conductors in the ran-

domized data. Thus, this shows that the results in Experiment 1 are useful for assessing

the causality network.

Fig. 5.7 shows that the average in-group influences in non-causal data are 1.92 and

2.01 for the professional conductor and the amateur, respectively. Compared to Fig. 5.4,

one can see the in-group influence in causal data is 31% larger. Fig. 5.7 also does not sug-

gest a difference in coordination between the players under two conductors. The results

show that the causal interactions within the players are significant, and the interactions

contribute to the coordination of actions. This further demonstrates the importance of a

dynamical causality network in coordinated actions of music performance.
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These two comparisons suggest that the results of Experiment 1 and 2 are valid and

meaningful. The experiments show the usefulness of Granger Causality in analyzing co-

ordinated actions. The difference between the two conductors is due to the causal infor-

mation passing between individuals in a dynamical causality network.

Figure 5.7: The average strength and its standard deviation of the causality among the
players in the same orchestra section using the non-causal data. (a) The players in the
“Violin I”; (b) The players in the “Violin II”.

5.5 Chapter Conclusion

The aim of this study was to quantitatively demonstrate the existence of a dynamical net-

work of causal interactions among coordinated actions. Specifically, we examined the

Granger Causality between the conductors and the players (Experiment 1), and the in-

group causal interaction among the players under different conductors (Experiment 2).

The study suggests that causality is a useful concept for analyzing coordinated actions,

and that it may be applied to many human interaction scenarios.
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Chapter 6

Detecting Discontinuity in Human Movement for Action

Representation and Recognition

6.1 Chapter Summary

We propose an approach for detecting discontinuities of human movements in videos and

motion capture data. Our approach aims at providing natural temporal segmentations of

human actions, which can serve as a tool for action analysis and recognition. The idea

is based on the jerks (third order derivatives) of the signals. For videos, we first reduce

the dimension of the visual space using Gaussian Process Dynamical Models (GPDM).

Then the discontinuities are estimated by finding the clusters of maxima of the jerks in the

embedded signals. We demonstrate by examples that the action discontinuities in videos

consistently correspond to the changes in the underlying body dynamics. Experiments

suggest that the approach is robust to changes in viewpoint and background, and that the

proposed algorithm finds consistent poses, which lead to better recognition rates.

This chapter is based on the paper appear in the First Workshop of Social Signal Pro-

cessing in conjunction with the IEEE Conference on Affective Computing 2009. A video

lecture is available at:

http://sspnet.eu/2010/08/ieee-ssp-workshop-september-2009/.
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6.2 Introduction

Many recent studies in computer vision have been concerned with recognizing human

activity. Ideally, we would like a formalism that allows us to describe actions in a way that

facilitates recognition, characterization, and visualization. Although it is not clear yet how

this formalism should be, it is very clear that whatever the approach may be, we need to

be able to break the human movements into meaningful simpler, shorter movements.

How can we find these break points? If we have muscle signals over time, it is nat-

ural to partition the data at the points where we have discontinuities in the acceleration

[ddSB03], an empirical observation supported by Newton’s law. The poses corresponding

to the discontinuities become natural segmentations of human movements, which in turn

facilitate human action analysis.

In this chapter, we present an intuitive and efficient algorithm for detecting the discon-

tinuities in unrestricted human movement both in videos and in motion capture (MoCap)

data. We empirically found that the segmentations in videos and in MoCap data are consis-

tent with each other. The reason for the consistency probably is because groups of muscles

are exercised consistently, as has been found in [ddSB03] and are termed the “muscle syn-

ergies”. The estimated discontinuities provide effective measurements for human action

analysis in videos that are robust under different conditions including subject variation,

video quality, frame rate, camera motion, and changes in viewpoint.

In motoric space, we find that different body joints are activated coherently. The acti-

vations of the different joints are estimated as the maxima of the changes in acceleration

of individual joint angles. An action discontinuity occurs when a number of joints are ac-

tivated at nearly the same time. Based on this fact, we propose an alignment algorithm to

robustly detect the clusters of jerk maxima of different joints over time.

