5 research outputs found

    Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning

    Get PDF
    Motivation: Recent advances in brain imaging and high-throughput genotyping techniques enable new approaches to study the influence of genetic and anatomical variations on brain functions and disorders. Traditional association studies typically perform independent and pairwise analysis among neuroimaging measures, cognitive scores and disease status, and ignore the important underlying interacting relationships between these units

    Applications of Data Mining in Healthcare

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With increases in the quantity and quality of healthcare related data, data mining tools have the potential to improve peopleā€™s standard of living through personalized and predictive medicine. In this thesis we improve the state-of-the-art in data mining for several problems in the healthcare domain. In problems such as drug-drug interaction prediction and Alzheimerā€™s Disease (AD) biomarkers discovery and prioritization, current methods either require tedious feature engineering or have unsatisfactory performance. New effective computational tools are needed that can tackle these complex problems. In this dissertation, we develop new algorithms for two healthcare problems: high-order drug-drug interaction prediction and amyloid imaging biomarker prioritization in Alzheimerā€™s Disease. Drug-drug interactions (DDIs) and their associated adverse drug reactions (ADRs) represent a significant detriment to the public h ealth. Existing research on DDIs primarily focuses on pairwise DDI detection and prediction. Effective computational methods for high-order DDI prediction are desired. In this dissertation, I present a deep learning based model D 3 I for cardinality-invariant and order-invariant high-order DDI pre- diction. The proposed models achieve 0.740 F1 value and 0.847 AUC value on high-order DDI prediction, and outperform classical methods on order-2 DDI prediction. These results demonstrate the strong potential of D 3 I and deep learning based models in tackling the prediction problems of high-order DDIs and their induced ADRs. The second problem I consider in this thesis is amyloid imaging biomarkers discovery, for which I propose an innovative machine learning paradigm enabling precision medicine in this domain. The paradigm tailors the imaging biomarker discovery process to individual characteristics of a given patient. I implement this paradigm using a newly developed learning-to-rank method PLTR. The PLTR model seamlessly integrates two objectives for joint optimization: pushing up relevant biomarkers and ranking among relevant biomarkers. The empirical study of PLTR conducted on the ADNI data yields promising results to identify and prioritize individual-specific amyloid imaging biomarkers based on the individualā€™s structural MRI data. The resulting top ranked imaging biomarkers have the potential to aid personalized diagnosis and disease subtyping

    MRI Measures of Neurodegeneration as Biomarkers of Alzheimer's Disease

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Alzheimerā€™s disease (AD) is the most common age-related neurodegenerative disease. Many researchers believe that an effective AD treatment will prevent the development of disease rather than treat the disease after a diagnosis. Therefore, the development of tools to detect AD-related pathology in early stages is an important goal. In this report, MRI-based markers of neurodegeneration are explored as biomarkers of AD. In the first chapter, the sensitivity of cross-sectional MRI biomarkers to neurodegenerative changes is evaluated in AD patients and in patients with a diagnosis of mild cognitive impairment (MCI), a prodromal stage of AD. The results in Chapter 1 suggest that cross-sectional MRI biomarkers effectively measure neurodegeneration in AD and MCI patients and are sensitive to atrophic changes in patients who convert from MCI to AD up to 1 year before clinical conversion. Chapter 2 investigates longitudinal MRI-based measures of neurodegeneration as biomarkers of AD. In Chapter 2a, measures of brain atrophy rate in a cohort of AD and MCI patients are evaluated; whereas in Chapter 2b, these measures are assessed in a pre-MCI stage, namely older adults with cognitive complaints (CC) but no significant deficits. The results from Chapter 2 suggest that dynamic MRI-based measures of neurodegeneration are sensitive biomarkers for measuring progressive atrophy associated with the development of AD. In the final chapter, a novel biomarker for AD, visual contrast sensitivity, was evaluated. The results demonstrated contrast sensitivity impairments in AD and MCI patients, as well as slightly in CC participants. Impaired contrast sensitivity was also shown to be significantly associated with known markers of AD, including cognitive impairments and temporal lobe atrophy on MRI-based measures. The results of Chapter 3 support contrast sensitivity as a potential novel biomarker for AD and suggest that future studies are warranted. Overall, the results of this report support MRI-based measures of neurodegeneration as effective biomarkers for AD, even in early clinical and preclinical disease stages. Future therapeutic trials may consider utilizing these measures to evaluate potential treatment efficacy and mechanism of action, as well as for sample enrichment with patients most likely to rapidly progress towards AD

    2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception

    Get PDF
    The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by Ī²-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of Ī±-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, Ī²-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world
    corecore