25 research outputs found

    Skaalautuvat laskentamenetelmät suuren kapasiteetin sekvensointidatan analytiikkaan populaatiogenomiikassa

    Get PDF
    High-throughput sequencing (HTS) technologies have enabled rapid DNA sequencing of whole-genomes collected from various organisms and environments, including human tissues, plants, soil, water, and air. As a result, sequencing data volumes have grown by several orders of magnitude, and the number of assembled whole-genomes is increasing rapidly as well. This whole-genome sequencing (WGS) data has revealed the genetic variation in humans and other species, and advanced various fields from human and microbial genomics to drug design and personalized medicine. The amount of sequencing data has almost doubled every six months, creating new possibilities but also big data challenges in genomics. Diverse methods used in modern computational biology require a vast amount of computational power, and advances in HTS technology are even widening the gap between the analysis input data and the analysis outcome. Currently, many of the existing genomic analysis tools, algorithms, and pipelines are not fully exploiting the power of distributed and high-performance computing, which in turn limits the analysis throughput and restrains the deployment of the applications to clinical practice in the long run. Thus, the relevance of harnessing distributed and cloud computing in bioinformatics is more significant than ever before. Besides, efficient data compression and storage methods for genomic data processing and retrieval integrated with conventional bioinformatics tools are essential. These vast datasets have to be stored and structured in formats that can be managed, processed, searched, and analyzed efficiently in distributed systems. Genomic data contain repetitive sequences, which is one key property in developing efficient compression algorithms to alleviate the data storage burden. Moreover, indexing compressed sequences appropriately for bioinformatics tools, such as read aligners, offers direct sequence search and alignment capabilities with compressed indexes. Relative Lempel-Ziv (RLZ) has been found to be an efficient compression method for repetitive genomes that complies with the data-parallel computing approach. RLZ has recently been used to build hybrid-indexes compatible with read aligners, and we focus on extending it with distributed computing. Data structures found in genomic data formats have properties suitable for parallelizing routine bioinformatics methods, e.g., sequence matching, read alignment, genome assembly, genotype imputation, and variant calling. Compressed indexing fused with the routine bioinformatics methods and data-parallel computing seems a promising approach to building population-scale genome analysis pipelines. Various data decomposition and transformation strategies are studied for optimizing data-parallel computing performance when such routine bioinformatics methods are executed in a complex pipeline. These novel distributed methods are studied in this dissertation and demonstrated in a generalized scalable bioinformatics analysis pipeline design. The dissertation starts from the main concepts of genomics and DNA sequencing technologies and builds routine bioinformatics methods on the principles of distributed and parallel computing. This dissertation advances towards designing fully distributed and scalable bioinformatics pipelines focusing on population genomic problems where the input data sets are vast and the analysis results are hard to achieve with conventional computing. Finally, the methods studied are applied in scalable population genomics applications using real WGS data and experimented with in a high performance computing cluster. The experiments include mining virus sequences from human metagenomes, imputing genotypes from large-scale human populations, sequence alignment with compressed pan-genomic indexes, and assembling reference genomes for pan-genomic variant calling.Suuren kapasiteetin sekvensointimenetelmät (High-Throughput Sequencing, HTS) ovat mahdollistaneet kokonaisten genomien nopean ja huokean sekvensoinnin eri organismeista ja ympäristöistä, mukaan lukien kudos-, maaperä-, vesistö- ja ilmastonäytteet. Tämän seurauksena sekvensointidatan ja koostettujen kokogenomien määrät ovat kasvaneet nopeasti. Kokogenomin sekvensointi on lisännyt ihmisen ja muiden lajien geneettisen perimän tietämystä ja edistänyt eri tieteenaloja ympäristötieteistä lääkesuunnitteluun ja yksilölliseen lääketieteeseen. Sekvensointidatan määrä on lähes kaksinkertaistunut puolivuosittain, mikä on luonut uusia mahdollisuuksia läpimurtoihin, mutta myös suuria datankäsittelyn haasteita. Nykyaikaisessa laskennallisessa biologiassa käytettävät monimutkaiset analyysimenetelmät vaativat yhä enemmän laskentatehoa HTS-datan kasvaessa, ja siksi HTS-menetelmien edistyminen kasvattaa kuilua raakadatasta lopullisiin analyysituloksiin. Useat tällä hetkellä käytetyistä genomianalyysityökaluista, algoritmeista ja ohjelmistoista eivät hyödynnä hajautetun laskennan tehoa kokonaisvaltaisesti, mikä puolestaan ​​hidastaa uusimpien analyysitulosten saamista ja rajoittaa tieteellisten ohjelmistojen käyttöönottoa kliinisessä lääketieteessä pitkällä aikavälillä. Näin ollen hajautetun ja pilvilaskennan hyödyntämisen merkitys bioinformatiikassa on tärkeämpää kuin koskaan ennen. Genomitiedon suoraa hakua ja käsittelyä tukevat pakkaus- ja tallennusmenetelmät mahdollistavat nopean ja tilatehokkaan genomianalytiikan. Uusia hajautettuihin järjestelmiin soveltuvia tietorakenteita tarvitaan, jotta näitä suuria datamääriä voidaan hallita, käsitellä, hakea ja analysoida tehokkaasti. Genomidata sisältää runsaasti toistuvia sekvenssejä, mikä on yksi keskeinen ominaisuus kehitettäessä tehokkaita pakkausalgoritmeja tiedontallennustaakkaa ja analysointia keventämään. Lisäksi pakattujen sekvenssien indeksointi yhdistettynä sekvenssilinjausmenetelmiin mahdollistaa sekvenssien satunnaishaun ja suoran linjauksen pakattuihin sekvensseihin. Relative Lempel-Ziv (RLZ) pakkausmenetelmä on todettu tehokkaaksi toistuville genomisekvensseille rinnakkaislaskentaa hyödyntäen. RLZ-menetelmää on viime aikoina sovellettu sekvenssilinjaukseen yhteensopiviin hybridi-indekseihin, joita tässä työssä on nopeutettu hajautetulla laskennalla. Genomiikan dataformaateista löytyvillä tietorakenteilla on ominaisuuksia, jotka soveltuvat hajautettuun sekvenssihakuun, sekvenssilinjaukseen, genomien koostamiseen, genotyyppien imputointiin ja varianttien havaitsemiseen. Pakattu indeksointi sovellettuna hajautetulla laskennalla tehostettuihin menetelmiin vaikuttaa lupaavalta lähestymistavalta populaatiogenomiikan analyysiohjelmistojen mukauttamiseksi suuriin datamääriin. Erilaisia ​​tiedon osittamis- ja muunnosstrategioita hyödynnetään suorituskyvyn tehostamiseen monivaiheisessa hajautetussa genomidatan prosessoinnissa. Näitä uusia skaalautuvia hajautettuja laskentamenetelmiä tutkitaan tässä väitöskirjassa ja demonstroidaan yleisluontoisella bioinformatiikan analyysiohjelmiston arkkitehtuurilla. Tässä työssä johdatellaan genomiikan ja DNA-sekvensointitekniikoiden peruskäsitteisiin ja esitellään rutiininomaisia ​​bioinformatiikan menetelmiä perustuen hajautetun ja rinnakkaislaskennan periaatteille. Väitöskirjassa edetään kohti täysin hajautettujen ja skaalautuvien bioinformatiikan ohjelmistojen suunnittelua keskittyen populaatiogenomiikan ongelmiin, joissa syötedatan määrät ovat suuria ja analyysitulosten saavuttaminen on hidasta tai jopa mahdotonta tavanomaisella laskennalla. Lopuksi tutkittuja menetelmiä sovelletaan tässä työssä kehitettyihin skaalautuviin populaatiogenomiikan sovelluksiin, joita koestetaan kokogenomidatalla supertietokoneen laskentaklusterissa. Kokeet sisältävät virussekvenssien louhintaa ihmisten metagenominäytteistä, genotyyppien täydentämistä (imputointia) suurista ihmispopulaatioista ja pan-genomisen indeksin pakkaamista sekvenssilinjauksen nopeuttamista varten. Lisäksi pakattua pan-genomia kokeillaan referenssigenomin koostamiseen populaatioon perustuvien varianttien havaitsemista varten