In visual space, certainly, we cannot measure the muscle signals in videos from any

view. However, we can empirically transfer the idea of discontinuities to the visual do-

main using dimension reduction. We detect the discontinuities in reduced visual space

obtained by the Gaussian Process Dynamical Model (GPDM). This model has been pro-

posed recently for analyzing human MoCap data, and we extend it here to videos of single

subjects moving in uncluttered scenes. We found that when there is an action discontinuity

in the video, the changes in acceleration occur simultaneously along the different GPDM
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dimensions. This allows us to use the same alignment algorithm for detecting action dis-

continuities in videos as well as in MoCap data.

Our key contributions are:

1. We propose an algorithm for creating natural temporal segments of human actions

in videos and in MoCap data, based on the concept of action discontinuities.

2. We demonstrate that the action segments in visual space and in motoric space are

consistent.

3. We show that the poses corresponding to the action discontinuities effectively im-

prove the action recognition rates on public datasets.

The remainder of the chapter is organized as follows. Sec. 6.3.1 and 6.3.2 present the

algorithm for detecting action discontinuities in MoCap data and in videos. Sec. 6.4 shows

experiments and comparisons, and Sec. 6.5 concludes the chapter with a discussion .

6.3 Action Discontinuities in Human Movement

This section presents the discontinuity detection algorithm for human movements. In Sec.

6.3.1, we analyze MoCap data. We directly compute the change in acceleration in the mo-

tion capture data, and propose an alignment algorithm for finding the clusters of changes

across different joints. In Sec. 6.3.2, we use dimension reduction algorithm to map videos

to a low dimensional space. On this data we then detect the discontinuities using the same

alignment algorithm as for MoCap data.

6.3.1 Action Discontinuities in Motion Capture Data

The data from a motion capture suit are time series of three rotation angles each at a num-

ber of joints on the human body. The quaternion series of a certain joint is a 4D vector

X(t) = [x1(t), x2(t), x3(t), x4(t)]
T (6.1)

The jerk of X(t) is computed as

J(t) = ||d
3(X(t))

dt3
||, (6.2)
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Figure 6.1: I redraw Fig. 4.2 here for convenient purpose. Action discontinuities of
the speed-varying action “walking to running” from the University of Bonn dataset
[MRC+07]. The jerk envelopes of the six joints are color coded and normalized in mag-
nitude. The purple dashed lines indicate that the locations of the envelope extrema of
certain joints coherently occur at the same time. The trajectories of the head, the left elbow,
and the right ankle are drawn in red.

where || · || is the L2 norm.

We need a robust measurement to estimate the jerk, because the estimation of higher

order derivatives may be sensitive to noise. We thus compute the jerk envelope as

Env(t) = ||Hilbert(J(t))|| (6.3)

for every joint, where Hilbert(·) is the Hilbert transform. This is a standard approach

for computing the signal envelope [Bra99]. Then we process Hilbert(·) using a low pass

Butterworth filter, and compute the extrema of the filtered signal Env(t) for every joint.

An action discontinuity occurs when there are a number of joints activated nearly at the

same time. This is demonstrated in Fig. 6.1 for the speed-varying action “walking to run-

ning” from the University of Bonn dataset [MRC+07]. Here, we show the jerk envelopes

of the joints “Hip”, “Knee”, and “Ankle” of both legs. The envelopes are color coded and

normalized in magnitude. Since not all joints need to be activated together in an action,
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our goal is to robustly detect the temporal clusters of the activated joints.

We model this problem by finding the optimal “alignment” of the envelope extrema for

the different joints (the purple dashed lines in Fig. 6.1). We define the optimal alignment

as the collection of the envelope extrema of the different joints with the minimal sum of

the pairwise distances. The goal is to choose one of the discontinuities from each latent

variable such that the sum of the pairwise distances is minimal.

The alignment algorithm automatically detects the activated joints over time. This clus-

tering method is applicable to many scenarios where other measurements, such as global

curvature, may fail. Alternative alignment approaches, such as dynamic programming,

focus on global alignment and may align discontinuities at completely different locations.

We use an indicator function δim for the location of the ith discontinuity of themth latent

variable Iim such that

δim =


1, if Iim is selected

0, otherwise
(6.4)

for all possible i, and ∑
i

δim = 1, (6.5)

for m = [1, ..., 4].

The distance between the locations of two discontinuities Iim and Ijn (m 6= n) is defined

as

d(Iim, I
j
n) = exp(

1

σ
|Iim − Ijn|)− 1, (6.6)

where σ is the parameter for the distance measurement.

Then, the cost of the consistency between a set of discontinuities in different latent

variables is the sum of the pairwise distances,

c =
∑
m

∑
n,n6=m

∑
i

∑
j

δimδ
j
nd(I

i
m, I

j
n). (6.7)

The optimization problem is therefore to find δim which minimize c,

δ∗ = argmin
δ
c (6.8)

subject to the constraints stated in Eq. 6.5.
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Eq. 6.8 is a constrained quadratic integer programming optimization problem. This

can be reformulated to an unconstrained quadratic programming problem by relaxation

and changing variables.

δim is relaxed to

0 ≤ δim ≤ 1, (6.9)

and the variables are changed to

δim =
exp θim∑
i exp θ

i
m

, (6.10)

where

−∞ ≤ θim ≤ ∞. (6.11)

Therefore, if we pre-compute the cost matrix M where M(m,n, i, j) = d(Iim, I
j
n), we

simply need to find the θim that minimize

C =
∑
m

∑
n,n 6=m

∑
i

∑
j

exp θim∑
i exp θ

i
m

exp θjn∑
j exp θ

j
n

M(m,n, i, j). (6.12)

After minimizing Eq. 6.12 with respect to θim, δim = 1 if and only if the value of

exp θim/
∑

i exp θ
i
m is maximal for all possible i in the mth latent variable, and δim = 0

otherwise.

The number of variables in Eq. 6.12 could be large (e.g., 100-500). An efficient solver for

this quadratic optimization is necessary. We use L-BFGS in the proposed approach1. The

alignment algorithm is iteratively applied until the value of C is smaller than a threshold

ε.

6.3.2 Action Discontinuities in Videos

A human motion video is represented by the variables of a Gaussian Process Dynami-

cal Model (GPDM) in a low dimensional space. The discontinuities are characterized by

the maxima of the third order derivative of the latent variables, and the same alignment

algorithm in Sec 6.3.1 is used for locating the discontinuities.

Gaussian Processes have become popular for regression and classification in machine

1www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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learning. A Gaussian Process is a collection of random variables which have joint Gaussian

distributions [RW05]. It can be regarded as a probability distribution over functions in

Bayesian inference.

Figure 6.2: (a) The motion trajectory of a video in the Weizmann dataset [BGS+05] in the
GPDM dimensions 1-3 (blue curve). (b) The discontinuity in acceleration for variables
x1, ..., x6. Each row represents the locations and the strengths of the local maxima of the 3rd

order derivative of a variable. The poses corresponding to the center of the discontinuities
(dashed red line) in different variables are shown on top. Frame numbers are displayed
both below the poses and in the motion trajectory (red dots).

The Gaussian Process Dynamical Models (GPDM) [WFH08] considers a mapping from

a high dimensional data space to a low dimensional latent space and a dynamical model

in the latent space. This allows high dimensional data to be compressed in a latent space

using Gaussian priors. In [WFH08], the GPDM maps the joint angles in human MoCap

data to a 3D latent space.

The relation between the latent variables X and the original data Y is as follows:

p(X,Y, α, β,W ) = p(Y|X, β,W )p(X|α)p(α)p(β)p(W ) (6.13)

where α, β, and W are the parameters. Given Y, one estimates X, α, β, and W . Refer to
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[WFH08] for details.

We first apply the GPDM to videos. A high dimensional vector of image intensities in

each frame is formed by concatenating the pixel values from left to right and then from

top to bottom in each image. The GPDM embeds the sequence of intensity vectors in a low

dimensional latent space. In our experiment, 6D is generally sufficient. Fig. 6.2 visualizes

the trajectory of the latent variables for a video in the GPDM for dimensions 1-3. Then, the

alignment algorithm of Sec. 6.3.1 is used for locating the discontinuities.

Our approach does not require foreground/background segmentation. The dimen-

sion reduction algorithm handles the smooth background change between two subsequent

frames implicitly, while still retaining the changes in acceleration of the human actor. In

the Sec. 6.4.2, we further suggest that a background subtraction may not be helpful for our

algorithm.