    Principles of RNA-based gene expression control in Vibrio cholerae

    Get PDF
    Post-transcriptional control of gene expression by small regulatory RNAs (sRNAs) is a widespread regulatory principle among bacteria. The sRNAs typically act in concert with RNA binding proteins such as the RNA chaperone Hfq to bind mRNA targets via imperfect base pairing. They affect translation initiation and/or transcript stability. Additionally, sRNAs can influence transcription termination of their targets or function indirectly as so-called sponges for other sRNAs. Regulation often involves the major endoribonuclease RNase E, which contributes to both sRNA biosynthesis and function. In the first part of this thesis, we globally identified RNase E cleavage sites in the major human pathogen Vibrio cholerae by employing TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq). We validated the involvement of RNase E in the synthesis and maturation of several previously uncharacterized sRNAs. Two examples, OppZ and CarZ, were chosen for further study due to their unique regulatory mechanism. They are processed from the 3’ untranslated regions (3’ UTR) of the oppABCDF and carAB operons, respectively, and subsequently target mRNAs transcribed from the very same operons by binding to base pairing sites upstream of the second (oppB) or first (carA) cistrons. This leads to translational inhibition and triggers premature transcription termination by the termination factor Rho, thereby establishing an autoregulatory feedback loop involving both the protein-coding genes and the processed sRNAs. In the case of OppZ, the regulation is limited to the oppBCDF part of the operon in a discoordinate fashion due to the position of the OppZ base pairing site. This mechanism of target regulation by Opp and CarZ represents the first report of an RNA-based feedback regulation that does not rely on additional transcription factors. The second study included in the thesis characterizes two sRNAs involved in the envelope stress response (ESR) of V. cholerae. Misfolded outer membrane proteins (OMPs) induce the sigmaE-dependent transcriptional activation of the sRNAs MicV and VrrA, which reduce membrane stress by repressing the mRNAs of several OMPs and other abundant membrane protein. MicV and VrrA share a conserved seed region with their functionally analogous counterpart from Escherichia coli, RybB, indicating that this seed sequence might represent a universally functional RNA domain. To study the involvement of this seed domain in the ESR in an unbiased fashion, we constructed a complex library of artificial sRNAs and performed laboratory selection experiments under membrane-damaging conditions. We isolated the most highly enriched sRNA variants and indeed discovered a strong enrichment of the conserved seed-pairing domain. We were able to pinpoint the repression of ompA as the key factor responsible for the sRNA-mediated resistance to ethanol-induced membrane damage. Taken together, this thesis expanded the knowledge on the mechanisms of sRNA-dependent gene regulation by reporting a novel autoregulatory feedback loop. Additionally, it introduced a synthetic sRNA library as a tool to study complex microbial phenotypes and their underlying sRNA-target interactions

    Modern Systems for Large-scale Genomics Data Analysis in the Cloud

    Get PDF
    Genomics researchers increasingly turn to cloud computing as a means of accomplishing large-scale analyses efficiently and cost-effectively. Successful operation in the cloud requires careful instrumentation and management to avoid common pitfalls, such as resource bottlenecks and low utilisation that can both drive up costs and extend the timeline of a scientific project. We developed the Butler framework for large-scale scientific workflow management in the cloud to meet these challenges. The cornerstones of Butler design are: ability to support multiple clouds, declarative infrastructure configuration management, scalable, fault-tolerant operation, comprehensive resource monitoring, and automated error detection and recovery. Butler relies on industry-strength open-source components in order to deliver a framework that is robust and scalable to thousands of compute cores and millions of workflow executions. Butler’s error detection and self-healing capabilities are unique among scientific workflow frameworks and ensure that analyses are carried out with minimal human intervention. Butler has been used to analyse over 725TB of DNA sequencing data on the cloud, using 1500 CPU cores, and 6TB of RAM, delivering results with 43\% increased efficiency compared to other tools. The flexible design of this framework allows easy adoption within other fields of Life Sciences and ensures that it will scale together with the demand for scientific analysis in the cloud for years to come. Because many bioinformatics tools have been developed in the context of small sample sizes they often struggle to keep up with the demands for large-scale data processing required for modern research and clinical sequencing projects due to the limitations in their design. The Rheos software system is designed specifically with these large data sets in mind. Utilising the elastic compute capacity of modern academic and commercial clouds, Rheos takes a service-oriented containerised approach to the implementation of modern bioinformatics algorithms, which allows the software to achieve the scalability and ease-of-use required to succeed under increased operational load of massive data sets generated by projects like International Cancer Genomics Consortium (ICGC) Argo and the All of Us initiative. Rheos algorithms are based on an innovative stream-based approach for processing genomic data, which enables Rheos to make faster decisions about the presence of genomic mutations that drive diseases such as cancer, thereby improving the tools' efficacy and relevance to clinical sequencing applications. Our testing of the novel germline Single Nucleotide Polymorphism (SNP) and deletion variant calling algorithms developed within Rheos indicates that Rheos achieves ~98\% accuracy in SNP calling and ~85\% accuracy in deletion calling, which is comparable with other leading tools such as the Genome Analysis Toolkit (GATK), freebayes, and Delly. The two frameworks that we developed provide important contributions to solve the ever-growing need for large scale genomic data analysis on the cloud, by enabling more effective use of existing tools, in the case of Butler, and providing a new, more dynamic and real-time approach to genomic analysis, in the case of Rheos

    Public Health

    Get PDF
    Public health can be thought of as a series of complex systems. Many things that individual living in high income countries take for granted like the control of infectious disease, clean, potable water, low infant mortality rates require a high functioning systems comprised of numerous actors, locations and interactions to work. Many people only notice public health when that system fails. This book explores several systems in public health including aspects of the food system, health care system and emerging issues including waste minimization in nanosilver. Several chapters address global health concerns including non-communicable disease prevention, poverty and health-longevity medicine. The book also presents several novel methodologies for better modeling and assessment of essential public health issues
    corecore