6.4 Experiments

Experiments show that our algorithm finds consistent human poses in MoCap data and in

videos, and this consistency facilitates action recognition.

First, we test the algorithm on 30 actions from the CMU MoCap dataset [Lab] for which

both MoCap data and videos have been recorded. The evaluation shows that the action

discontinuities in motoric space and in visual space are consistent. Second, we show that

the detection for action discontinuities in videos outperforms a baseline algorithm, and

that the approach is robust to the changes in viewpoint and background. Finally, we

demonstrate the potential of our method for recognition by showing that the represen-

tation based on action discontinuities improves the performance of action recognition al-

gorithm in [LJD09].

Our approach works for a reasonable range of parameter values, because the localiza-

tion of the position of the local extrema is not sensitive. In all experiments, we resize the

image frames to have the same height (50 pixels) while preserving the height/width ratio

for dimension reduction. The parameters for filtering the MoCap data and the reduced

visual signal depend on their frame rates. The distance measurement, σ in Eq. 6.6, is fixed

to 10 in all experiments.

Our algorithm is also very efficient. L-BFGS is a very fast algorithm. The alignment
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algorithm only takes approximately a second on average for a one-minute video in a laptop

with 2GHz CPU and 2GB memory, and the current GDPM implementation [WFH08] takes

one minute on average.

6.4.1 Effective Detection of Action Discontinuities in Video

In this section, we demonstrate the effectiveness of the action discontinuities detection in

videos.

6.4.1.1 Results on the CMU Dataset

We evaluated the performance of our algorithm on the CMU dataset using simultaneous

MoCap data and videos. Our goal is to directly compare whether changes in joint accel-

erations do correspond to jerk extrema in the signals in the reduced visual space learned

from video.

We first selected 30 sequences that have both MoCap data and video available. The

actions are “running” (10), “walking” (10), and sport activities (10, including “boxing”,

“swordplaying”, “jumping”, etc.). Then we ran the algorithms on the MoCap data and the

videos, respectively. Fig. 6.3a-6.3c show the results of the action discontinuities detection

in videos for the activities “walking”, “running”, and “dancing”, and Fig. 6.3d-6.3f show

the results for the corresponding MoCap data. We overlaid the human subjects for the

purpose of visualization.

From Fig. 6.3 we can see that the poses for the videos correspond to the ones in simul-

taneous MoCap data. This suggests that the dimension reduction is capable of encoding

the dynamics of human activities in the reduced space.

The videos and the MoCap data in the CMU dataset were not synchronized. There-

fore, in order to evaluate the consistency, we downsampled the MoCap data to 25 fps,

and then aligned the results for videos and for MoCap data using dynamic programming.

The consistency is defined as the zero-mean standard deviation of the differences between

corresponding discontinuities.

The first row of Table 6.1 shows the consistency for the three categories of actions. On

average, the standard deviation is within 4 frames (≈ 0.16 second). This consistent result

shows that the discontinuities in videos are closely related to the changes in the underlying

human body dynamics.

87



(a) Walking (b) Running (c) Dancing

(d) (e) (f)

(g) (h) (i)

Figure 6.3: a)-c) Results for action discontinuities in videos; d)-f) Results for action discon-
tinuities in corresponding MoCap data; g)-i) Results of the baseline algorithm. Comparing
the figures in each column, we clearly see that the action discontinuities for videos corre-
spond to the ones in MoCap data, and that the results for the baseline algorithm are not
consistent.
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Table 6.1: Consistency between action discontinuities in videos and MoCap data. The
consistency is defined as the zero-mean standard deviation of the differences between cor-
responding discontinuities after applying dynamic programming (fps=25).

Algorithm Walking Running Sport Activities
Proposed Algorithm 2.3 3.1 4

Baseline 10.1 6.4 9.5

6.4.1.2 Evaluation

First, we compared the performance of our algorithm on the selected sequences in the

CMU dataset to a baseline algorithm. Then, we evaluated different dimension reduction

algorithms using labeled sequences in the UMD Gesture dataset [LJD09].

We used a baseline algorithm [OKA06] for comparison. This algorithm uses the local

extrema of the change in the optical flow to compute the action discontinuities. The results

show that the baseline algorithm is useful for the actions whose trajectories are parallel to

the image plane (Fig. 6.3b) where the perspective projection can be approximated by or-

thographic projection. However, it may not provide consistent results for the cases where

the perspective distortion is severe (Fig. 6.3a) or when the actions are complicated (Fig.

6.3c).

We used the results for MoCap data as the ground truth. The second row in Table. 6.1

further shows that the standard deviations of the baseline algorithm are much larger. The

results show that our algorithm is effective and outperform the baseline algorithm.

Figure 6.4: UMD Gesture dataset [LJD09]. The dataset contains videos of 14 different
gestures of military signals.

Finally, we evaluated the accuracy of our detection algorithm on manually labeled data.

The UMD Gesture dataset consists of 14 different gestures of military signals (Fig. 6.4).

Each gesture was performed by three subjects, and the same gesture was repeated three
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times by each subject. In the dataset, the first and the last pose of each action were man-

ually labeled. This allows us to quantitatively evaluate the accuracy in the discontinuities

detection.

The estimated discontinuities naturally divide the video sequences into intervals. We

computed the optimal one-to-one-mapping between the estimated intervals and the ground

truth intervals. Then the accuracy is defined as the sum of the overlap between corre-

sponding pairs divided by the total length of the intervals. This “assignment” problem can

be solved by the Hungarian algorithm (see [YZDJ08] for details). Three other algorithms,

namely, PCA, Laplacian [Niy03], and Isomap [TdSL00] are evaluated for comparison.

Compared to the ground truth, Table 6.2 shows that the GPDM has a better accuracy

than other algorithms. This result suggests that the GPDM models the process of human

activities in videos better than other dimension reduction algorithms which are based on

the pairwise relationship of data samples. Therefore, it is more suitable for human motion

analysis in a reduced dimension.

This set of experiments demonstrates that action discontinuity detection in video is

closely related to the physical dynamics and visual perception of human actions. As a

result, the poses at the computed discontinuities are useful representations for processing

human actions.

Table 6.2: Accuracies of the detection algorithms using different dimension reduction
methods. The accuracy is computed using the Hungarian algorithm on the UMD Gesture
dataset [LJD09].

Algo Ours PCA Laplacian ISOMAP
Rate 92.3% 78.6% 85.7% 87.9%

6.4.2 Robust Detection of Action Discontinuities in Videos

In this section, we demonstrate that our proposed algorithm produces robust results under

changes in viewpoint and smooth changes in background. Then in Sec. 6.4.3, we will show

how to use these results for action recognition.

6.4.2.1 Robustness to Changes in Viewpoint

We show that our detection algorithm provides consistent results on actions viewed from

different directions. This makes the results useful for representing actions in multiple view
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videos.

We tested our algorithm on synchronized cameras. Fig. 6.5 shows an action from the

UMD Pose dataset [OKA06]. The walking sequences of the same person were taken by six

synchronized cameras in an indoor environment.

Figure 6.5: Results for a multiple view sequence from the UMD Pose dataset [OKA06].
Each column displays the poses from a different viewpoint. Each row suggests that the
estimated key poses from different cameras are consistent. The camera (C#) and the frame
number (F#) are shown in the lower right corner in each representative frame.

Fig. 6.5 shows the results for all the six cameras. Each column displays the estimated

poses from a different viewpoint. Comparing the frame numbers in individual rows, one

can see that the action poses from different cameras are consistent. The reason for this

consistency is probably because all the action discontinuities in different views correspond

to the changes in the same human motoric dynamics. Therefore, this consistency and

robustness of the algorithm make the detection results useful for action recognition.
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6.4.2.2 Robustness to Changes in Background

We demonstrate that our approach is robust to smooth background change using videos in

public domain. Fig. 6.6a shows an indoor video, which was captured with a moving cam-

era in a gymnastic room. Discontinues in action are correctly identified even though the

changes in viewpoints and the background are large. Fig. 6.6b, taken with a moving cam-

era, shows a more challenging situation. The algorithm captures the action discontinuities

when the girl moves from left to right and vice versa.

Figure 6.6: Action discontinuities of two videos in public domain. For each action, the
motion trajectory (blue curve) of the video in the reduced space is shown. The frame
numbers corresponding to the key poses are displayed under the individual frames as
well as in the GPDM space 1-2 (red dots). The blue arrow denotes the time direction.

We further demonstrate that background subtraction, even on static cameras, may not

be necessary in detecting the action discontinuities. For static cameras, background sub-

traction can be applied for computing the human masks. In this example, we use the

pre-computed mask in the Weizmann dataset to obtain and align the foreground images

using correlation, and apply the proposed algorithm on the aligned foreground images.

Compared to the poses in Fig. 6.2, the result (Fig. 6.7a) for the masks is not consistent. The

performance of discontinuity detection degrades because of inaccurate segmentation and

the accumulation of quantization error at the pixel level. This can be easily improved by

using optical flow as the input (Fig. 6.7b), which provides similar results as in Fig. 6.2.

Performing background segmentation on videos captured by a moving camera is even

more challenging. The current state of the art is to use human body detectors to locate

humans and align the centers of the gravity for tracking.

We use an outdoor sequence where the subject is performing the “limping” action. Fig.

6.7c show the results of our algorithm. One can see that the asymmetric walking style is
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correctly identified. Fig. 6.7d is the result using a state-of-the-art detector [SKHD09b] as

the input. The human detection (yellow bounding boxes) is useful for tracking, but it may

not be useful for pose analysis and the detection of the poses that correspond to the action

discontinuities.

Figure 6.7: (a) and (b): Results for the video in Fig. 6.2 using foreground (a) and flow fields
(b) as the input. Frame numbers are displayed below the images. The magnitude of the
flow field is shown in (b). (c) Results for a video (“limping” action, taken with moving
camera) using our algorithm. This result shows that each step is clearly identified. (d)
Action discontinuities based on the human detection results.

The above results show that our algorithm for videos is robust against changes in back-

ground. Such consistent results can be adopted for pose and action recognition. In addi-

tion, they may be used for action synopsis and representation.

6.4.3 Action Discontinuities Facilitate Visual Action Recognition

In this experiment, we show that the poses corresponding to the action discontinuities

lead to accurate action recognition. The primary reason is that these “key poses” reduces

the uncharacteristic images in both the training and test datasets. By removing the un-

characteristic poses that are not unique to individual categories, the inter-class variation is

increased.

We evaluated the action recognition performance by comparing the results against the

algorithm in [LJD09], which uses different sets of poses as input. In our experiments, we

employ shape, color, and motion cues of the key poses. Three datasets – the UMD Gesture

dataset, the KTH action dataset, and the Weizmann datasets – were used for comparison.

Results show that the poses extracted from our algorithm improve the performance of

action recognition (Table. 6.3). For each dataset, we compared the recognition rates using

the key poses only and using all cues together, respectively. For the UMD Gesture dataset,
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we process them in a slightly different way than in the original paper – we use all the three

action instances in each video as the input for the alignment algorithm, instead of using

each instance separately.

Table 6.3: Improving the recognition performance using action discontinuities. The results
for [LJD09] are copied from the original paper.

Dataset [LJD09], Pose only Ours, Pose only [LJD09], All Cues Ours, All Cues
UMD 53.57% 69.44% 91.07% 94.44%

Weizmann 81.11% 83.33% 100% 100%
KTH S1 71.95% 76.46% 98.83% 99.04%
KTH S2 61.33% 69.74% 94% 94.52%
KTH S3 53.03% 60.13% 94.78% 96.32%
KTH S4 57.36% 65.54% 95.48% 96%

In Table. 6.3, the recognition rates using the key poses are consistently higher than

the other method. This demonstrates that the key poses are useful for action recognition,

which in turn suggests that our modeling of action discontinuities in videos is practical.

6.5 Chapter Conclusion

We proposed an action-independent algorithm for detecting human movement disconti-

nuities (defined as the maxima of the third order derivatives of time series) in video and in

MoCap data based on the dynamics of human motion. Experiments demonstrate that our

algorithm is useful for extracting consistent poses from different videos, and improves the

performance of recognition algorithms by providing more discriminative poses as inputs.

The current approach is designed for a single subject in an uncluttered scene. There-

fore, it is limited in its abilities at handling complicated scenes of human interactions or

activities of a group of subjects. We may be able to handle such scenes using better human

visual filters that label the pixels of the body parts. This way, a more refined part based

action analysis may be used.
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Chapter 7

Conclusion

As seeing agents, human beings have the basic ability to collaborate with other human

beings in daily tasks such as cooking, crafting, and cleaning. Action mirroring is a low-

level mechanism that allows agents to reproduce 3D human poses directly from 2D videos.

In this dissertation, I performed a number of studies to advance the understanding of the

computational methods of this mechanism.

First, I suggest that the mapping between the 3D trajectories of a body joint and their 2D

projections in video can be learned using a statistical method called Partial Least Squares

(PLS). This mirroring module can infer the 3D positions of the body joint from visual data

instantly. Synthetic and real experiments showed that the regression framework can ro-

bustly mirror human actions.

Second, I studied the primitives in 3D MoCap data of individual human subjects. In

our learning procedure, we solve for both the basis functions of the actions and the times

when these functions are "activated". The sparse activations explicitly express the coordi-

nation among different joints.

Third, I used the Granger Causality to analyze the MoCap data of a group of human

subjects in an orchestra. Evidence shows a causality network among human motions in a

coordinated setting.

Prof. Rosenfeld once said that we need to "See Far Away"1. Therefore, I would like to

conclude this dissertation by showing rising areas and applications for computer vision

and human action analysis.

7.1 What is Next?

I have a dream that one day Cognitive Robots will rise up, and be our friends. There are

two applications directly related to this dream: robots and blind patients.

1This is possibly why he named his center "CfAR".
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7.1.1 Robots Need Vision

We want to build intelligent machines. Among all components, human action analysis

is critical because it facilitates human-robot interaction and robot-object interaction. As

Aristotle said, humans are social animals. We cannot survive without interaction, so do

cognitive robots.

My PhD study in Maryland will certainly help towards building these humanoid robots.

Imitating human action and designing immediate control strategy for response will both

entertain users in living room and help them working in the garden. Certainly, this long

term goal of Cognitive Robots is still elusive, but let us believe we will see prototypes in

the near future.

7.1.2 Blind Patients Need Vision

"There will be a light!"

This is what we are telling the blinds nowadays, and it will eventually come true in 10

years. Bionic eye becomes reality recently, and human trials were carried out in UK, US,

and Australia.

However, this visual restoration is limited to a very low resolution. The visual repre-

sentation is, and will still be, approximately 32 by 32 pixels. Therefore, we must use com-

puter vision algorithms to extract useful information from the environment. As a result,

human actions analysis, scene and context understanding, and saliency detection will be

very critical. Visual Processing for Bionic Eye, which is the project I am currently working

on , will be a useful attempt to see how we merge human with machines.
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University of Maryland, College Park, MD 20742.

• 2001-2004, M.ENG in Computer Science (First Rank),

South China Univ. of Tech., China.

• 1998-2001, B.SC in Computer Science (First Honor),

South China Univ. of Tech., China.

B.2 Awards and Honors

• 2008-present, FUTURE FACULTY FELLOW,

A. James Clark School of Engineering, University of Maryland.

• 2007, SECOND PLACE, the First Semantic Robot Vision Challenge,

AAAI 2007, Vancouver, Canada.

• 2006BEST STUDENT PAPER,

the Intl. Conf. on Frontier in Handwriting Recognition (ICFHR) 2006.

B.3 Research Experience

• 2007-present, RESEARCH ASSISTANT,

Computer Vision Lab, University of Maryland.

• 2004-2007, RESEARCH ASSISTANT,

Language and Media Lab, University of Maryland.

• 2001-2004, STUDENT TECHNICAL MEMBER,

Huagong Tomorrow Co. Ltd., China.
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B.4 Participated Projects

• 2010-present, VISUAL PROCESSING FOR BIONIC EYE,

National ICT Australia and Bionic Vision Australia.

• 2007-present, POETICON,

European Commission FP7.

• 2007-2008, PARKINSON’S DISEASE ANALYSIS,

National Institutes of Health.

• 2004-2007, CONTRACT MDA-9040-2C-0406,

Department of Defense.
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